Fantastic neural networks and how to train them

Nikolai Hartmann

LMU Munich

April 24, 2024, LMU Joint Particle Physics Group Seminar

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

1/36

Buzzword definitions for this talk
The great thing about buzzwords - i can choose my own definition

Al
Al

? ML
ML —

® Machine Learning: Fitting, but we don't really care what exactly the model is
(in classical fitting we usually have an interpretation for the parameters)

® Deep learning: Solving problems with neural networks i can't solve with BDTs
(usually involving larger datasets and multiple layers)

e Artificial Intelligence: Emulating human intelligence/behavior
(i want to draw a blurry boundary to the stuff we never did by hand before)

2/36

Supervised learning

Focussing on supervised learning in this talk
— visit talk by David Gisegh (26.06.) to learn more about unsupervised learning!

® Want to find a function that maps a set of input features
x = [x1,a,...,Ty,] to a set of output features y = [y1,¥2, .., Yn]

We only have (typically simulated) training examples

Want to find (multidimensional) parametrisation of something that we can only simulate
— inverse problem

® Two main goals:

® Classification: map inputs to labels y; € 0,1 (or a probability p; € [0,1])
® Regression: predict continuous values y; € R

3/36

The fully-connected, feedforward neural network

Aka multilayer perceptron (MLP)
Input Hidden Hidden Hidden Ouput
layer layer layer layer layer

Propagate information through the network by taking the weighted sum of inputs at each
neuron and applying an activation function o (3, w;x; + b)

Activation function adds non-linearity

— can approximate any function with sufficient number of neurons!

Each connection corresponds to one weight w

® Each neuron has one bias b

Classification: one output neuron per possible label

4/36

The simplemost “neural network”

Input Ouput
layer layer

Example: 2D w1 =we =1

80

60

40

1-x1+1x2

20

background
signal

1-x14+1x2

® A single neuron (no hidden layer) corresponds to linear discriminant
— Output = > w;x;
® |dea goes back to 1957 - the “Perceptron” (in Hardware!) by Frank Rosenblatt

6

5/36

The simplemost “neural network”

Input Ouput
layer layer

Example: 2D w1 =we =1

80
[background

60 signal

40

1-x1+1x2

20

0 2 4 6
1:x14+1x2
® A single neuron (no hidden la liscriminant
— Output = > w;x; el |
* Idea goes back to 1957 - the el THENEEEENIESSS 1) by Frank Rosenblatt

5/36

The simplemost “neural network”

Input Ouput
layer layer

Example: 2D w1 =we =1

80
& background

signal

New York Times, July 7, 1958:

“The Navy revealed the embryo
of an electronic computer to-

day that it expects will be able 0 FR e
to walk, talk, see, reproduce it-
self and be conscious of its exis-

® A single neuron (no hI tence.” hant
— Output = Y w;a;
® |dea goes back to 1957 - the "Perceptron” (in Hardware!) by Frank Rosenblatt

5/36

The power of hidden layers

Hidden layers without activation functions don't help

— linear combination of linear combinations is still a linear combination

Non-linear activation function at each neuron in the hidden layer(s) allows to approximate
any function! (given enough neurons)

— proven for sigmoid in 1989 by George Cybenko

— more generally proven in 1991 by Kurt Hornik

One hidden layer is in principle enough

Experience: multi-hidden-layer networks work better
— "“Deep neural networks”

6/36

Activation functions

tanh Sigmoid reLU
1.0 1.00
N
0.5 4 0.75
3]
0.0 0.50 5
-0.51 0.25 14
-1.04 — - . . —1 0.00 . 04
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
® Derivatives:
tanh: sigmoid: reLU:
0 forx<O
flx) =1~ f(x)? f(@) = flz)(1 = f(z)) fi(z) =
1 forz >0

® tanh function in the hidden layers was popular for a long time

Problem: gradient vanishes for large input values
— especially problematic in multi-layer networks

® most popular nowadays: reLU and variants of it
® sigmoid is used wherever output should be in [0, 1]

7/36

Example

https://playground.tensorflow.org

FEATURES + — 4 HIDDEN LAYERS OUTPUT
Which properties do

Test loss 0.008
ou want to feed in?
¥ LY = Y= Y= M @ Training loss 0.007

7 neurons 5 neurons. 5 neurons. 2 neurons 5
X
X2
x12
X2
Xixz
< The outputs are
sin(x1) mixed with varying
weighis, shown by
the thickness of Colors shows
the fines. data, neuron and [R
sin(x2) a [1

weight values.

(

This s the output [0 showtest cata [] Discretize output
from one neuron

Hover to see it
larger.

8/36

https://playground.tensorflow.org

Loss function

To solve the optimisation problem we need a measure for the distance between the current
(pred) output and the desired (true) output

Mean squared error (MSE):

Luse = & 2 (4} pred —yime)?

— good for Regression, mean absolute error also popular

Cross entropy (CE):
LCE — ZNclasses y log yz

— good for Classification, same as maximum Likelihood

Binary cross entropy (BCE) - for 2 classes, 1 output:

LBCE = _% Zz [true In ypred + (1 o ylprue) 111(yf)red):|

9/36

Backpropagation

The algorithm that makes neural networks work

Know all operations and their derivatives the computation graphs

— can use chain rule

— compute once forward, store intermediate values, then backward to get gradient
9f(g9(@)) _ of 0g

Single variable:

ox T 9g Ox
Multivariable: J;(g(z)) = J¢(g)Jq4(z), in components gj] = g;}: g%,’;
. 0 0
For derivative of scalar (loss): % _ 9 O
J 3gk a.%'j
N

vector Jacobian
— matrix multiply gradient (row) vector with the Jacobian in each step

— referred to as vector-Jacobian-product (VJP)

The cool thing: Usually not required to fully compute the Jacobian to get the VJP!
(e.g. a single matrix multiplication to get VJP for matrix output w.r.t matrix input)

10/36

Stochastic Gradient Descent (SGD)

® | oss function is usually averaged over all training examples
Loy = % Zz L;

® Need to propagate all training examples through the network for each gradient update
— computationally intense for large training sets

Stochastic Gradient

Descent (SGD) o.---= . .
e ® Solution: Gradient updates on random subsets

("batches") of training data
® batch size gives a handle for tradeoff:
- number of gradient steps < iterations over dataset
(“epochs”)

w
Gradient Descent "\~

11/36

Extensions to SGD

1.0
—— SGD (Ir=0.001)
081 SGD (Ir=0.01)
H —— SGD (Ir=0.1)

064 \\M —— SGD (Ir=1.0)

= Adam (default settings) -

Loss

0.4 1

02N

0.0

0 5 10 15 20 25 30 35 40
Epochs (iterations over training data)

® Need to adjust the step size (“learning rate") for good convergence
Many approaches

® schedule learning rate during training (start high, decrease, warmup, cosine schedule, ...

® use information on previous changes (“momentum”)

® do this parameter wise

® use second order moments of the gradients

)
® |ots of research happening - keep an eye on it!
Current (2618 2024) best default choice: “Adam” and variants of it
— works very well in default settings in most cases

)

12/36

Loss

Extensions to SGD

1.0
—— SGD (Ir=0.001)
081 SGD (Ir=0.01)
H —— SGD (Ir=0.1)

064 L TT————_— sebr10)

== Adam (default settings) |

Need to adjust thé

i Andrej Karpathy &
£ @karpathy

3e-4 is the best learning rate far Adam, hands down.

4:01 AM- Nov 24,2016

134 Reposts 46 Quotes 663 Likes 37 Bookmarks

Many approaches

® schedule learning rate during training (start high, decrease, warmup, cosine schedule, ...

® use information on previous changes (“momentum”)
® do this parameter wise
® use second order moments of the gradients

Lots of research happening - keep an eye on it!

— works very well in default settings in most cases

(5]

Current (2618 2024) best default choice: “Adam” and variants of it

)

12/36

NN Architectures

Most architectures make use of symmetries in the data

® Translation invariance: Convolutional neural networks (CNNs)
— “slide” a neural network over neighboring inputs (e.g. pixels)

® Sequential data: Recurrent neural networks (RNNs)
— Stateful neurons, feed output back in, together with input of next time step

® Permutation invariance (and/or equivariance):

® Sets without predefined relations: Deep Sets

— process each element individually

— aggregate globally over hidden states in permutation invariant way (e.g. sum)
® Graphs: Graph (convolutional) networks (GNNs)

— aggregate over neighbors in graph
® Transformers: can be seen as graph networks with fully connected graph

— now also standard for sequential data (see LLMs)

Moving more and more towards the permutation invariant architectures
(both in Al research and HEP ML)

13/36

Convolutional neural networks (CNNs)

http://terencebroad.com/nnvis.html

http://terencebroad.com/nnvis.html

Slide from Gregor Kasieczka's lecture at Terascale ML school 2018

Convolutional Layer

That’s the weights we want to train

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2) +
(-1x2)+(0x4)+(1x1) =-3
] =
— 1
L 1
1 1
L =
L1 1
1 L—1
| L
L1 1
— 1
L1 =1 A
// 1
Convolution filter L —1 // |
(Sobel Gx) | T L+
Destination pixel // //
L =
L1 //
// L
//
|

24

https://indico.desy.de/indico/event/21278/contribution/10/material/slides/0.pdf

Slide from Gregor Kasieczka's lecture at Terascale ML school 2018

Slide from Cirepo

Convolutional I ayar

Ihai’s ihe weighis we wani: io irain

Sonme] ” 0 ”
N\ o

b4

A) (O30 & (1
E2x2) 1 (Ox6)+(232) +
A 2) % (O A 5 (A3)

ol
|

Conolion filfey
(S €x)
Dhesstiieatibon il

https://indico.desy.de/indico/event/21278/contribution/10/material/slides/0.pdf

Slide from Gregor Kasieczka's lecture at Terascale ML school 2018:

Convolutional Network

® How to build a convolutional network
® Chain multiple conv layers
® Use multiple masks per layer
® Pooling
® Max Pooling

® Average Pooling

® Add a fully connected network in the end

Feature Feature Feature Feature Hidden Hidden Hidden
Inputs. maps maps maps maps units units units Outputs
1@40x40 8@39x39 8@38x38 8@18x18 8@17x17 64 64 64 2
\\\‘.
MaxPooling
Convolution Convolution Convolution Convolution Flatten Fully Fully Fully
4x4 kernel 4x4 kernel 4x4 kernel 4x4 kernel connected connected connected

25

https://indico.desy.de/indico/event/21278/contribution/10/material/slides/0.pdf

How Ninput = Moutput channels work:

\
}‘\v///i 7/
<
N\

— animation

17/36

https://homepages.physik.uni-muenchen.de/~Nikolai.Hartmann/cnn_anim.svg

RNNs

|Outputy| | Output, | Outputy
i i i

RNN

Y

RNN —> e e e —» RNN

A

| Inputy | | Input, | Inputy,

A A

® QOperate on a sequence, passing-on a hidden state
® Shared weights across the sequence

® Usually thought of as a sequence in-time, but can be any ordered sequence

18/36

RNNs

[Output |

A

’ often decomposed into
E RNN P

e

A

Input; Input;

RN

® QOperate on a sequence, passing-on a hidden state
® Shared weights across the sequence

® Usually thought of as a sequence in-time, but can be any ordered sequence

18/36

RNNs

Isengard

RNN — RNN —> RNN —> RNN —> RNN

! ! ! ! T

They're taking the hobbits to

Operate on a sequence, passing-on a hidden state
Shared weights across the sequence
Usually thought of as a sequence in-time, but can be any ordered sequence

Used to be the standard for language models, but not anymore (Transformers took over)
— also in particle physics it seems their time is mostly over ...

18/36

Deep Sets

Ve

Per-item transformation ¢ (e.g. MLP - shared weights!) followed by

Permutation invariant aggregation (e.g. sum)

Every permutation-equivariant (f(7(x)) = 7(f(z)))

transformation allowed for per-item step

— e.g. add/concatenate global sum to each item

Output is now fixed-length vector, can be transformed by another MLP

Very simple to implement, give it a try!

— Popularized in HEP by "“Energy flow networks” paper (also soft/collinear safe variant)

19/36

Graph networks

Single CNN layer

with 3x3 filter: hg h,
O O
Y ¥
. OO0
. - O O\O h,
Full update:
h(‘lo D_ s (W‘wll‘h‘w’h +WORO 4.y W hL")

Consider this
undirected graph:

Calculate update
for node in red:

@) O O
o [o ;8/0

O
O O O/\O

Update 141 ! 1 ~ 1 (sl
¢ 11+;: hOw® — hOw
rule: n; o n; o + 2\‘ o 1,

Update node featuers by sum over neighbors in graph
— similar to sum over neighboring pixels in CNN

Can't have fixed weight (no meaningful ordering of neighbors, number not constant)

Simplest option: sum without weights (Graph convolutional network, GCN)

More advanced: work with features on edges, features of neigboring nodes (e.g. attention)
® in general can pass information from nodes to edges, edges to nodes ...

® ... and to and from global features

20/36

Attention

The attending RNN generates a

query describing what it wants
to focus on.

query to produce a score, describing

softmax

how well it matches the query. The
scores are fed into a softmax to
create the attention distribution.

Started as an attempt to improve translation tasks with RNNs

'\ @V\ V\ @'\ Each item is dot producted with the

® Have each element of one sequence attend to elements of another sequence

Possible implementation: score from dot product of each encoder, decoder step pair
® Precursor of transformers - Attention is all you need

Lhttps://distill.pub/2016 /augmented-rnns
21/36

https://distill.pub/2016/augmented-rnns

Example for machine translation

accord sur la zone économigqueeuropéenne a été signe en aolt 1992 . <end>

| [[F f F f F f F f L [I
B

Bl_E}_B'_ B |

ﬂ %\//

Alems| A |le—| A |e—| A —| A e—=| A |le=s| A |le| A |—| A |— A Ales A |l—| A
I 1 | I I 1 T I 1
the agreement on the European Economic Area was signed in August 1992 . <end=>

Input and target sequence can also be the same - Self Attention

Lhttps://distill.pub/2016 /augmented-rnns

22/36

https://distill.pub/2016/augmented-rnns

Transformers as a Graph Network

from https://docs.dgl.ai/en/latest/tutorials/models/4_old_wines/7_transformer.html

® lines represent attention weights - inferred from features of nodes they connect

® Decoder: only connections to previous tokens (causal mask)

Encoder: fully connected graph for attention
Encoder-only: BERT, ParT
® Decoder-only: GPT(1,2,3)

23/36

https://docs.dgl.ai/en/latest/tutorials/models/4_old_wines/7_transformer.html

Transformer details

Attention is all you need (2017) (arXiv:1706.03762)

Output
Probabilities

Linear

Add & Norm
Feed
Forward
Add & Norm
ALGIEING Multi-Head
Feed Attention
Forward Nx
N Add & Norm :\
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A) LY 2
(. _/
Positional A Positional
Encoding ¥ Encoding
Input Output
Embedding Embedding
Inputs Qutputs
(shifted right)

® Uses Multi-Head-Attention (MHA)
® MLP (with one hidden layer) after each MHA block

® Skip connections and normalization layers make
deep models possible

24/36

https://arxiv.org/abs/1706.03762

Public data sets

® Public data sets help exchange and development of common models

® Nice example: Top tagging dataset (arXiv:1902.09914, 10.5281/zenodo.2603255)
— Leading 200 jet constituents for ~ 1M pythia (boosted) jets with Delphes detectors sim
— Task: find out if the jet is normal QCD jet or comes from a top quark
— Huge amount of architectures has been tested, often generally applicable

25/36

https://arxiv.org/abs/1902.09914
https://zenodo.org/doi/10.5281/zenodo.2603255

ParT
Particle Transformer for Jet Tagging arXiv:2202.03772

Fblocks Classtoke

x| Block | x*

() Particle Transformer

(b) Particle Attention Block (¢) Class Attention Block

Modifications w.r.t. standard transformer:
® Add embedded interaction features (e.g. invariant mass) as bias term to attention score
— very similar to attention mechanism with edge features in graph networks
® Attention to class token to produce global classification result
® State-of-the-art for jet tagging if trained on large enough datasets (100M events)

26 /36

https://arxiv.org/abs/2202.03772

Preliminary results on Belle 1l Smart Background project

Keej Keej
Generate “ i simulate Reconstruct R

Discard Discard

® Use a NN as a MC filter
— predict after event generation which events we will throw out later

® Graph neural networks, using the generator-level decay tree work well
® But maybe we have been fooled and it's mainly about the correlation between particles?
— try ParT, can still feed in adjacency matrix as pair feature

27/36

Preliminary results on Belle Il SmartBackground project

| transparent: val loss
| — SuperBoyang
0.43 —— ParT
0.42 - ---- Epoch boundaries
0.41 |
«» 0.40 i
3
—10.39 LGN RO AL) LANR N by (LB LRE L R (11O LR
0.38 .
W
037 MMW%W‘MMW ﬂm iuwt“
s TR e e ey
1L b1l LA Gl A
0.35] [HU:{ iy Hf #, ,m,vl“ s
H
0.0 0.5 1.0 15 2.0
Number of training samples le8

— almost out-of-box better performance than our prevously optimized models!

28/36

Working with Lorentz vectors

Working with 4-momentum vectors we can make use of Lorentz symmetry!
® |orentz covariant quantities of a set of 4-momentum vectors can be constructed as
functions of pairwise Minkowski inner products f(p1,p2,...,pn) = f({pi0j}i;)
® Two architectures with state-of-the art (2024) performance on jet-tagging tasks:
® LorentzNet (arXiv:2201.08187): build a Minkowski dot product attention based on this
— transform a set of 4-vectors into a new set of 4-vectors across layers
® PELICAN (arXiv:2211.00454): run rank 2— 2 permutation equivariant transformations
— run transformation on the whole matrix of pairwise Minkowski products
— needs fewer parameters than other models (but maybe more computation?)

29/36

LorentzNet
arXiv:2201.08187

probaTbiIity
Rttt xttt (Softmax)
N - 1
[Decoding]
%] T
[Dropout]
(7 I f
[Average Pooling]
Pe f nt
LGEB
I L1 T xL-1
LGEB XL—-1
l l
h x Ho 0
S MLP () sum Pooling O Minkowski Norm &
Inner Product T
Scalars 4-momentum
Lorentz Group Equivariant Block (LGEB) LorentzNet

— Caspar is applying this for background suppression in the B — K*vv analysis!

30/36

PELICAN

arXiv:2307.16506

Equivariant Layer: 7¢*) = Acc o Msa (T(f)) .

AcGG

N
ra _ a
Tij = E Bijlekl'
k=1

a
B

15 possible permutation equivariant matrix — matrix aggregators run in each layer

31/36

Background rejection at €5=0.3

Performance on Top tagging

2500]
E ?LorentzNet
2000 -]
PELICAN E }
PELICAN ¢
1500 - ®parT
®DisCo—FFS ®particleNet
$ M ResNeXt
1000 - 3]
¥B|P(MLP) ®PFN
5000 EEBIP(XGBoost) 1
mgrp LON ®TopoDNN
0 1 L I L)
100 1000 10* 105 106 107

Number of model parameters

32/36

How to train on a large dataset

Preparing the data input pipline often requires a significant fraction of the work

Some recommendations:
® Do all preprocessing that doesn't blow up the amount of data much before
® Store in parquet or feather files (use pandas for flat tables, awkward array for the rest)
® Stuff that blows up data (padding with Os, features for all pairs ...) better on-the-fly

® If data fits into memory, load it into memory

® estimate memory usage before - one float takes 4 bytes
— 8 GiB memory: 2.6M events, 100 particles each, 8 features per particle
® in practice will need factor 2-3 more due to copies (not always easy to avoid)

® If not, load in large chunks (100k - 1M events per chunk)
® typically 1 chunk =1 file
® generate randomized batches from the chunk
® |oad random chunks
® useful pattern: subprocess loads next chunk while training on previous chunk runs

33/36

Summary

Neural networks most useful when we process lower level data
— for high-level observables in tabular form, use BDTs! MLPs rarely beat them

Processing lower level data usually requires making use of symmetries
— CNNs, RNNs, Deep Sets, GNNs, Transformers

Following developments on public datasets can be very useful
— jet tagging is very active and the methods often generalizable

Typical particle physics data format: List of 4-momentum vectors (+extra features)
— ideal use case for Transformers (work well with small modifications, see ParT)
— ... but also need large datasets (10-100M events)

Smaller datasets can profit from imposing Lorentz symmetry

— the most interesting approaches to date: LorentzNet, PELICAN

Or having pre-trained models that can be fine-tuned to the samller datasets
— ParT shows promising results for jet tagging

— “Predict-the-next-particle” approaches getting more popular as well

— e.g. arXiv:2305.10475, 2403.05618, 2401.13537

34/36

https://arxiv.org/abs/2305.10475
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2401.13537

Outlook

® |et's talk more about the “boring” topic how we actually train these networks
— usually large fraction of work in data preparation, setting up the input pipeline
— we will likely see larger models and run our stuff on multiple GPUs soon

® Access to resources is not very uniform, for example here in Munich:

® 3 local GPUs in the AG-Kuhr
® 4 GPUs in C2PAP, need to apply for project - setup via VM (Irz cloud) or slurm queue
® several multi-GPU nodes in Irz Al system, more to come

— access can be requested by everyone with linux cluster account

35/36

https://doku.lrz.de/lrz-ai-systems-11484278.html

If you want to learn more

® Machine learning schools by the ErtUM-Data-Hub
https://erumdatahub.de/veranstaltungen

® ODSL block courses, one currently going on (until today)
https://indico.ph.tum.de/event/7606
— slides and recordings online!

® Nice video tutorials by Andrej Karpathy (Neural Networks: Zero to Hero)
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRVKZ

36/36

https://erumdatahub.de/veranstaltungen
https://indico.ph.tum.de/event/7606
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

