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Buzzword definitions for this talk
The great thing about buzzwords - i can choose my own definition

AI

ML

DL

AI

ML

DL

?

• Machine Learning: Fitting, but we don’t really care what exactly the model is
(in classical fitting we usually have an interpretation for the parameters)

• Deep learning: Solving problems with neural networks i can’t solve with BDTs
(usually involving larger datasets and multiple layers)

• Artificial Intelligence: Emulating human intelligence/behavior
(i want to draw a blurry boundary to the stuff we never did by hand before)
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Supervised learning

Focussing on supervised learning in this talk
→ visit talk by David Gisegh (26.06.) to learn more about unsupervised learning!

• Want to find a function that maps a set of input features
x = [x1, x2, . . . , xn] to a set of output features y = [y1, y2, . . . , yn]

• We only have (typically simulated) training examples

• Want to find (multidimensional) parametrisation of something that we can only simulate
→ inverse problem

• Two main goals:
• Classification: map inputs to labels yi ∈ 0, 1 (or a probability pi ∈ [0, 1])
• Regression: predict continuous values yi ∈ R
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The fully-connected, feedforward neural network
Aka multilayer perceptron (MLP)
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• Propagate information through the network by taking the weighted sum of inputs at each
neuron and applying an activation function σ(

∑
i wixi + b)

• Activation function adds non-linearity
→ can approximate any function with sufficient number of neurons!

• Each connection corresponds to one weight w
• Each neuron has one bias b
• Classification: one output neuron per possible label
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The simplemost “neural network”
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• A single neuron (no hidden layer) corresponds to linear discriminant
→ Output =

∑
wixi

• Idea goes back to 1957 - the “Perceptron” (in Hardware!) by Frank Rosenblatt
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• A single neuron (no hidden layer) corresponds to linear discriminant
→ Output =

∑
wixi

• Idea goes back to 1957 - the “Perceptron” (in Hardware!) by Frank Rosenblatt

New York Times, July 7, 1958:

“The Navy revealed the embryo
of an electronic computer to-
day that it expects will be able
to walk, talk, see, reproduce it-
self and be conscious of its exis-
tence.”
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The power of hidden layers

• Hidden layers without activation functions don’t help
→ linear combination of linear combinations is still a linear combination

• Non-linear activation function at each neuron in the hidden layer(s) allows to approximate
any function! (given enough neurons)
→ proven for sigmoid in 1989 by George Cybenko
→ more generally proven in 1991 by Kurt Hornik

• One hidden layer is in principle enough

• Experience: multi-hidden-layer networks work better
→ “Deep neural networks”
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Activation functions
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• Derivatives:

tanh: sigmoid: reLU:

f ′(x) = 1− f(x)2 f ′(x) = f(x)(1− f(x)) f ′(x) =

{
0 for x ≤ 0

1 for x > 0

• tanh function in the hidden layers was popular for a long time

• Problem: gradient vanishes for large input values
→ especially problematic in multi-layer networks

• most popular nowadays: reLU and variants of it

• sigmoid is used wherever output should be in [0, 1]
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Example
https://playground.tensorflow.org
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Loss function
To solve the optimisation problem we need a measure for the distance between the current
(pred) output and the desired (true) output

Mean squared error (MSE):

LMSE = 1
N

∑
i(y

pred
i − ytruei )2

→ good for Regression, mean absolute error also popular

Cross entropy (CE):

LCE = −
∑Nclasses

i=1 yi log ŷi

→ good for Classification, same as maximum Likelihood

Binary cross entropy (BCE) - for 2 classes, 1 output:

LBCE = − 1
N

∑
i

[
ytruei ln ypredi + (1− ytruei ) ln(1− ypredi )

]
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Backpropagation
The algorithm that makes neural networks work

• Know all operations and their derivatives the computation graphs
→ can use chain rule
→ compute once forward, store intermediate values, then backward to get gradient

• Single variable: ∂f(g(x))
∂x = ∂f

∂g
∂g
∂x

• Multivariable: Jf (g(x)) = Jf (g)Jg(x), in components ∂fi
∂xj

= ∂fi
∂gk

∂gk
∂xj

• For derivative of scalar (loss): ∂f
∂xj

=
∂f

∂gk︸︷︷︸
vector

∂gk
∂xj︸︷︷︸

Jacobian

→ matrix multiply gradient (row) vector with the Jacobian in each step
→ referred to as vector-Jacobian-product (VJP)

• The cool thing: Usually not required to fully compute the Jacobian to get the VJP!
(e.g. a single matrix multiplication to get VJP for matrix output w.r.t matrix input)
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Stochastic Gradient Descent (SGD)

• Loss function is usually averaged over all training examples
Ltot =

1
n

∑
i Li

• Need to propagate all training examples through the network for each gradient update
→ computationally intense for large training sets

• Solution: Gradient updates on random subsets
(“batches”) of training data

• batch size gives a handle for tradeoff:
number of gradient steps ↔ iterations over dataset
(“epochs”)
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Extensions to SGD
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• Need to adjust the step size (“learning rate”) for good convergence
• Many approaches

• schedule learning rate during training (start high, decrease, warmup, cosine schedule, ...)
• use information on previous changes (“momentum”)
• do this parameter wise
• use second order moments of the gradients
• ...

• Lots of research happening - keep an eye on it!
• Current (2018 2024) best default choice: “Adam” and variants of it

→ works very well in default settings in most cases
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NN Architectures

Most architectures make use of symmetries in the data

• Translation invariance: Convolutional neural networks (CNNs)
→ “slide” a neural network over neighboring inputs (e.g. pixels)

• Sequential data: Recurrent neural networks (RNNs)
→ Stateful neurons, feed output back in, together with input of next time step

• Permutation invariance (and/or equivariance):
• Sets without predefined relations: Deep Sets

→ process each element individually
→ aggregate globally over hidden states in permutation invariant way (e.g. sum)

• Graphs: Graph (convolutional) networks (GNNs)
→ aggregate over neighbors in graph

• Transformers: can be seen as graph networks with fully connected graph
→ now also standard for sequential data (see LLMs)

Moving more and more towards the permutation invariant architectures
(both in AI research and HEP ML)
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Convolutional neural networks (CNNs)

http://terencebroad.com/nnvis.html

http://terencebroad.com/nnvis.html


Slide from Gregor Kasieczka’s lecture at Terascale ML school 2018

Convolutional Layer
That’s the weights we want to train

 24
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Slide from Gregor Kasieczka’s lecture at Terascale ML school 2018:

Convolutional Network
• How to build a convolutional network

• Chain multiple conv layers

• Use multiple masks per layer

• Pooling

• Max Pooling

• Average Pooling

• Add a fully connected network in the end
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How Ninput → Moutput channels work:

→ animation

17 / 36

https://homepages.physik.uni-muenchen.de/~Nikolai.Hartmann/cnn_anim.svg


RNNs

RNN

Input1

Output1

RNN

Input2

Output2

RNN

InputN

OutputN

• Operate on a sequence, passing-on a hidden state

• Shared weights across the sequence

• Usually thought of as a sequence in-time, but can be any ordered sequence
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RNNs

RNN
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NN
often decomposed into

• Operate on a sequence, passing-on a hidden state

• Shared weights across the sequence

• Usually thought of as a sequence in-time, but can be any ordered sequence
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RNNs

RNN

They're

RNN RNN RNN

taking the hobbits

RNN

to

Isengard

• Operate on a sequence, passing-on a hidden state

• Shared weights across the sequence

• Usually thought of as a sequence in-time, but can be any ordered sequence

• Used to be the standard for language models, but not anymore (Transformers took over)
→ also in particle physics it seems their time is mostly over ...
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Deep Sets

• Per-item transformation ϕ (e.g. MLP - shared weights!) followed by

• Permutation invariant aggregation (e.g. sum)

• Every permutation-equivariant (f(π(x)) = π(f(x)))
transformation allowed for per-item step
→ e.g. add/concatenate global sum to each item

• Output is now fixed-length vector, can be transformed by another MLP

• Very simple to implement, give it a try!
→ Popularized in HEP by “Energy flow networks” paper (also soft/collinear safe variant)
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Graph networks

• Update node featuers by sum over neighbors in graph
→ similar to sum over neighboring pixels in CNN

• Can’t have fixed weight (no meaningful ordering of neighbors, number not constant)

• Simplest option: sum without weights (Graph convolutional network, GCN)

• More advanced: work with features on edges, features of neigboring nodes (e.g. attention)
• in general can pass information from nodes to edges, edges to nodes ...
• ... and to and from global features
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Attention

• Started as an attempt to improve translation tasks with RNNs

• Have each element of one sequence attend to elements of another sequence

• Possible implementation: score from dot product of each encoder, decoder step pair

• Precursor of transformers - Attention is all you need

1https://distill.pub/2016/augmented-rnns
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Example for machine translation

Input and target sequence can also be the same - Self Attention

1https://distill.pub/2016/augmented-rnns
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Transformers as a Graph Network
from https://docs.dgl.ai/en/latest/tutorials/models/4_old_wines/7_transformer.html

• Lines represent attention weights - inferred from features of nodes they connect

• Decoder: only connections to previous tokens (causal mask)

• Encoder: fully connected graph for attention

• Encoder-only: BERT, ParT

• Decoder-only: GPT(1,2,3)
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Transformer details
Attention is all you need (2017) (arXiv:1706.03762)

• Uses Multi-Head-Attention (MHA)

• MLP (with one hidden layer) after each MHA block

• Skip connections and normalization layers make
deep models possible
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Public data sets

• Public data sets help exchange and development of common models

• Nice example: Top tagging dataset (arXiv:1902.09914, 10.5281/zenodo.2603255)
→ Leading 200 jet constituents for ≈ 1M pythia (boosted) jets with Delphes detectors sim
→ Task: find out if the jet is normal QCD jet or comes from a top quark
→ Huge amount of architectures has been tested, often generally applicable
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ParT
Particle Transformer for Jet Tagging arXiv:2202.03772
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Modifications w.r.t. standard transformer:
• Add embedded interaction features (e.g. invariant mass) as bias term to attention score

→ very similar to attention mechanism with edge features in graph networks
• Attention to class token to produce global classification result
• State-of-the-art for jet tagging if trained on large enough datasets (100M events)
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Preliminary results on Belle II Smart Background project
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D⁰ π⁺ K(S)⁰ π⁻ π⁰ π⁺ π⁰

K⁻ μ⁺ ν(μ) π⁺ π⁻ γ γ γ γ

• Use a NN as a MC filter
→ predict after event generation which events we will throw out later

• Graph neural networks, using the generator-level decay tree work well

• But maybe we have been fooled and it’s mainly about the correlation between particles?
→ try ParT, can still feed in adjacency matrix as pair feature
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Preliminary results on Belle II SmartBackground project
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→ almost out-of-box better performance than our prevously optimized models!
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Working with Lorentz vectors

Working with 4-momentum vectors we can make use of Lorentz symmetry!

• Lorentz covariant quantities of a set of 4-momentum vectors can be constructed as
functions of pairwise Minkowski inner products f(p1, p2, ..., pn) = f({pipj}i,j)

• Two architectures with state-of-the art (2024) performance on jet-tagging tasks:
• LorentzNet (arXiv:2201.08187): build a Minkowski dot product attention based on this

→ transform a set of 4-vectors into a new set of 4-vectors across layers
• PELICAN (arXiv:2211.00454): run rank 2→ 2 permutation equivariant transformations

→ run transformation on the whole matrix of pairwise Minkowski products
→ needs fewer parameters than other models (but maybe more computation?)
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LorentzNet
arXiv:2201.08187

→ Caspar is applying this for background suppression in the B → K∗νν analysis!
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PELICAN
arXiv:2307.16506

15 possible permutation equivariant matrix → matrix aggregators run in each layer
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Performance on Top tagging
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How to train on a large dataset

Preparing the data input pipline often requires a significant fraction of the work

Some recommendations:

• Do all preprocessing that doesn’t blow up the amount of data much before

• Store in parquet or feather files (use pandas for flat tables, awkward array for the rest)

• Stuff that blows up data (padding with 0s, features for all pairs ...) better on-the-fly

• If data fits into memory, load it into memory
• estimate memory usage before - one float takes 4 bytes

→ 8 GiB memory: 2.6M events, 100 particles each, 8 features per particle
• in practice will need factor 2-3 more due to copies (not always easy to avoid)

• If not, load in large chunks (100k - 1M events per chunk)
• typically 1 chunk = 1 file
• generate randomized batches from the chunk
• load random chunks
• useful pattern: subprocess loads next chunk while training on previous chunk runs
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Summary

• Neural networks most useful when we process lower level data
→ for high-level observables in tabular form, use BDTs! MLPs rarely beat them

• Processing lower level data usually requires making use of symmetries
→ CNNs, RNNs, Deep Sets, GNNs, Transformers

• Following developments on public datasets can be very useful
→ jet tagging is very active and the methods often generalizable

• Typical particle physics data format: List of 4-momentum vectors (+extra features)
→ ideal use case for Transformers (work well with small modifications, see ParT)
→ ... but also need large datasets (10-100M events)

• Smaller datasets can profit from imposing Lorentz symmetry
→ the most interesting approaches to date: LorentzNet, PELICAN

• Or having pre-trained models that can be fine-tuned to the samller datasets
→ ParT shows promising results for jet tagging
→ “Predict-the-next-particle” approaches getting more popular as well
→ e.g. arXiv:2305.10475, 2403.05618, 2401.13537
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Outlook

• Let’s talk more about the “boring” topic how we actually train these networks
→ usually large fraction of work in data preparation, setting up the input pipeline
→ we will likely see larger models and run our stuff on multiple GPUs soon

• Access to resources is not very uniform, for example here in Munich:
• 3 local GPUs in the AG-Kuhr
• 4 GPUs in C2PAP, need to apply for project - setup via VM (lrz cloud) or slurm queue
• several multi-GPU nodes in lrz AI system, more to come

→ access can be requested by everyone with linux cluster account
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If you want to learn more

• Machine learning schools by the ErUM-Data-Hub
https://erumdatahub.de/veranstaltungen

• ODSL block courses, one currently going on (until today)
https://indico.ph.tum.de/event/7606

→ slides and recordings online!

• Nice video tutorials by Andrej Karpathy (Neural Networks: Zero to Hero)
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
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