Fantastic neural networks and how to train them

Nikolai Hartmann

LMU Munich

April 24, 2024, LMU Joint Particle Physics Group Seminar

Buzzword definitions for this talk

The great thing about buzzwords - i can choose my own definition

- **Machine Learning:** Fitting, but we don't really care what exactly the model is (in classical fitting we usually have an interpretation for the parameters)
- **Deep learning:** Solving problems with neural networks i can't solve with BDTs (usually involving larger datasets and multiple layers)
- Artificial Intelligence: Emulating human intelligence/behavior (i want to draw a blurry boundary to the stuff we never did by hand before)

Supervised learning

Focussing on supervised learning in this talk

 \rightarrow visit talk by David Gisegh (26.06.) to learn more about unsupervised learning!

- Want to find a function that maps a set of input features $\mathbf{x} = [x_1, x_2, \dots, x_n]$ to a set of output features $\mathbf{y} = [y_1, y_2, \dots, y_n]$
- We only have (typically simulated) training examples
- Want to find (multidimensional) parametrisation of something that we can only simulate \rightarrow inverse problem
- Two main goals:
 - Classification: map inputs to labels $y_i \in 0, 1$ (or a probability $p_i \in [0, 1]$)
 - **Regression:** predict continuous values $y_i \in \mathbb{R}$

The fully-connected, feedforward neural network

- Propagate information through the network by taking the weighted sum of inputs at each neuron and applying an activation function $\sigma(\sum_i w_i x_i + b)$
- Activation function adds non-linearity

 \rightarrow can approximate any function with sufficient number of neurons!

- $\bullet\,$ Each connection corresponds to one weight w
- Each neuron has one bias b
- Classification: one output neuron per possible label

The simplemost "neural network"

- A single neuron (no hidden layer) corresponds to linear discriminant \rightarrow Output = $\sum w_i x_i$
- Idea goes back to 1957 the "Perceptron" (in Hardware!) by Frank Rosenblatt

The simplemost "neural network"

- A single neuron (no hidden la \rightarrow Output = $\sum w_i x_i$
- Idea goes back to 1957 the

Example: 2D $w_1 = w_2 = 1$

The simplemost "neural network"

• Idea goes back to 1957 - the "Perceptron" (in Hardware!) by Frank Rosenblatt

The power of hidden layers

- Hidden layers without activation functions don't help \rightarrow linear combination of linear combinations is still a linear combination
- Non-linear activation function at each neuron in the hidden layer(s) allows to approximate **any** function! (given enough neurons)
 - \rightarrow proven for sigmoid in 1989 by George Cybenko
 - \rightarrow more generally proven in 1991 by Kurt Hornik
- One hidden layer is in principle enough
- Experience: multi-hidden-layer networks work better
 - \rightarrow "Deep neural networks"

Activation functions

• Derivatives:

$$\begin{array}{ccc} {\rm tanh:} & {\rm sigmoid:} & {\rm reLU:} \\ f'(x) = 1 - f(x)^2 & f'(x) = f(x)(1 - f(x)) & f'(x) = \begin{cases} 0 & {\rm for} \ x \leq 0 \\ 1 & {\rm for} \ x > 0 \end{cases}$$

- tanh function in the hidden layers was popular for a long time
- Problem: gradient vanishes for large input values
 → especially problematic in multi-layer networks
- most popular nowadays: reLU and variants of it
- sigmoid is used wherever output should be in $\left[0,1
 ight]$

Example

https://playground.tensorflow.org

Loss function

To solve the optimisation problem we need a measure for the distance between the current (pred) output and the desired (true) output

Mean squared error (MSE):

 $L_{\text{MSE}} = \frac{1}{N} \sum_{i} (y_i^{\text{pred}} - y_i^{\text{true}})^2$

 \rightarrow good for Regression, mean absolute error also popular

Cross entropy (CE):

$$L_{\rm CE} = -\sum_{i=1}^{N_{\rm classes}} y_i \log \hat{y}_i$$

 \rightarrow good for Classification, same as $\ensuremath{\textit{maximum Likelihood}}$

Binary cross entropy (BCE) - for 2 classes, 1 output:

$$L_{\rm BCE} = -\frac{1}{N} \sum_{i} \left[y_i^{\rm true} \ln y_i^{\rm pred} + (1 - y_i^{\rm true}) \ln(1 - y_i^{\rm pred}) \right]$$

Backpropagation

The algorithm that makes neural networks work

- Know all operations and their derivatives the computation graphs \rightarrow can use **chain rule**
 - \rightarrow compute once **forward**, store intermediate values, then **backward** to get gradient
- Single variable: $\frac{\partial f(g(x))}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$
- Multivariable: $\mathbf{J}_f(g(x)) = \mathbf{J}_f(g)\mathbf{J}_g(x)$, in components $\frac{\partial f_i}{\partial x_i} = \frac{\partial f_i}{\partial a_i} \frac{\partial g_k}{\partial x_i}$
- For derivative of scalar (loss): $\frac{\partial f}{\partial x_j} = \frac{\partial f}{\frac{\partial g_k}{\sqrt{\partial g_k}}} \underbrace{\frac{\partial g_k}{\partial x_j}}_{\text{vector Jacobian}}$

 \rightarrow matrix multiply gradient (row) **vector** with the **Jacobian** in each step \rightarrow referred to as vector-Jacobian-product (**VJP**)

• The cool thing: Usually not required to fully compute the Jacobian to get the VJP! (e.g. a single matrix multiplication to get VJP for matrix output w.r.t matrix input)

Stochastic Gradient Descent (SGD)

- Loss function is usually averaged over all training examples $L_{\rm tot} = \frac{1}{n} \sum_i L_i$
- Need to propagate all training examples through the network for each gradient update \rightarrow computationally intense for large training sets

- Solution: Gradient updates on random subsets ("batches") of training data
- batch size gives a handle for tradeoff: number of gradient steps ↔ iterations over dataset ("epochs")

- Need to adjust the step size ("learning rate") for good convergence
- Many approaches
 - schedule learning rate during training (start high, decrease, warmup, cosine schedule, ...)
 - use information on previous changes ("momentum")
 - do this parameter wise
 - use second order moments of the gradients
 - ..
- Lots of research happening keep an eye on it!
- Current (2018 2024) best default choice: "Adam" and variants of it
 → works very well in default settings in most cases

- Many approaches ٠
 - schedule learning rate during training (start high, decrease, warmup, cosine schedule, ...)
 - use information on previous changes ("momentum")
 - do this parameter wise
 - use second order moments of the gradients
- Lots of research happening keep an eye on it!
- Current (2018 2024) best default choice: "Adam" and variants of it \rightarrow works very well in default settings in most cases

NN Architectures

Most architectures make use of symmetries in the data

- Translation invariance: Convolutional neural networks (CNNs)
 → "slide" a neural network over neighboring inputs (e.g. pixels)
- Sequential data: Recurrent neural networks (RNNs)
 - \rightarrow Stateful neurons, feed output back in, together with input of next time step
- Permutation invariance (and/or equivariance):
 - Sets without predefined relations: Deep Sets
 - \rightarrow process each element individually
 - \rightarrow aggregate globally over hidden states in permutation invariant way (e.g. sum)
 - Graphs: Graph (convolutional) networks (GNNs)
 - \rightarrow aggregate over neighbors in graph
 - Transformers: can be seen as graph networks with fully connected graph
 - \rightarrow now also standard for sequential data (see LLMs)

Moving more and more towards the permutation invariant architectures (both in AI research and HEP ML)

Convolutional neural networks (CNNs)

http://terencebroad.com/nnvis.htm]

Slide from Gregor Kasieczka's lecture at Terascale ML school 2018

Convolutional Layer

24

Slide from Gregor Kasieczka's lecture at Terascale ML school 2018

Slide from Gregor Kasieczka's lecture at Terascale ML school 2018:

Convolutional Network

• How to build a convolutional network

- Chain multiple conv layers
- Use multiple masks per layer
- Pooling
 - Max Pooling
 - Average Pooling
- Add a fully connected network in the end

 \rightarrow animation

RNNs

- Operate on a sequence, passing-on a hidden state
- Shared weights across the sequence
- Usually thought of as a sequence in-time, but can be any ordered sequence

RNNs

- Operate on a sequence, passing-on a hidden state
- Shared weights across the sequence
- Usually thought of as a sequence in-time, but can be any ordered sequence

RNNs

- Operate on a sequence, passing-on a hidden state
- Shared weights across the sequence
- Usually thought of as a sequence in-time, but can be any ordered sequence
- Used to be the standard for language models, but not anymore (Transformers took over) \rightarrow also in particle physics it seems their time is mostly over ...

- Per-item transformation ϕ (e.g. MLP shared weights!) followed by
- Permutation invariant aggregation (e.g. sum)
- Every permutation-equivariant (f(π(x)) = π(f(x))) transformation allowed for per-item step
 → e.g. add/concatenate global sum to each item
- Output is now fixed-length vector, can be transformed by another MLP
- Very simple to implement, give it a try!
 - \rightarrow Popularized in HEP by "Energy flow networks" paper (also soft/collinear safe variant)

Graph networks

- Update node featuers by sum over neighbors in graph \rightarrow similar to sum over neighboring pixels in CNN
- Can't have fixed weight (no meaningful ordering of neighbors, number not constant)
- Simplest option: sum without weights (Graph convolutional network, GCN)
- More advanced: work with features on edges, features of neigboring nodes (e.g. attention)
 - in general can pass information from nodes to edges, edges to nodes ...
 - ... and to and from global features

Attention

- Started as an attempt to improve translation tasks with RNNs
- Have each element of one sequence attend to elements of another sequence
- Possible implementation: score from dot product of each encoder, decoder step pair
- Precursor of transformers Attention is all you need

¹https://distill.pub/2016/augmented-rnns

Example for machine translation

Input and target sequence can also be the same - Self Attention

¹https://distill.pub/2016/augmented-rnns

Transformers as a Graph Network

from https://docs.dgl.ai/en/latest/tutorials/models/4_old_wines/7_transformer.html

- Lines represent attention weights inferred from features of nodes they connect
- Decoder: only connections to previous tokens (causal mask)
- Encoder: fully connected graph for attention
- Encoder-only: BERT, ParT
- Decoder-only: GPT(1,2,3)

Transformer details

Attention is all you need (2017) (arXiv:1706.03762)

- Uses Multi-Head-Attention (MHA)
- MLP (with one hidden layer) after each MHA block
- Skip connections and normalization layers make deep models possible

Public data sets

- Public data sets help exchange and development of common models
- Nice example: Top tagging dataset (arXiv:1902.09914, 10.5281/zenodo.2603255)
 - \rightarrow Leading 200 jet constituents for \approx 1M pythia (boosted) jets with Delphes detectors sim
 - \rightarrow Task: find out if the jet is normal QCD jet or comes from a top quark
 - \rightarrow Huge amount of architectures has been tested, often generally applicable

ParT

Particle Transformer for Jet Tagging arXiv:2202.03772

Modifications w.r.t. standard transformer:

- Add embedded interaction features (e.g. invariant mass) as bias term to attention score
 - \rightarrow very similar to attention mechanism with edge features in graph networks
- Attention to class token to produce global classification result
- State-of-the-art for jet tagging if trained on large enough datasets (100M events)

Preliminary results on Belle II Smart Background project

• Use a NN as a MC filter

ightarrow predict after event generation which events we will throw out later

- · Graph neural networks, using the generator-level decay tree work well
- But maybe we have been fooled and it's mainly about the correlation between particles? \rightarrow try ParT, can still feed in adjacency matrix as pair feature

Preliminary results on Belle II SmartBackground project

 \rightarrow almost out-of-box better performance than our prevously optimized models!

Working with Lorentz vectors

Working with 4-momentum vectors we can make use of Lorentz symmetry!

- Lorentz covariant quantities of a set of 4-momentum vectors can be constructed as functions of pairwise Minkowski inner products $f(p_1, p_2, ..., p_n) = f(\{p_i p_j\}_{i,j})$
- Two architectures with state-of-the art (2024) performance on jet-tagging tasks:
 - LorentzNet (arXiv:2201.08187): build a *Minkowski dot product attention* based on this
 → transform a set of 4-vectors into a new set of 4-vectors across layers
 - **PELICAN** (arXiv:2211.00454): run rank $2 \rightarrow 2$ permutation equivariant transformations \rightarrow run transformation on the whole matrix of pairwise Minkowski products
 - \rightarrow needs fewer parameters than other models (but maybe more computation?)

LorentzNet

arXiv:2201.08187

 \rightarrow Caspar is applying this for background suppression in the $B \rightarrow K^* \nu \nu$ analysis!

PELICAN

arXiv:2307.16506

Equivariant Layer:
$$T^{(\ell+1)} = \operatorname{Agg} \circ \operatorname{Mgg} \left(T^{(\ell)} \right)$$

15 possible permutation equivariant matrix \rightarrow matrix aggregators run in each layer

Performance on Top tagging

How to train on a large dataset

Preparing the data input pipline often requires a significant fraction of the work

Some recommendations:

- Do all preprocessing that doesn't blow up the amount of data much before
- Store in parquet or feather files (use pandas for flat tables, awkward array for the rest)
- Stuff that blows up data (padding with 0s, features for all pairs ...) better on-the-fly
- If data fits into memory, load it into memory
 - estimate memory usage before one float takes 4 bytes
 - \rightarrow 8 GiB memory: 2.6M events, 100 particles each, 8 features per particle
 - in practice will need factor 2-3 more due to copies (not always easy to avoid)
- If not, load in large chunks (100k 1M events per chunk)
 - typically 1 chunk = 1 file
 - generate randomized batches from the chunk
 - load random chunks
 - useful pattern: subprocess loads next chunk while training on previous chunk runs

Summary

- Neural networks most useful when we process lower level data \rightarrow for high-level observables in tabular form, use BDTs! MLPs rarely beat them
- Processing lower level data usually requires making use of symmetries \rightarrow CNNs, RNNs, Deep Sets, GNNs, Transformers
- Following developments on public datasets can be very useful \rightarrow jet tagging is very active and the methods often generalizable
- Typical particle physics data format: List of 4-momentum vectors (+extra features) \rightarrow ideal use case for Transformers (work well with small modifications, see ParT) \rightarrow ... but also need large datasets (10-100M events)
- Smaller datasets can profit from imposing Lorentz symmetry \rightarrow the most interesting approaches to date: LorentzNet, PELICAN
- Or having pre-trained models that can be fine-tuned to the samller datasets
 - \rightarrow ParT shows promising results for jet tagging
 - $\rightarrow\,$ "Predict-the-next-particle" approaches getting more popular as well
 - \rightarrow e.g. arXiv:2305.10475, 2403.05618, 2401.13537

Outlook

- Let's talk more about the "boring" topic how we actually train these networks \rightarrow usually large fraction of work in data preparation, setting up the input pipeline \rightarrow we will likely see larger models and run our stuff on multiple GPUs soon
- Access to resources is not very uniform, for example here in Munich:
 - 3 local GPUs in the AG-Kuhr
 - 4 GPUs in C2PAP, need to apply for project setup via VM (Irz cloud) or slurm queue
 - several multi-GPU nodes in Irz AI system, more to come
 - \rightarrow access can be requested by everyone with linux cluster account

If you want to learn more

- Machine learning schools by the ErUM-Data-Hub https://erumdatahub.de/veranstaltungen
- ODSL block courses, one currently going on (until today) https://indico.ph.tum.de/event/7606 → slides and recordings online!
- Nice video tutorials by Andrej Karpathy (*Neural Networks: Zero to Hero*) https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ