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Introduction

Our goal is to investigate the dynamical spinor electrodynamics with feedback. In the
community the following approach is discussed:

The first approach is based on spinor electrodynamics for purely time-dependent
electric fields. An equation of motion for the vacuum expectation value of the
one-particle Wigner function is derived.

Taking feedback into account, which implies solving Maxwell’s equations inline
with the transport equation leads to divergencies, which can be removed with the
help of a renormalisation procedure.

Due to the fact that only the vacuum expectation value of the one-particle Wigner
correlator is considered the approach lacks generality. A more advanced theory for
arbitrary one-particle expectation values in purely time-dependent electric fields can be
derived.

Introduction Quantum Transport Theory in Meanfield Approximation Renormalisation Procedure General One-Particle Correlators

Yuki Song, Hartmut Ruhl LMU, Theresienstraße 37, Munich - Quantum Meanfield Theory with Feedback - 3/12



Quantum Transport Theory in Meanfield Approximation

In the paper by Smolyansky et al.1 it is assumed that there is only a time-dependent
electric field given by

E(t) = −
d
dt

A3(t) , (1)

while spatial variations and magnetic fields are neglected. The fermions can be
expressed using the spinor

Ψ
(±)
pr (x) = L−3/2(iγ0∂0 + γk pk − eγ3A3(t) + m

)
χ(±)Rr eipx , (2)

where Rr , r = 1, 2, are the eigenvectors of the matrix product γ0γ3 and χ is the
solution of the differential equation

χ̈(±)(p, t) = −
(
ω2(p, t) + ieȦ3(t)

)
χ(±)(p, t) , (3)

where ± denote the positive and negative frequencies of the eigenstates of (3). With

the help of the spinor it is possible to define the ladder operators c(±)
pr ,

∗
c(±)

pr , which are
subject to the following equation of motion

d
dt

c(±)
p,r (t) = ±

eE(t)ε⊥
2ω2(p, t)

c(∓)
−p,r (t) + i

[
H(t), c(±)

p,r (t)
]
, (4)

1Smolyansky et al., Dynamical derivation of a quantum kinetic equation for particle production in the
Schwinger mechanism, arXiv:hep-ph/9712377
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Quantum Transport Theory in Meanfield Approximation

and the vacuum expectation value

fr (p, t) = 〈 0in |
∗
c(+)

pr (t) c(−)
pr (t) | 0in 〉 . (5)

The structures of the fermion and boson distribution functions are similar and can be
combined into one expression, where ± now denote the bosonic (+) and the fermionic
(−) cases (see Bloch et al.2). The equation of motion of the vacuum expectation value
of the one-particle correlation function is given by

d
dt

f(±)(p, t) =
1
2
W(±)(t)

∫
t
−∞W(±)(t)F(±)(p, t) cos

(
x(t ′, t)

)
= S(±)(p, t) , (6)

where

W(±)(t) =
eE(t)p3(t)
ω2(p, t)

( ε⊥
p3(t)

)g(±)−1
, (7)

F(±)(p, t) =
[
1± 2f(±)(p, t)

]
, (8)

x(t ′, t) = 2
[
θ(t)− θ(t ′)

]
(9)

with θ(t) being the dynamical phase.

2Bloch et al., Pair creation: Back reactions and damping, Phys. Rev. D 60, 116011
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Renormalisation Procedure

Simpler equations of motion are obtained by introducing

v(±)(p, t) =

∫ t

t0
dt ′W(±)(p, t ′) F(±)(p, t ′) cos

(
x(t , t ′)

)
, (10)

z(±)(p, t) =

∫ t

t0
dt ′W(±)(p, t ′) F(±)(p, t ′) sin

(
x(t , t ′)

)
. (11)

Inserting (10), (11) into the transport equation (6) a set of coupled linear differential
equations in f(±)(p, t), v(±)(p, t) and z(±)(p, t) is obtained

d
dt

f(±)(p, t) =
1
2
W(±)(p, t ′) v(±)(p, t) , (12)

d
dt

v(±)(p, t) = W(±)(p, t ′) F(±)(p, t)− 2ω(p, t) z(±)(p, t) , (13)

d
dt

z(±)(p, t) = 2ω(p, t) v(±)(p, t) . (14)
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Renormalisation Procedure

The charged particles accelerated by the external electric field generate a current that
is capable of modifying the latter due to Maxwell’s equation

Ė(t) = − jex − jin , (15)

where the effect of the feedback is described by the internal current (16). The internal
current consists of the conduction current jcond (t), which is generated by the newly
created particles and a polarisation current jpol (t)

jin(t) = jcond (t) + jpol (t)

= eg(±)

∫
d3p

(2π)3

p3(t)
ω(p, t)

(
f(±)(p, t) +

1
2

v(±)(p, t)
( ε⊥

p3(t)

)g(±)−1

︸ ︷︷ ︸
divergent polarisation current

)
. (16)

The polarisation current is logarithmically divergent and will be renormalised. To do this
it is helpful to explore the asymptotic behaviour of the latter. With the help of power
counting in (16) it is obvious that

f (p, t), v(p, t), z(p, t)
|p|→∞
≤

1
|p|4

. (17)
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Renormalisation Procedure

With the separable ansatz

f (p, t) =
∞∑

k=0

fk (t)
|p|k

, v(p, t) =
∞∑

k=0

vk (t)
|p|k

, z(p, t) =
∞∑

k=0

zk (t)
|p|k

(18)

and the approximation p3 ≈ ω(p, t) ≈ ε⊥ for large |p| substituted into the transport
equations (12)-(14) the leading order terms

f4 =
1

16
e2E2(t), v3 =

1
4

eĖ(t), z2 =
1
2

eE(t) (19)

are obtained. By inserting (19) into the internal current (16) the total current (15) takes
the form

Ė(t) = − jex (t)

− eg(±)

∫
d3p

(2π)3

p3(t)
ω(p)

[
f(±)(p, t)+

+
1
2

(
v(±)(p, t)−

eĖ(t)p3(t)
4ω4(p)

)(
ε⊥

p3(t)

)g(±)−1]
(20)

− e2Ė(±)(t)I(±)(Λ) ,
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Renormalisation Procedure

where a cutoff Λ for |p| is obtained

I(±)(Λ) =
g(±)

4

∫
d3p

(2π)3

p2
3(t)

ω5(p)

(
ε⊥

p3(t)

)g(±)−1
(21)

Λ→∞
=

g(±)

8π2
ln
(

Λ2

m2

)
. (22)

The limit (22) is used to define the renormalised current, charge, and field

e2
R = Ze2, E(t) =

E(t)
√

Z
, A(t) =

A
√

Z
, Jex (t) =

√
Z jex (t) , (23)

where
Z =

1
1 + e2I(±)(Λ)

. (24)
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Renormalisation Procedure

Inserting (23) into the total current (20) yields the now renormalised total current

Ė(t) = − Jex (t)

− eRg(±)

∫
d3p

(2π)3

p3(t)
ω(p)

[
f(±)(p, t)+

+
1
2

(
v(±)(p, t)−

eR Ė(t)p3(t)
4ω4(p)

)(
ε⊥

p3(t)

)g(±)−1]
. (25)

Limitations of the approach:

A time-dependent magnetic field is neglected.

The approach gives the vacuum expectation value of the one-particle correlator in
a purely time-dependent electric field.

The approach is purely analytical. A numerical renormalisation procedure has yet
not been defined.
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General One-Particle Correlators

A more general approach as done in the paper by Vasak et al.3 that includes the
magnetic field is obtained using the Lagrangian

L = ψ̄(x)
(
i /∂ −m

)
ψ(x)− eψ̄(x)/A(x)ψ(x)−

1
4

Fµν(x)Fµν(x) . (26)

The gauge invariant Wigner operator takes the form

Ŵαβ(x , p) ≡
∫

dy

(2π)4
e−ip·y ψ̄β(x)e

1
2 y·
←
D e−

1
2 y·Dψα(x) . (27)

This allows the derivation of the quantum Vlasov equation that includes the spin
corrections (

p · ∂x − epµF̄µν∂p
ν

)
W H (x , p) +

1
4

ieF̄µν
[
σµν ,W H (x , p)

]
= −

1
12

~2e∆F̄µν
[
∂νx − eF̄νλ∂p

λ

]
∂µp W H (x , p)

−
1
8
~e∆F̄µν

{
σµν ,W H (x , p)

}
, (28)

3Vasak et al., Quantum Transport Theory for Abelian Plasmas, Annals of Physics vol. 173, Issue 2, Pages
462-492
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General One-Particle Correlators

and the constraint equation in the Hartree aproximation,(
p2 −m2)W H (x , p) =

1
4
~eF̄µν

{
σµν ,W H (x , p)

}
−

1
8

i~2e∆F̄µν
[
σµν ,W H (x , p)

]
+ ~2(1

6
ep ·∆F · ∂p +

1
12

e(∂µx F̄µν)∂νp +
1
4

(∂x − eF̄ · ∂p)2)W H (x , p) . (29)

With the help of the general correlators (28) and (29) we aim to derive a numerical
renormalisation procedure that includes time-depenendent electromagnetic fields.
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