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Abstract

A numerical scheme for solving the nonlinear Heisenberg-Euler
equation in up to 3 spatial dimensions plus time is derived and its
properties are discussed. This ”quantum vacuum simulation
algorithm” is tested against a set of already known analytical results
and its power to go beyond analytically solvable scenarios is shown.



Based on
Pons Domenech, Arnau (2018): Simulation of quantum vacuum in higher dimensions.
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Overview

I Nonlinear Maxwell equations are stated
I Weak field expansion of the interaction Lagrangian is derived
I Matrix representation of Nonlinear Maxwell equations is presented
I Finite Difference method is presented and applied
I Dispersion relation is taken into account both analytically and numerically
I Simulation results in 1D and 2D are discussed
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Theoretical Background

Nonlinear Maxwell Equations

Beforehand, the following electromagnetic and secular invariants

F = −1
4FµνFµν =

1
2

(
~E 2

c2 − ~B2
)

, G = −1
4Fµν F̃µν =

1
c
~E · ~B (1)

a =

√√
F2 + G2 + F , b =

√√
F2 + G2 −F (2)

are used.
The Lagrangian for the quantum vacuum is the sum of the Maxwell and the Heisenberg-Euler
Lagrangian

L = LMW + LHE = F + LHE . (3)
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Theoretical Background

From the Euler-Lagrange equations a system of four independent PDEs can be obtained

−1
c ∂t

(
~E + c2∂~ELHE

)
= ∇×

(
~B − ∂~BLHE

)
, (4)

where only the spatial components of the free index are taken into account. Comparing (4) with the
macroscopic formulation of the Ampére law in Maxwells formulation leads to

~P = c2 ∂LHE

∂~E
, ~M =

∂LHE

∂~B
. (5)
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Theroretical Background

Weak-Field Expansion

Normalizing the electromagnetic invariants to the critical field strength yields

F = − 1
4E 2

cr
FµνFµν , G = − 1

4E 2
cr

Fµν F̃µν . (6)

Using these definition the effective Lagrangian takes the form

LHE = − m4

8π2

∫ ∞

0
ds e−s

s3

(
s2

3
(

a2 − b2
)
− 1 + abs2 cot(as) coth(bs)

)
. (7)

The cot and coth functions in (7) can be Taylor expanded around as = bs = 0.

Lindner, Ölmez, Ruhl (FOR 2783, LMU) QVSP April 2021 7 / 54



Theoretical Background

Thus, inserting the Taylor expansions for as cot(as) and bs coth(bs) into (7) and performing the
integral results in

LHE ≈ m4

360π2

(
4F2 + 7G2

)
+

m4

630π2

(
8F3 + 13FG2

)
+

m4

945π2

(
48F4 + 88F2G2 + 19G4

)
+

4m4

1485π2

(
160F5 + 332F3G2 + 127FG4

)
.

(8)
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Theoretical Background

The first three terms in (8) are represented diagrammatically in the picture below.

≈ + +

The simulation takes into account up to 6-photon processes in the weak field expansion
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QVSP - Numerical Scheme

Reformulation of the Maxwell equations
For the rest of part one we set ~ = c = 1.
Recalling the two modified Maxwell equations

∂t~B = −∇× ~E , (9)

∂t

(
~E + ~P

)
= ∇×

(
~B − ~M

)
, (10)

the first goal is to merge these equation and formulate a single PDE that describes the whole dynamics
of the system.
The rotation of ~M can be rewritten as

∇× ~M =

0 0 0
0 0 −1
0 1 0

 ∂x ~M +

 0 0 1
0 0 0
−1 0 0

 ∂y ~M +

0 −1 0
1 0 0
0 0 0

 ∂z ~M (11)

=
∑

j∈{x,y,z}

Qj∂j ~M . (12)
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QVSP - Numerical Scheme

Making use of the chain rule, the derivatives are given by

∂t~P = J~P

(
~E
)
∂t~E + J~P

(
~B
)
∂t~B , (13)

where J is the Jacobi matrix. Therefore, the resulting PDE reads

∂t~E + J~P

(
~E
)
∂t~E + J~P

(
~B
)
∂t~B =

∑
j∈{x,y,z}

Qj

[
−J~M

(
~E
)
∂j~E +

(
13 − J~M

(
~B
))

∂j~B
]
. (14)
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QVSP - Numerical Scheme

We introduce the electromagnetic vector ~u as

~u =

(
~E
~B

)
(15)

to rewrite the equation (14) as((
13 + J~P

(
~E
))

J~P

(
~B
))

∂t~u =
∑

j∈{x,y,z}

Qj

(
J~M

(
~E
) (

13 − J~M

(
~B
)))

∂j~u . (16)

Accordingly, equation (9) is given by(
03 13

)
∂t~u = −

∑
j∈{x,y,z}

Qj
(
13 03

)
∂j~u . (17)
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QVSP - Numerical Scheme

Combining the equations (16) and (17) we arrive at16 +

(
J~P

(
~E
)

J~P

(
~B
)

03 03

)
︸ ︷︷ ︸

A

 ∂t~u =
∑

j∈{x,y,z}

(
−QjJ~M

(
~E
)

Qj − QjJ~M

(
~B
)

−Qj 03

)
︸ ︷︷ ︸

Bj

∂j~u (18)

(16 + A) ∂t~u =
∑

j
Bj∂j~u . (19)

Note, that (19) contains the full dynamics of the electromagnetic fields.
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Numerical Mathematics

Finite Differences
The Taylor series of a function f (x + k∆x) is

f (x + k∆x) = f (x) + ∆xkf ′(x) + 1
2 (∆xk)2f ′′(x) + 1

6 (∆xk)3f ′′′(x) + ... . (20)

In matrix notation for k ∈ {−4,−3, ..., 3, 4} (20) becomes

f (x − 4∆x)
f (x − 3∆x)
f (x − 2∆x)
f (x −∆x)

f (x)
f (x +∆x)
f (x + 2∆x)
f (x + 3∆x)
f (x + 4∆x)


≈ 1

120



120 −480 960 −1280 1280 −1024
120 −360 540 −540 405 −243
120 −240 240 −160 80 −32
120 −120 60 −20 5 −1
120 0 0 0 0 0
120 120 60 20 5 1
120 240 240 160 80 32
120 360 540 540 405 243
120 480 960 1280 1280 1024





f (x)
∆xf ′(x)

(∆x)2f ′′(x)
(∆x)3f ′′′(x)
(∆x)4f ′′′′(x)
(∆x)5f ′′′′′(x)

 . (21)
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Numerical Mathematics

From (21) the upwind biased finite difference approximation for the first derivative can be derived. We
obtain

f ′
(1,0)(x) =

f (x +∆x)− f (x)
∆x , (22)

where the corresponding coefficients are 1 for k = 1 and −1 for k = 0. The indices m and n denote
the lowest and highest considered values of k. More generally, the first derivate of f yields

Df = f ′
(n,m)(x) =

1
∆x

m∑
k=n

Sk f (x + k∆x) . (23)

The indices m and n denote the lowest and highest considered values of k. S is the derivative stencil.
First order derivative stencil for finite differences is depicted below.
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Numerical Mathematics

First order derivative stencil for finite differences is depicted below.

O = 1 -1 0 1
-1 1

-1 1

O = 2 -2 -1 0 1 2
0.5 -2 1.5

-0.5 0 0.5
-1.5 -2 -0.5

Here, forward and backward differences are taken into account.
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QVSP - Numerical Scheme

From PDE to ODE

Recalling (19) and multiplying both sides by (16 + A)−1 yields

∂t~u = (16 + A)−1∑
j

Bj∂j~u . (24)

Henceforth, for simplicity the linear case is discussed. Thus, the matrices in (18) become

A = 0 , Bj =

(
03 Qj
−Qj 03

)
(25)

so that (24) can be reformulated as

∂t~u =
∑

j

(
03 Qj
−Qj 03

)
∂j~u . (26)
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QVSP - Numerical Scheme

Furthermore, for the diagonalization of Bj we make use of the rotation matrices for each space direction

Rx =
1√
2


0 0 0 0 0 1
−1 0 1 0 0 0
0 1 0 −1 0 0
0 0 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0

 , Ry =
1√
2


1 0 −1 0 0 0
0 0 0 0 0 1
0 −1 0 1 0 0
0 1 0 1 0 0
0 0 0 0 1 0
1 0 1 0 0 0

 ,
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QVSP - Numerical Scheme

Rz =
1√
2


−1 0 1 0 0 0
0 1 0 −1 0 0
0 0 0 0 0 1
0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 1 0

 , (27)

since they are defined as

Bj = Rjdiag(1, 1,−1,−1, 0, 0)RT
j . (28)

The derivation in space of ~u can be rewritten as

∂j~u = Rj∂jRT
j ~u (29)

or for the case of one space direction (e.g. x -direction)

∂x~u = Rx∂x RT
x ~u . (30)
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QVSP - Numerical Scheme

As derived above the spatial derivative can be replaced by the finite sum which is weighted by the
derivative stencil (23). Without loss of generality we obtain

∂x~u(x , y , z) ≈ RxDx RT
x ~u(x , y , z) = Rx

∑
ν

1
∆x

Sν

(
RT

x ~u
)
(x + ν∆x , y , z) , (31)

where the stencil matrices for the lowest order are given by

S−1 = diag(−1,−1, 0, 0,−1
2 ,−

1
2 ) (32)

S0 = diag(1, 1,−1,−1, 0, 0) (33)

S1 = diag(0, 0, 1, 1, 1
2 ,

1
2 ) . (34)
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QVSP - Numerical Scheme

Considering all three directions the resulting ODE reads

∂t~u = (16 + A)−1 ∑
j∈{x,y,z}

BjRj
∑
ν

1
∆j

SνRT
j ~uj+ν . (35)

The equation (35) is solved with the help of the CVODE library which is a part of the Sundials
distribution.
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QVSP - Numerical Scheme

Dispersion Relation

For simplicity we are neglecting nonlinearities for the further investigation of the dispersion relation.
The analytical properties of the numerical scheme can be analyzed by picking a plane wave ansatz

~E(~x , t) = ~E0e−i
(
ωt−~k·~r

)
, (36)

where ~E0 is the amplitude and polarization vector. To do so, the plane wave ansatz can be inserted
into (35) so that we arrive at

0 = det

iω16 +
∑

j∈{x,y,z}

adiag(Qj ,−Qj)RT
j
∑
ν

S j
νe−iνkj∆j Rj

 . (37)

where S j are identical in all spatial dimensions.
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QVSP Dispersion Relation

Analytical Dispersion Relation

I For small k ·∆ everything is fine.
I Superluminar phase velocity at

k ·∆ ' π/2
I For k ·∆ & π/2 the imaginary part

of ω causes a damping
I Nyquist frequency at k = π

ℜ(ω)

ℑ(ω)

ωlin

π

4

π

2

3π

4
π

k·Δ

0.5

1.0

1.5

2.0

2.5

3.0

A. Domenech and H. Ruhl, arXiv:1607.00253, 2017
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QVSP Dispersion Relation

Numerical Check of the Dispersion Relation

I Plane wave propagating through the vacuum
I Grid Resolution: 2D lattice with length 80 µm divided

into 1024 × 1024 points ⇒ ∆−1 = 128 × 105 m−1

I For f ≤ 1 × 106 m−1 (rightmost value in top figure,
plot in bottom figure) everything is fine at this
resolution.
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QVSP Dispersion Relation

Numerical Check of the Dispersion Relation Nyquist Frequency

I We observe the damping and
superluminous effect at half the Nyquist
frequency after a relevant amount of time

I Quick annihilation at the Nyquist
frequency, fNy = ∆−1/2 = 6.4 × 106 m−1

I Beyond fNy waves cannot be modeled
adequately anymore

I Of course, there is always the possibility
to increase the grid (and time) resolution
if the computer allows it
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QVSP Computational Complexity

Scaling of the Computational Complexity

I Calculation of derivatives for each point and every dimension

C ∼ Nx · Ny · Nz · D

I Evaluation of (24) for each lattice point

C ∼ Nx · Ny · Nz · (D + 1)

I CVODE solver dependence on precision

C ∼ Nx · Ny · Nz ·∆−1

I Total scaling
C ∼ Nx · Ny · Nz ·∆−1 · (D + 1)
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Simulation Results in 1D

I Phase Velocity in a Strong Background
I Polarization Flipping
I High Harmonic Generation



QVSP 1D Simulations

Phase Velocity Variation in a Strong Electromagnetic Background

Propagate a plane wave through a linearly polarized electromagnetic background of different field
strengths

I Background field strengths are
varied as well as the relative
orthogonal polarization from
parallel to orthogonal

I Wavevector from here on
normalized to |~k| = 1/λ

Grid Length 100 µm
Lattice Points 1000

Background Amplitude Vector (0,60,0) µEcr to (0,1.5,0)Ecr

Wavevector (-1,0,0)Pm−1

Probe Amplitude Vector (0,1,0) and (0,0,1) µEcr

Wavevector (0.5,0,0) µm−1

Change of refractive index by vacuum birefringence ⇒
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QVSP 1D Simulations

Phase Velocity Variation in a Strong Electromagnetic Background
I Refractive index for orthogonal (+) and

parallel (-) relative polarization

n± = 1 +
α

45π (11 ± 3) E 2

E 2
cr

= 1 + δn±

I Theoretical:

v → 1
1 + δn±

⇒ vnli = − δn±

1 + δn±

I Numerical:

vnli = − 1
2πm arg

(
FT[Ez(x , tm)](λ

−1)
)
, tm = mλ

⇒Numerical errors for E < Ecr 1 × 10−4

V. Dinu, T. Heinzl, A. Ilderton, M.Marklund, G. Torgrimsson, Physical Review D, 2014
A. Domenech, LMU, 2018
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QVSP 1D Simulations

Polarization Flipping – Vacuum Birefringence

I Different refractive indices for polarizations ~ε‖ and ~ε⊥ (don’t confuse with ∓ from previous slide)
I Different speeds of parallel and perpendicular components
I Birefringence
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QVSP 1D Simulations

Polarization Flipping – Vacuum Birefringence

I 1D Gaussian pulses with
~E = ~A e−(~x−~x0)

2
/τ

2
cos(2π~k · ~x)

I Parallel is
~ε‖ = 1/

√
2 (0, 1, 1)

I Perpendicular is
~ε⊥ = 1/

√
2 (0,−1, 1)

I The probe wavevectors used in the
simulations need be much smaller
- we have to extrapolate

Grid Length 80 µm
Lattice Points ' 1 × 107

Pump Amplitude Vector (0,0,0.34) mEcr

Wavevector (-1.25,0,0) µm−1

Center 58 µm
Width 30 fs

Probe Amplitude Vector (0,50,50) µEcr

Wavevector (10.4,0,0) nm−1

Center 22 µm
Width 30 fs

Benchmark: F. Karbstein, H. Gies, M. Reuter, and M. Zepf, Physical Review D, 2015
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QVSP 1D Simulations

Polarization Flipping Vacuum Birefringence

Initial setting (sketch)
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QVSP 1D Simulations

Analysis of Polarization Flips

Overall check of the flipping probability given in the low energy regime (kpkb << m2) by

Pflip =
α2

255λ2 sin2(2σ)
(∫

dx Eb(x)2

E 2
cr

)2

(38)

via the ratio of flipped quanta obtained through the field energies and strengths by

N⊥

N =
N⊥~ω
N~ω

=
E⊥

E ,with E⊥ =
∑

xi

(
~E(xi) · ~ε⊥

)2

See also V. Dinu, T. Heinzl, A. Ilderton, M.Marklund, G. Torgrimsson, Physical Review D, 2014
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QVSP 1D Simulations

Analysis of Polarization Flips

I Dependency on the pump field strength
I Dependency on the probe wavelength
I Extrapolation to small wavelengths due to heavy

simulations

I Flipping process can be time-resolved by the
simulation

Lindner, Ölmez, Ruhl (FOR 2783, LMU) QVSP April 2021 34 / 54



QVSP 1D Simulations

Analysis of Polarization Flips

I Need to refine the analysis

(Near-) Future work:
I Check of other dependencies in (38): dependency on

polarization shift, independence of pulse shapes
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QVSP 1D Simulations

High Harmonic Generation

Effective higher order scattering of probe and background photons

I Energy conservation at the effective
vertices can result in higher harmonics via
photon merging

I In the following: ωb = 0 (zero-frequency
background)

I On a later slide: Two non-zero frequency
pulses and collision at an angle

Effective vertices for 4- and 6-photon scattering

High harmonic generation
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QVSP 1D Simulations

High Harmonic Generation Initial Settings
I Zero-frequency background

Grid Length 300 µm
Lattice Points 4000

Pump Amplitude Vector (0,20,0) mEcr

Wavevector (-1,0,0) m−1

Center 200 µm
Width 12.8 µm

Probe Amplitude Vector (0,5,0) mEcr

Wavevector (0.5,0,0) µm−1

Center 100 µm
Width 10 µm

B. King, P. Böhl, and H. Ruhl, Physical Review D, 2014
P. Böhl, LMU, 2016
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QVSP 1D Simulations

High Harmonics Analysis

Logarithmic scale makes harmonics visible in frequency space

I Only 2nd harmonic is an asymptotic higher harmonic
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QVSP 1D Simulations

(High) Harmonics Analysis

I Harmonics are analysed by subtracting classical linear vacuum propagation from nonlinear
propagation

I Only signals generated by nonlinearities left
I Get rid of main signals for ω = 0 and ω = ωp (dc component and fundamental harmonic)

I Extraction of harmonic amplitudes: Filter desired frequency in Fourier space and transform back
to position space.
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QVSP 1D Simulations

(High) Harmonics Analysis

I Amplitude of the harmonics (linear
vacuum subtracted) against time

I Small systematic error by back and forth
Fourier transformations

I 0th and 3rd harmonic purely by 6-photon
processes

I To do: Add analytical results
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Simulation Results in 2D

I Quasi-1D: Coaxial Pulses
I Perpendicular Pulses and Odd Angles
I Orthogonally Polarized Pulses



QVSP 2D Simulations

Rough Settings

I Two equal 2D Gaussian Pulses in a
square

I Degeneracy of harmonic signals only
for ~kp = ±~kb

I Varying relative propagation
direction to get rich diversity of
signals

I Check of both parallel and
orthogonal relative polarizations

Grid Size 80 µm x 80 µm
Lattice Points 1024 x 1024

Pulse 1 Amplitude Vector (0,0,50) mEcr

Wavevector (1,0,0) µm−1

...
Pulse 2 Amplitude Vector (0,0,50) mEcr

Wavevector (-1,0,0) µm−1

...
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QVSP 2D Simulations

Coaxial Pulses

I ~kp = −~kb

I 3ω and 5ω signals in the overlap
field and a weak 3ω signal in the
asymptotic field

I Asymptotic signals due to 6-photon
scattering only

Position Space (top) and Frequency Space (bottom)

Ez -components
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QVSP 2D Simulations

Coaxial Pulses Relation to 1D Case

Similar to 1D:
I asymptotic high harmonics due to 6-photon diagrams

But:
I Sharpening of the asymptotic pulse (hardly visible), according broadening of the ω signals
I Reason: Birefringence effects are stronger in the center of the pulse.
I Post-collision pulses are sharper in position space and broader in frequency domain.
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QVSP 2D Simulations

Perpendicular Pulses

I Variety of mixing signals by repeal
of degeneracy (mostly
non-asymptotic 4-photon processes)

I 5-photon merging channels clearly
visible

I Nearly all signals vanish in the far
field again

I Asymptotic harmonics propagate
along the axes only

Ez -components
Lindner, Ölmez, Ruhl (FOR 2783, LMU) QVSP April 2021 45 / 54



QVSP 2D Simulations

Perpendicular Pulses Relation to 1D Case

Similar to 1D:
I asymptotic high harmonics due to 6-photon diagrams

But:
I Symmetry axis is neither kx = 0 nor ky = 0 but kx + ky = 0 ⇒initial symmetry of the system
I Birefringence effects (broadening) no longer symmetric in the far field ⇒keep total momentum

constant as well as invariance under boost trafos
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QVSP 2D Simulations

Odd Angle

Pulses colliding at an angle of 135◦

I Like a boost transformation of
perpendicular case

Ez -components
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QVSP 2D Simulations

Orthogonal Polarization

k-space of pulses colliding at an angle of
90◦ and 135◦

I Only one of the pulses is polarized
along Ez , whose frequency space is
shown here

I Momentum conservation: Signals
have the polarisation of the pulse
that contributes an odd amount of
photons

Ez -components (the one pulse)
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QVSP 2D Simulations

Orthogonal Polarization

k-space of pulses colliding at an angle of
90◦ and 135◦

I Here frequency space of
Bz -components (from the pulse
polarized along Ey )

Bz -components (the other pulse)
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QVSP Summary

I An ODE-based numerical solver for nonlinear wave equations in 3+1 dimensions is presented
I The solver is applied to the Heisenberg-Euler equations in weak field expansion but is not limited

to them
I The dispersion relation annihilates unphysical modes
I The phase velocity varies correctly in a strong electromagnetic background
I A backtesting of polarization flipping and higher-harmonic generation phenomena in 1D is

performed
I Simulations allow the interpretation of non-analytically solvable 2D scenarios containing these

effects
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QVSP Conclusions

Deficiencies Scale Restriction
I Field strengths are restricted to below critical values
I Fields ought to vary on much larger scale than Compton of electron
I Instead of probe quanta, can only simulate pulses
I Restriction to purely photonic processes no pair creation etc.

Caveats and Hurdles
I Attention to fine enough grid resolution and accompanying computational complexity
I Simulation output is field components of all pulses combined

⇒potentially arduous post-processing to filter desired signals
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QVSP Conclusions

Benefits (Almost) Complete Picture in a Simulation

I Numerical simulation can show all vacuum effects simultaneously
I Time-resolve all different processes
I Directly applicable to real world experimental settings with easily adaptable configurations
I Heisenberg-Euler Solver!
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Outlook

I Publication of the results
I Adaptive grids
I Tomographic methods for strong pulse characterization
I Make code scalable for 3D simulations
I Support our colleagues with simulations



Thank you


