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Cosmic Rays @

Energies and rates of the cosmic-ray particles
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* Charged nuclei from astronomical origins
+ 10 orders of magnitude energy range TN
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Ultra-high energy cosmic rays (UHECRS)
* Energies > 1018 eV
* manageable deflection by magnetic fields
+ Search for extra-galactic origins
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mic-Ray induced Air Showers Qe

» Cosmic rays interact with Earth’s atmosphere
- Induce extensive particle cascade
 Particle shower reach size of several km? at Earth’s surface
 Particle mass determines shower structure
+ Low mass, deep penetration - late maximum
+ Heavy mass, early maximum bl
* Many different detection techniques AR
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Shower maximum
correlates with
primary mass
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Air-Shower Reconstruction \%

* shower maximum (Xmax) of cosmic-ray-induced
air showers contains mass information

+ directly observed by fluorescence telescopes
* limited observations (only during dark nights)
+ challenging to measure with surface detector

I

* use deep learning to reconstruct Xmax
+ use surface detector data only
- enlarge statistics (much higher duty cycle)
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Deep-Learning based reconstruction of @.... |FWH
Cosmic-Ray induced Air Showers
* deep learning to reconstruct X, .« ‘ @ Shower
* use geometry of shower footprint ®-= O
+ analyze measured signal traces ®
— use recurrent networks (LSTMs) Q + O O
* measured arrival times =
- exploit hexagonal symmetry of the
surface-detector grid Signal traces Arrival times
- hexagonal convolutions ﬁ '—
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| Station states, arrival times (13,13,2)
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Hexagonal Convolutions Q-

measured air-shower footprint differs from image
> Cartesian vs. Hexagonal grid

use symmetry of hexagonal grid
* find hexagonal clusters
* use translational invariance

+ similar patterns at different grid
positions

* use rotational invariance

 similar patterns for showers from
different arrival directions

Hoogeboom, Peters, Cohen, Welling
ArXiv/1803.02108
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- RWNTH
AixNet @
e ~ 1.5 million parameters Simulated shower data Epos LHC
.. # Showers 800,000
e training on GPU ~ 1-2 days N
o _ Training 700,000
* mimic different detector states Validation 10.000
+ broken stations, broken PMTs Test 90,000
+ different saturation values Energy 18.0-20.2
Spectrum E?
Composition 25% proton
25% helium
25% oxygen
X 25% iron
< Zenith 0—65°
P e L
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Evaluation - EPOS LHC 9.
A
DNN trainined using EPOS LHC
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RWNTH
Evaluation — Additional Interactlon Models \%::s:r::;:ms
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Application to Hybrid data - Jrew
Golden Hybrids (absolute Xmax calibration)
 correlation 0.63 (0.61 when corrected for elong. rate)
* resolution matches expectations, at 10 EeV below 30 g/cm?
* -30 g/cm? bias (hadronic models, detector simulation)
+ independent from energy! — perform calibration
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Summary @

Deep Learning at the Pierre Auger Observatory: (ArXiv/2101.02946)
> extract mass-sensitive information using the SD - unprecedented statistics
* develop network that exploits symmetries of underlying structure (RNNs + CNN)
 dedicated data augmentation used, considering realistic-operation characteristics

* performance investigated on simulation (various interaction models)
+ resolution independent of used model
+ scale depends on used hadronic model
* method verified and calibrated using Fluorescence Detector observations
+ resolution matches expectations, at 10 EeV below 30 g/cm?2
+ shift of -30 g/cm? bias (larger than expected, removed by calibration)

* promising results to determine UHECR composition to the highest energies

Deep Learning for Cosmic-Ray Observatories *lﬁe;:[:l; Eruii'llsélt_a
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Mass composition using Xmax - Jrew
15 moment (X ax) 2nd moment 0 (Xmax)
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° measure average composition * measure composition mix
+ reconstructed by delta method, FD * reconstructed using FD
e distance P, Fe = 100 g/cm?2 * fluctuations 20-60 g/cm?
» systematic = 10 g/cm?2 >> statistical uncert. * uncert. statistically dominated
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Shower Black tank
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Trace features Arrival times Station states

* add station states and arrival times to trace
features
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* hexagonal convolutions to combine features
In space and time (DenseNet, ResNet)

» finally predict single Xmax value

Deep Learning
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Station states, arrival times (13,13,2)
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- RWTH
The Pierre Auger Observatory - |

» world largest cosmic-cay observatory
placed in Argentina

measure high-energetic particles

* energy > 1017 eV

study composition of cosmic rays
search for cosmic-ray origins

hybrid measurements of UHECRS
27 fluorescence telescopes at 4 sites
+ 15% duty cycle
* 1660 water-Cherenkov stations
+ 3000 kmz array, ~100% duty cycle

Deep Learning for Cosmic-Ray Observatories
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Air-Shower Reconstruction \%

* shower maximum (Xmax) of cosmic-ray-induced
air showers contains mass information

+ directly observed by fluorescence telescopes
* limited observations (only during dark nights)
+ challenging to measure with surface detector

I

* use deep learning to reconstruct Xmax
+ use surface detector data only
- enlarge statistics (much higher duty cycle)

AI‘XiVZ 2 1 O 1 . 02946 - Raw Data Deep Neural Network - IR’-e‘;c;f;;truction

“AixNet”
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Training and Verification of the Network

* neural network trained on simulated air showers
+ utilizes LSTMSs to process time-dependent signals

+ analyzes pattern of triggered detectors
using hexagonal convolutions

+ trained by considering real-operation characteristics

* performance extensively investigated

+ studied on simulations (various interaction models)

+ verified and calibrated using observations of the
Fluorescence Detector (FD)

» promising results to determine UHECR composition
to the highest energies using deep learning

ArXiv:2101.02946
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signal measured at single station

Signal [VEM peak]
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verification using fluorescence observations
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