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Classifying the QCD transition at the
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The study of QCD matter

Conjunctured QCD phase diagram
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Fig: Senger, Peter. "Astrophysics in the Laboratory—The CBM
Experiment at FAIR." Particles 3.2 (2020): 320-335.

e LQCD-> Smooth crossover at high
temperature and small densities

e Is there a phase transition?
e If so, where is the critical point?

The CBM Detector A simulated event in STS + MVD

(inside
magnet)

Upto 45 AGeV collisions e MVD -> 4 planes

10" collisions/ Second ggzglr?c?arrfls\zl:ttle?(nreiglL?tlcljrr:] 50 um
1000 tracks per collision i

1 TBytes/Second raw data o4 STS-> 8 planes
Momentum resolution: 1 %
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Data preparation X ‘,q

Previous works: > The Goal:

e Pure hydrodynamic study: rang, L. G, zhou, K., Su, N., Petersen, H., ® Design a DL based EoS meter for CBM
Stécker, H., & Wang, X. N. (2018). Nature communications, 9(1), 1-6. o increased uncertainties from electro-weak

> 0,
= 95 Aa.accuracy decays and detector effects
e Hydrodynamics + afterburner: pu, v. L., zhou, K., Steinheimer, J., Pang,
L. G., Motornenko, A., Zong, H. S., ... & Stécker, H. (2020). The European Physical Journal

C, 80(6), 1-17. e Train on “experiment like” data
o Finite particle spectra, hadronic rescattering, resonance o avoid biases from user defined selection
decays criterias and analysis algorithms

o prediction accuracy depended on smoothness of the

particle spectra
Hybrid
( UrQMD (3.4) )

UrQMD initial Hydrodynamic UrQMD Detector Didiisatioh Event
states : Evolution ™| afterburner transport 9 reconstruction

EoS
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https://lucid.app/documents/edit/2bb1455e-6a56-432a-aa1e-41d7d3fc4f74/0?callback=close&name=slides&callback_type=back&v=437&s=720

The Equation of State

e Essential input to fluid dynamics evolution
e Provides the pressure of the medium for any given energy and net baryon number densities

e Incorporates the QCD transition

o Pressure gradients drives the evolution ]

crossover

- - - - phase transition

e \We use:
o  Maxwell construction between a bag model
quark gluon EoS and a gas of pions and
nucleons :First Order Phase transition

pressure [g ]

o  Chiral Mean Field hadron-quark EoS :
Crossover

16
energy density [ ]



Representing the experimental data

e Experimental data: tracks or hits of particles
o Each particleis a pointin a point cloud
o  The order of input shouldn’t affect the output

R S DG RS assmemmaaeter | CBM. Journal of
Physics: Conference Series. 331. 032008. 10.1088/1742-6596/331/3/032008.

e 3D Voxels map |
+ > o voluminous!
N e Pointcloud: order invariant 2D array of A2 oo
. . X2,y2,22,.....
e (x,y,z) coordinates (or other point
| attributes) of each point >

I
2D Pixel map . )
o Efficient representation for :
higher dimensions Xn,yn,zn,.....




Learning the impact parameteér from point c{l‘o,ul:t data

1 fm

— e PointNet based impact parameter determination

P — e mean error between -0.3 and 0.2 fm for b= 2- 14 fm

% 30 9 fm

B B 11 fm

2 0 Bim o Afast centrality-meter for heavy-ion collisions at the CBM experiment

z Phys.Lett.B 811 (2020) 135872

10
o  Deep Learning based impact parameter determination for the CBM
D T R —— experiment
Predicted impact parameter distributions (fm) Particles 202 1’ 4(1), 47-52
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The PointNet model

e DL model to learn from point cloud
e Extracts order invariant global features

1-D Convolution + Batch Normalisation
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[ N = No of particles
[ F = No of features per particle

Global features

1x512

Dense layers
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First order
Crossover


https://app.diagrams.net/?page-id=_FZVjMawt-xAFFeM0ory&scale=auto#G1hTEQ3joa5hT0vhk7XWz0IqdtQokPq0_i

Training the models

e Au-Au Collisions at 10 AGeV
e (-7 fm impact parameter (uniform)
e 60000 training samples (30000+ 30000) , 20000 validation samples (10000+ 10000)

e 3 Cases are considered
e All models used similar architecture, hyperparameters
e Differ in the input dimensions

4-momentum of all particles
UrQMD output e Ideal case: 360° acceptance + 100%
detector efficiency

UrQMD output with e  4-momentum of all particles
CBM acceptance e  2-25%°acceptance cut

° Reconstructed tracks from the
UrQMD + CbmRoot digitised hits in STS
° Realistic simulation

Manjunath Omana Kuttan IDT-UM Collaboration meeting 11-May-2021



Training results

e Decrease in performance with increase in
experimental effects
e Accuracy on the event by event data: 10
o UrQMD: 77.2%
o UrQMD+ CBM acceptance: 72.2%
o UrQMD+ CbmRoot: 62.4% 0.9

e Performance improves when events are combiri@d
o More uncertainties-> More events g 0.8
o UrQMD+ CbmRoot: 96.6% with 40 events~

e Similar dependency found in Du, Y. L., Zhou, K,
Steinheimer, J., Pang, L. G., Motornenko, A., Zong, H. S., ... &
Stécker, H. (2020). The European Physical Journal C, 80(6), 1-17

e Increasing the statistics reduces the
stochasticity

—— UrQMD: full acceptance
-+4-- UrQMD: CBM detector acceptance
-+- UrQMD + CbmRoot

10 20 30 40
Number of events per input



Centrality dependence

e Can the performance improve with a centrality selection?

wl “ ‘\ li

IR

y‘
T

Impact Validation
parameter Accuracy

e All models used combinations of 40 events of STS tracks

Manjunath Omana Kuttan

Model-1

Model-3a

Model-3b

99.65%

IDT-UM Collaboration meeting
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Accuracy increases when trained
on events with b< 3fm

Centrality selection improves
accuracy but most data collected
goes unused

o Model 3 can solve this issue

Trained on events with both b=0-3 fm
and b=3-7 fm

Centrality classes are not mixed when
combining events

Additional input to network which
identifies the class of input data

| 11-May-2021 10



Input parameters for Hydrodynamics evolution

e Several inputs to hydrodynamic simulation re not precisely known.
e A practical DL model should be immune against changes to these parameters

1. Starting time of hydrodynamic evolution:
m

tstart = 2R
Elab

R=radius of nuclei
m=mass of nucleon
E,,,= kinetic energy in lab frame

Freeze-out energy density () :
The hydrodynamic evolution happens in a cartesian grid Ax=0.2 fm , 2003 cells
Hydrodynamic evolution stops when e< 5¢_for all cells

Particlisation happens from the iso energy density hypersurface using Cooper-Frye formula

d N L f(x,p) =boosted Fermi/ Bose distribution
// (p)pida, V7%

(] 31) ‘do,, =freezeout hypersurface element

11



Dependenceont___ande

1.0

0.

NeJ

=
o0

Accuracy

-
BN |

0.

(=]

start

Model-1 Model-2 Model-3a Model-3b
0-7 fm 0-3 fm 0-3 fm 3-7 fm

Validation set
totart + 10%

€ +40%

tstare — 10%

€ — 40%

Models tested fort__ ¥10% and e740%
from training value

Decrease in tSta 4 and € doesn’t affect the
performance

Increasing these parameters however
causes considerable decrease in
accuracy
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For b=0, ~62% of the medium experiences
hydro while it is ~42% for b=7

Decrease in t__, or € increases hydro duration
o More part of system experience hydro
o Even for b=0:
m ~68%fort, -10%
m ~75% for € -40%

Increasing t_,_ , or € decreases hydro duration
o Small fraction of system experience hydro
o For b=0:
m ~55% fort, +10%
m ~50% for € +40%
For peripheral events, decreasing t_,_,or €
could cause as less as ~25% of the medium to
experience hydro

Fraction of the medium below freezout energy density

Reasons for dependence on.centrality, t_.__ dnd.g

start

0.8 === Training data

= totart + 10%
Ustart — 10%

—— c—40%

0]
06 T €+ 40%

13



Summary

PointNet based DL models are an efficient tool for identifying phase transition at CBM
o Accuracy upto 99.8%
o  Online algorithm- Works with experimental data

The performance of PointNet model is different conditions of experimental uncertainties
and detector effects are demonstrated
o >95% accuracy in a realistic experimental simulation with b 0-7 fm

Best performance can be achieved with a centrality selection (b=0-3 fm)
o Method to incorporate peripheral events is demonstrated

Performance decrease due to increase in t,_. or € is merely the limitation caused by the
underlying physics

Any global event feature could be analysed with PointNet
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