PALLAS control command and data acquisition systems

current status

K. Cassou, J. L. Coacolo, <u>P. Gauron</u>, E. Jules, S. Kazamias, V. Kubytsky, E. Legay, B. Lucas, O. Neveu, G. Philippon, M. Pittman, ...

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie - IJCLab - UMR9012 - 91405 Orsay cedex - France

Introduction

- PALLAS is laser-plasma accelerator test facility *under construction* at IJClab. First beam expected in 2023.
- Sharing the experience of deploying a control command and acquisition (CCA)for LPA machine
- System ready for "large" dataset acquisition, timestamping, online machine optimization...
- Configuration, choices and present status

PALLAS?

Accelerator test facility for laser-plasma injectors (LPI)

- LPI delivering 150-250 MeV, 30pC, 1 mm.mrad beam with stability and control comparable to standard RF accelerator.
- Main axis of R&D accelerator: advanced laser control, targetry, electron beam manipulation for staging

optimize and operate an LPI at 10 Hz => (1) data acquisition, (2) monitoring, (3) feed-back loop

System overview

laser driver

30-40 TW, 10Hz, CPA laser system (Amplitude)

accelerator LPI beamline

divided in 4 modules:

- laser beam transport line + 300TW compressor.
- laser driver focusing and stabilization + interaction region diags
- plasma module
- e- characterization beamline

Advanced control ... state of the art SCADA

Context:

- CCA based on Tango-controls with experienced team (ThomX project, Andromede, Agata ...)
- web based IHM : adaCore Webserver + Grafana 🌣 + 🔮 python** scripting / API
- Data acquisition: archiving tango system TDB/HDB++
- PLC: vacuum, gas target, person safety.
- upgrade of network architecture
- virtualData storage
- laser driver with its own control command system
 - ElliOOs based on distributed control system.
 - Instruments: 21 CCD, 4 spectrometers, motorized mirror mount, pump laser control ...

... starting with T△NG△

- open-source, active community acceleratos (ALBA, ESRF, SOLEIL,...), large detectors SKAO and laser facilities (APPOLON, ELIBEAMLINES, ELI-ALPS, CALA ...).
- interoperatibility, high customization
- It is an object oriented distributed control system based on :
 - Corba synchronous communications
 - Zeromq for asynchronous (event based) communications
- coding C++, Java, Python
- http://tango-controls.com
- https://github.com/tango-controls -> https://gitlab.com/tango-controls
- Try it with the **tangobox** in VM or docker

Tango concept in a nutshell

- each element hardware or software to be controlled is a device
- A device is an instance of a Tango class being specific to a hardware / software
- A device supports **commands** (actions) and **attributes** (data)
- Tango classes are merged in operating system process called **Device Server (DS)**
- All Devices configuration parameters are stored in a database (Tangodb)
- All devices have State with multiple possible values depending on device (ON, OFF, MOVING, UNKNOWN, FAULT...)

https://tango-controls.readthedocs.io/en/latest/

Tango concept in a nutshell

out of the box several graphical tools

- Configuration: jive (alt. waltz)
- start/stop system: astor
- **test + monitor device:** atkpanel taurus (atl. Pytango, waltz,...)
- archiver: HBD++
- logs: Logviewer
- alarm handling: Panic

GUI

Taurus Gui (Py/Qt), Sardana, Canone (web/php)

Bindings

REST-API, Labview, Matlab, octave, panorama ...

https://tango-controls.readthedocs.io/en/latest/

CCA system

Present configuration:

laser driver

- 1 Gb network
- 3 embedded computers, 1 data server 20 To mysql dB (21 CCD, 4 spectometers ...)
- Timing/ synchronization : shotcounter based on MQ for timestamping
- Tango Gateway => laser status, fire command

PALLAS beamline

Module	device	DS	area detector	total max bw [Gb/s]	stored data [Mo/s]	frep [Hz]
4	82	23	>30	~ 5700	50-250	10

Gives input for network and hardware design:

- 2 x 10 Gb network
- 1 gateway, 2 servers, 3 embedded computers + local (diag dedicated computer interface)
- data server: 12To TDB / 12To HDB then overnight transfer to datacenter virtualData

PALLAS CCA system

CCA development

The team

• 6 persons ~ 2.2 FTE

DS development and HW testing

small HW test bench for DS development for parallel testing with machine integration

- DS testing
- Script for automatic installation/re-installation of DS and machines
- Data recording / timestamping testing

GUI development

based on ada webserver and Tango REST-API

Current status ... next steps

DS testing and dev progress

Device server class	testing state	dev state	
15	26%	60%	

https://www.tango-controls.org/developers/class-doc/

Present hardware configuration

- LBTL and optical compressor under connection
- Network cabling complete Control command system installed in the final technical room
- Timestamping -shotCounter (Amplitude) zmq server publishing on both network LASERIX/PALLAS [runID, shotID, datetime]

Coming next

- GUI integration / testing
- database link to Grafana and dashboard config
- DS for run configuration
- single board computer for image processing of large area detectors @ 10Hz workshop Control systems and Machine learning | 24/01/20212

Community experience on Tango based CCA for LPA

To conclude, we are seeking:

- to share experience on specific aspect of LPA CCA: triggered area-detector network loading, laser diagnostics tango device, etc...
- common format for sharing data?

Thanks

contact: cassou (at) ijclab.in2p3.fr; gauron (at) ijclab.in2p3.fr