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What if experiment and theory do not agree?

ML-based strategy

Simulation-based strategy

r\ Results
ML-based optimization

Simulator Bayesian inference, Gaussian
(model) process, reinforcement learning
techniques

Results

Parameters U Parameters
unknown known unknown known
... extend model and/or diagnostics ... do optimization for tunable parameters

ML-based diagnostics:

Problems:
Results r\ = simulated results can differ
= and in an unknown way!
result #1
supervised m e e Simulator Methods:
learning w%vww“%vw (model) = develop tolerance to differences

Parameters

= extend simulator
= transfer learning

unknown  known



The layout of an inverse problem with latent parameters

latent parameters

6
parameters to be

determined/verified observables

ABC: for each x,: (z;,0; ) ~ n(z, 8), simulate x;(z;, 9; ),
summary statistics s(x), accept if K(S(xl-), S(xe)) < h.

Problem: Infer 8 from experimental data

Approaches and difficulties:

1. Approximate Bayesian Computation (ABC): large dimensionality of x and z make the
likelihood function intractable (requires integration over all possible outcomes)

2. ML: explanation and reliability; irreversibility due to probabilistic or/and stochastic
nature of the process; difference between experiment and simulation



The overview of the activity in terms of ML

Incremental improvements:
= Achieve narrower distribution of errors
= Quantify upper limits for error distribution

= |dentify reliable cutoffs

Game-changing improvements:
= Generalizability (simulations — experiment)
= QOvercoming irreversibility (detect, explain)

= Reliability (retrieve sufficient summary
statistics; identify indicative features)

Methodology:
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1. Identify ML models tolerant to noise (varied by binning strategy): use noise to enhance generalizability.

2. Transfer learning: (1) pre-train using simplified analytical models (uncostly data) to accentuate
indicative features; (2) generalize using ab-initio simulations (cheap data); (3) fine-tune using actual

experiment (expensive data).

3. Improve ML model invariance by using simulation-based generative (composabale) model for training.



Problem #1: peak field determination in experiments on SFQED

Problem: determine peak laser
intensity achieved.

Motivation: experimental tests
of strong-field QED require
strong fields of known
amplitude.
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Problem 1: results

Conclusions:

= Non-optimal binning can crucially
deteriorate the performance of
SVM and GBT, and, to a less extent,
FCNN and CNN.

= PCA (linear) can reduce training
time at the cost of minor accuracy
deterioration, but doesn’t provide
higher accuracy overall.

Y. Rodimkov et al. ML-Based Analysis of
Particle Distributions in High-Intensity Laser

Experiments: Role of Binning Strategy,
Entropy, 23 (1), 21 (2020)
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Problem #2: problem statement

Process: An intense few-cycle laser pulse with some carrier envelope phase (CEP)
impinges on an overdense plasma target at some incidence angle and causes the
generation of secondary radiation.
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Problem: infer CEP, pre-plasma scale length and angle of incidence from the Laser pulse 0\
spectrum of secondary emission (the only routinely measurable data). ==
Spectral interferometry (designed for 2-3 cycle pulses, known parameters): b
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D. Kormin et al. Nat. Comm. 9, 4992 (2018) y
Goals:
= use ML to learn more general features ) .
(reconstruct more parameters) ' S
= apply transfer learning to reach applicability for experimental data ) J e
RES (~1 ms per simulation), PIC (~ 1 min, ~ 10° cases), experiment (~ 103 cases)

= determine (highlight?) indicative features ormonconden (e
Gonoskov et al., Sci. Rep. 9 (1), 1-15 (2019)

RES model: Gonoskov, Phys. Plasmas (2018)
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results, FCNN trained with PIC simulati

Problem #2
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Problem #2: tolerance to noise

¢ ? 2 " (5 — vi)?
Accuracy measures: MAPE = E 5’ RE=1-) ———=
~ m y = (yi—y)
Model Metrics DPcep 0 L,

Baseline model trained on clean data, MAPE 3.823 1.781 4.890
tested on clean data R? 0.952 0.991 0.904
Baseline model trained on clean data, MAPE 18.675 13.297 18.601
tested on noisy data R? 0.327 0.638 0.304
Baseline model trained on noisy data, MAPE 7.638 3.179 8.743
tested on noisy data R? 0.841 0.968 0.756
PCA preprocessin MAPE 5.385 2.434 6.537
prep 5 R2 0.944 0.988 0.893
. . MAPE 4.170 1.911 5.095
Adding noise to data gradually R2 0.946 0.988 0.897

Y. Rodimkov et al. Sensors 21 (21), 6982 (2021)
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Problem #3: problem statement

N \ intensity  phase Phase deviations decrease peak field

distribution  distribution amplitude and affect its structure:
vy
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E. Panova et al. Appl. Sci., 11, 956 (2021)
Broad spectrum (spans over w; < wg < w,) causes further complications: A i
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G. Pariente et al. Nature Photonics 10, 547-553 (2016)
To reduce the costs and overcome limitations (tight focusing of short pulses) we try to use ML:

= infer angles of phase tills (for three frequencies) and their orientations from intensity distribution at the focus
= suggest optimal/automated tuning of adaptive optics



