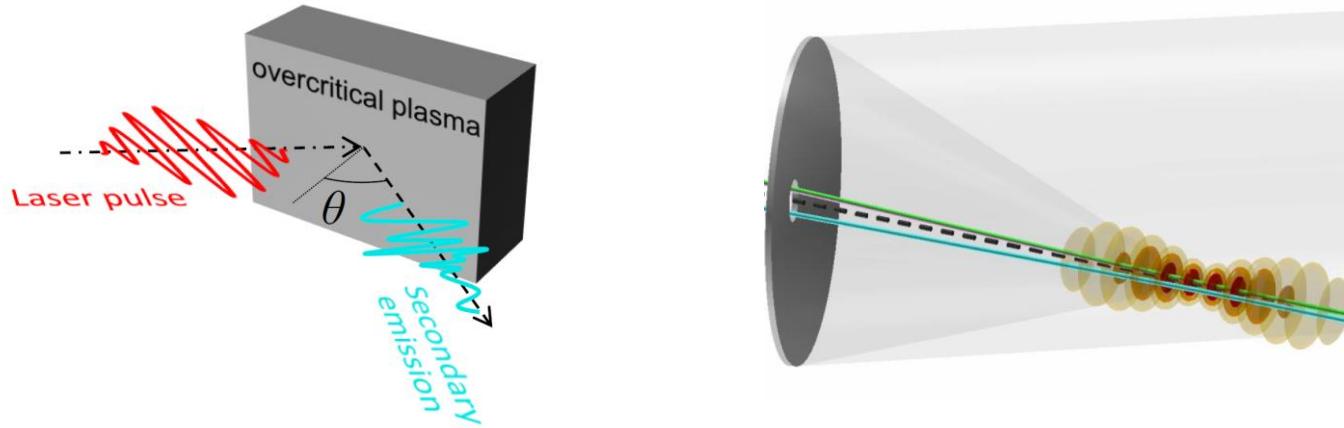
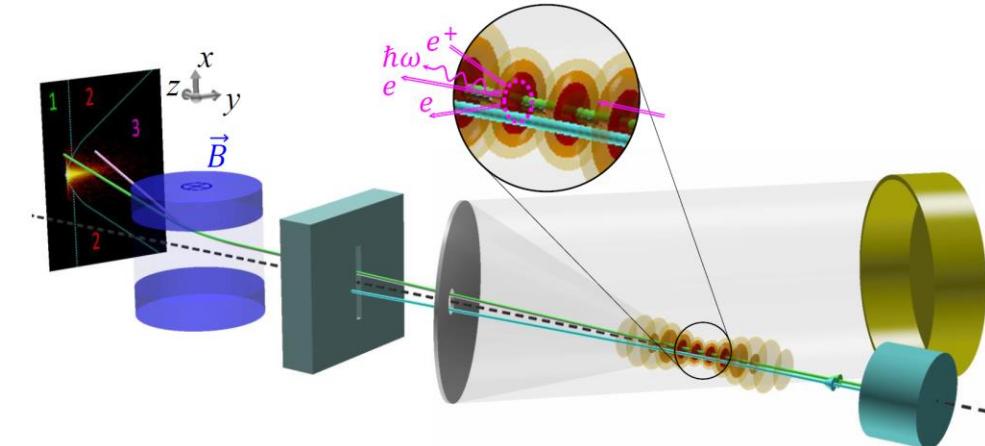


LOBACHEVSKY
UNIVERSITY

UNIVERSITY OF
GOTHENBURG

Institute of Applied Physics
Russian Academy of Sciences



Towards simulation-governed ML-based analysis of laser-plasma interactions

Yury Rodimkov, Valentin Volokitin, Elena Panova,
Iosif Meyerov *Lobachevsky University (Russia)*

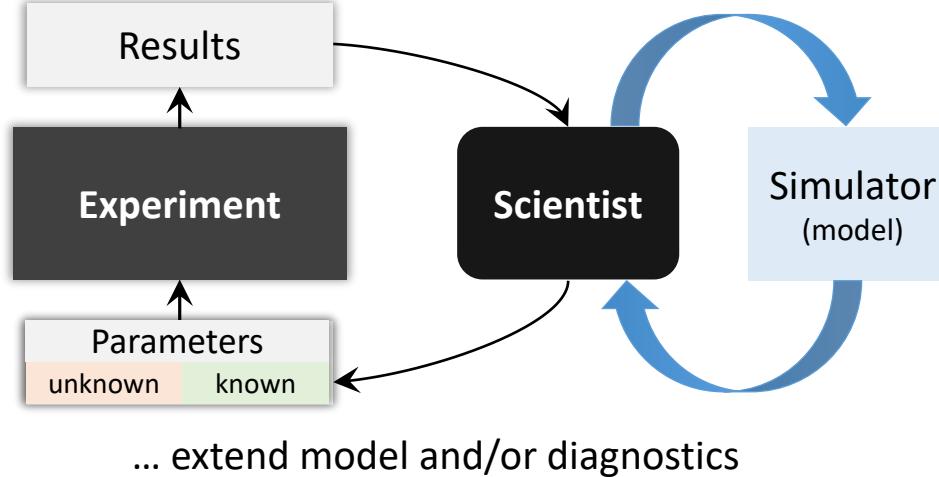
Evgeny Efimenko
IAP RAS (Russia)

Alexey Polovinkin
Adv Stat & Machine Learning, LTD, Intel (USA) László Veisz
Umeå University (Sweden)

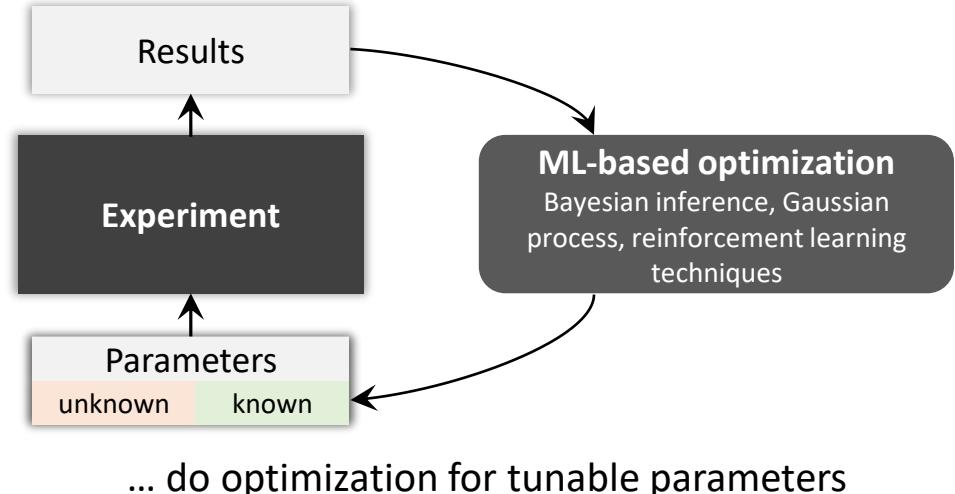
Christoffer Olofsson, Shikha Bhaduria,
Tom Blackburn, Arkady Gonoskov
University of Gothenburg (Sweden)

What if experiment and theory do not agree?

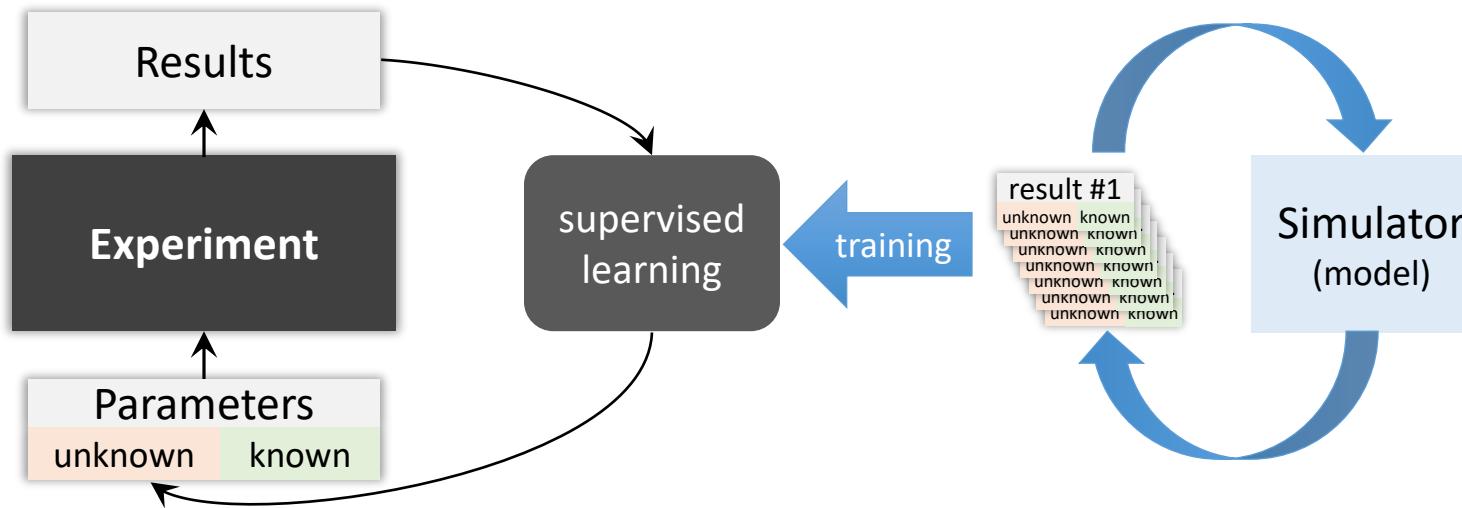
Simulation-based strategy



ML-based strategy



ML-based diagnostics:



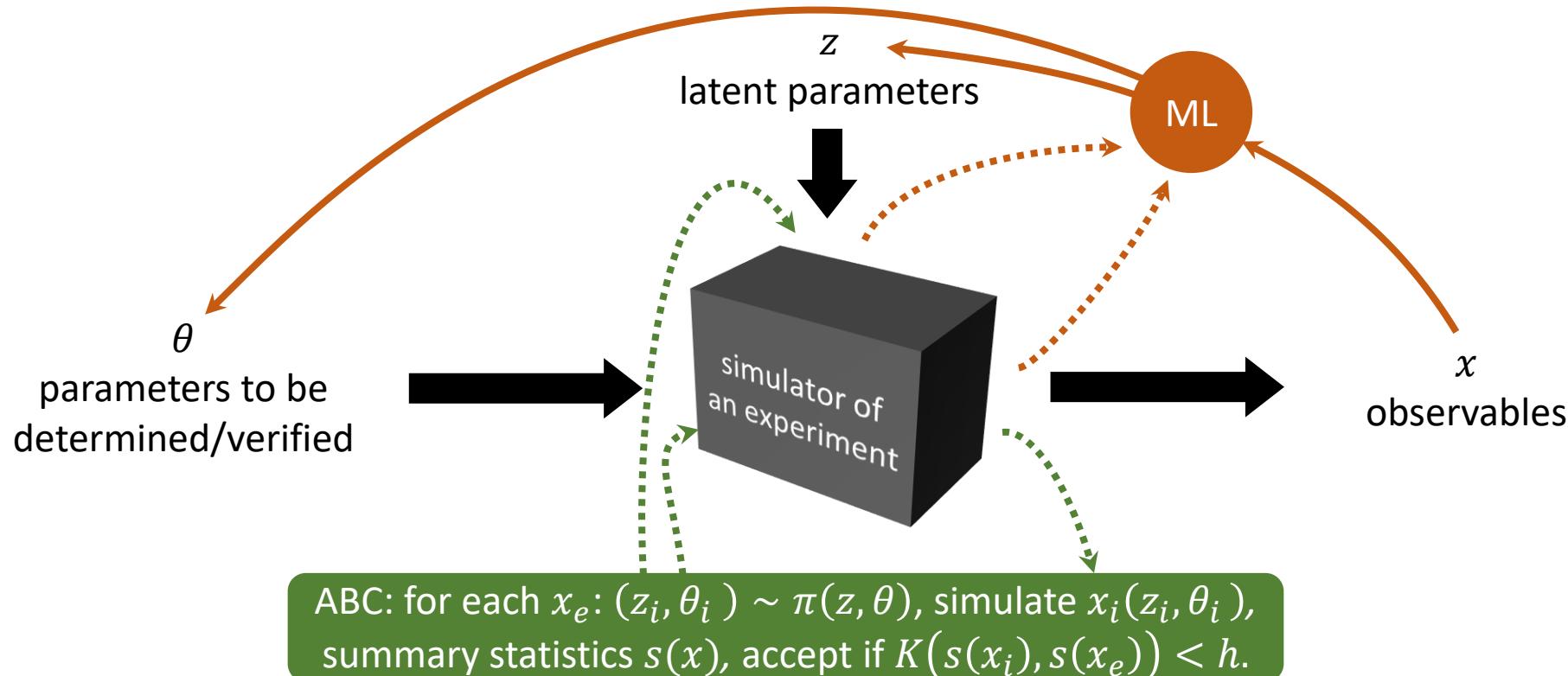
Problems:

- simulated results can differ
- and in an unknown way!

Methods:

- develop tolerance to differences
- extend simulator
- transfer learning

The layout of an inverse problem with latent parameters



Problem: Infer θ from experimental data

Approaches and difficulties:

1. **Approximate Bayesian Computation (ABC):** large dimensionality of x and z make the likelihood function intractable (requires integration over all possible outcomes)
2. **ML:** explanation and reliability; irreversibility due to probabilistic or/and stochastic nature of the process; difference between experiment and simulation

The overview of the activity in terms of ML

Incremental improvements:

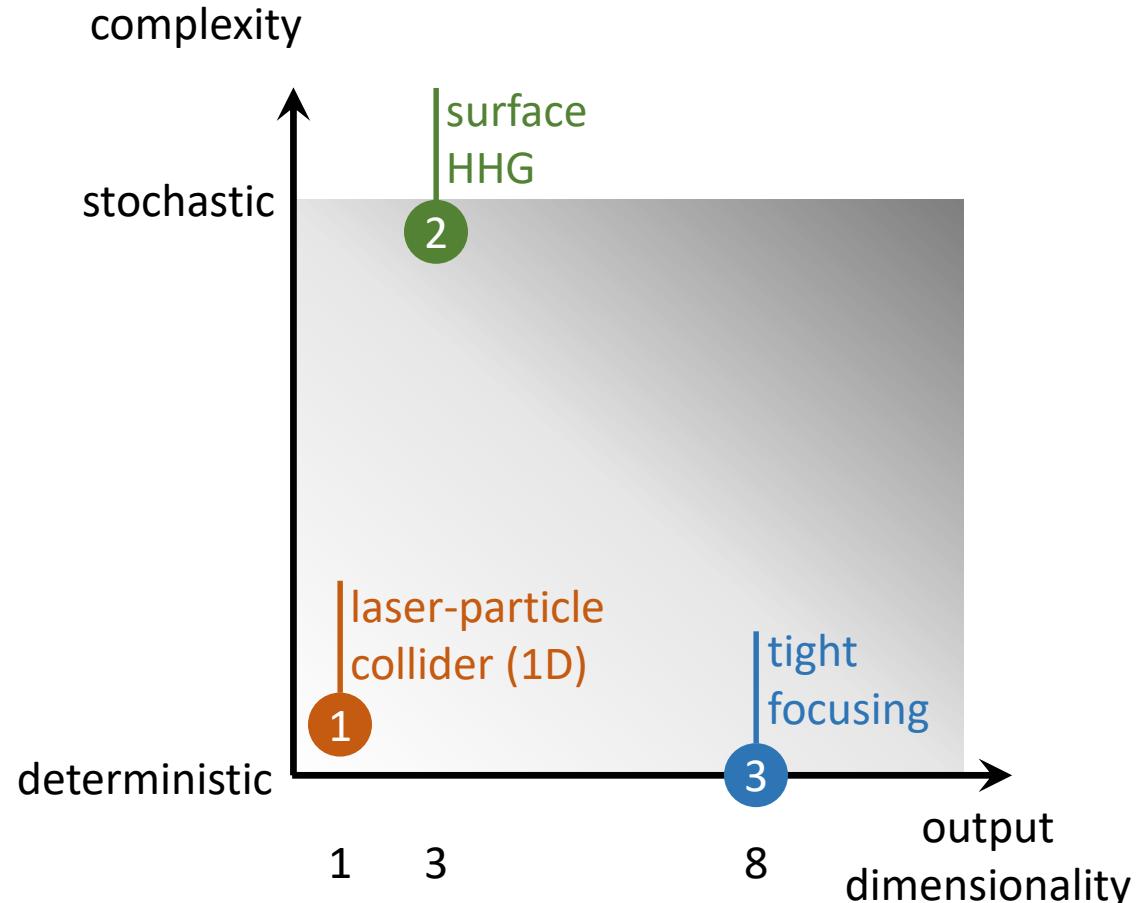
- Achieve narrower distribution of errors
- Quantify upper limits for error distribution
- Identify reliable cutoffs

Game-changing improvements:

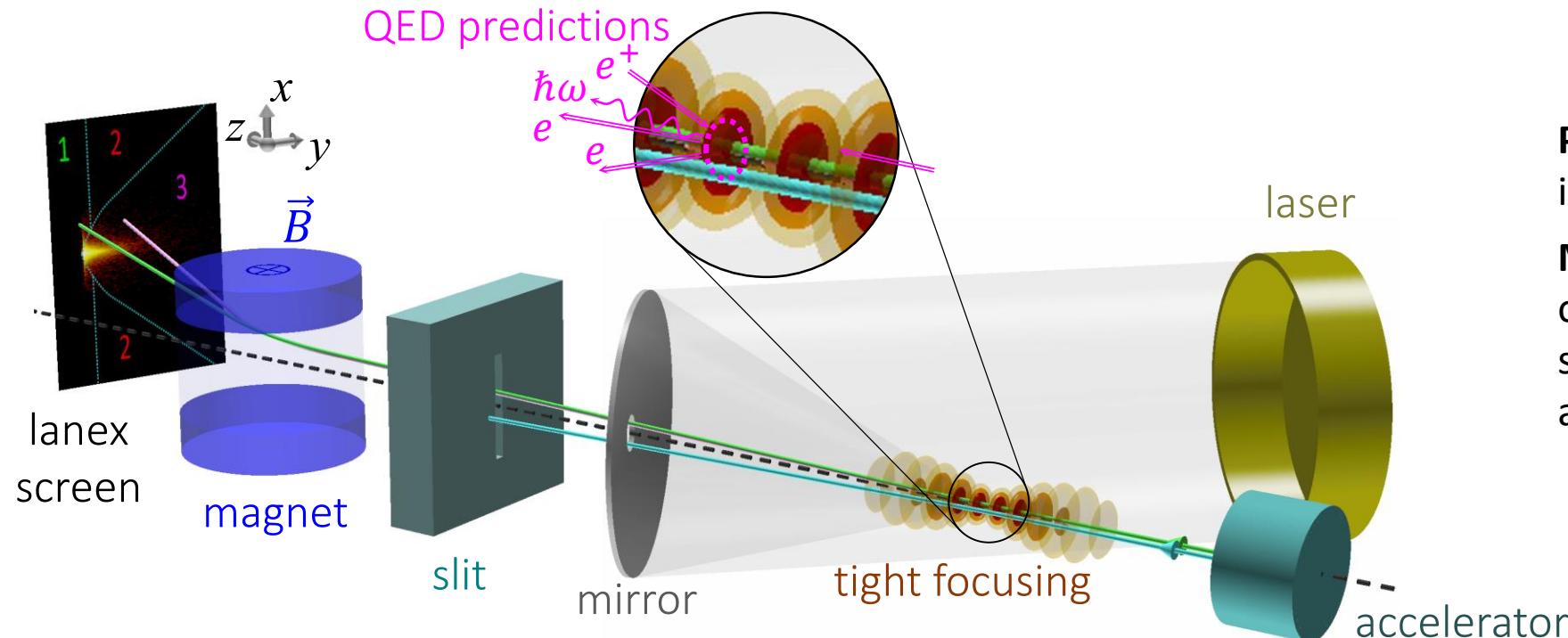
- Generalizability (simulations → experiment)
- Overcoming irreversibility (detect, explain)
- Reliability (retrieve sufficient summary statistics; identify indicative features)

Methodology:

1. Identify ML models tolerant to noise (varied by binning strategy): use noise to enhance generalizability.
2. Transfer learning: (1) pre-train using simplified analytical models (uncostly data) to accentuate indicative features; (2) generalize using ab-initio simulations (cheap data); (3) fine-tune using actual experiment (expensive data).
3. Improve ML model invariance by using simulation-based generative (composable) model for training.

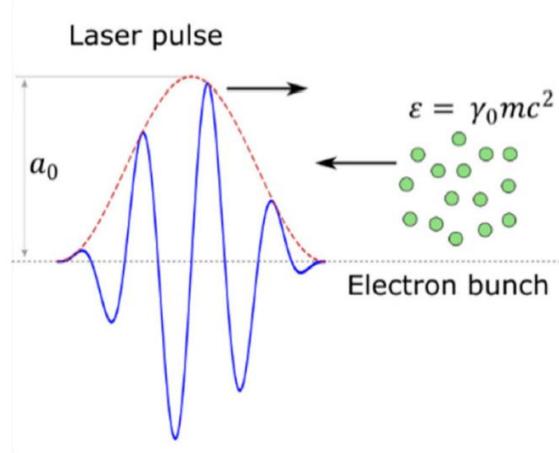
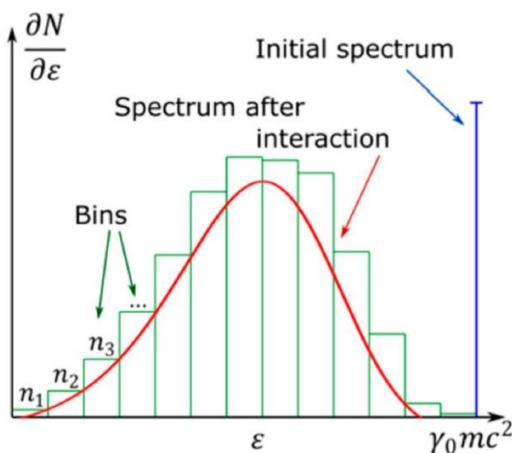
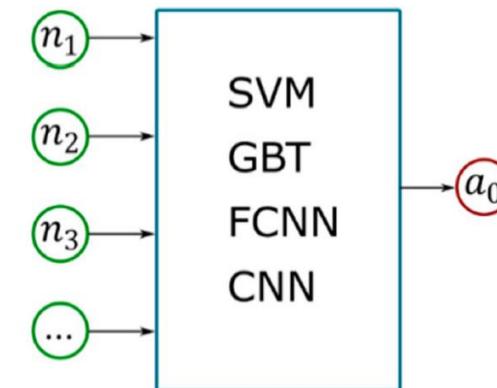


Problem #1: peak field determination in experiments on SFQED



Problem: determine peak laser intensity achieved.

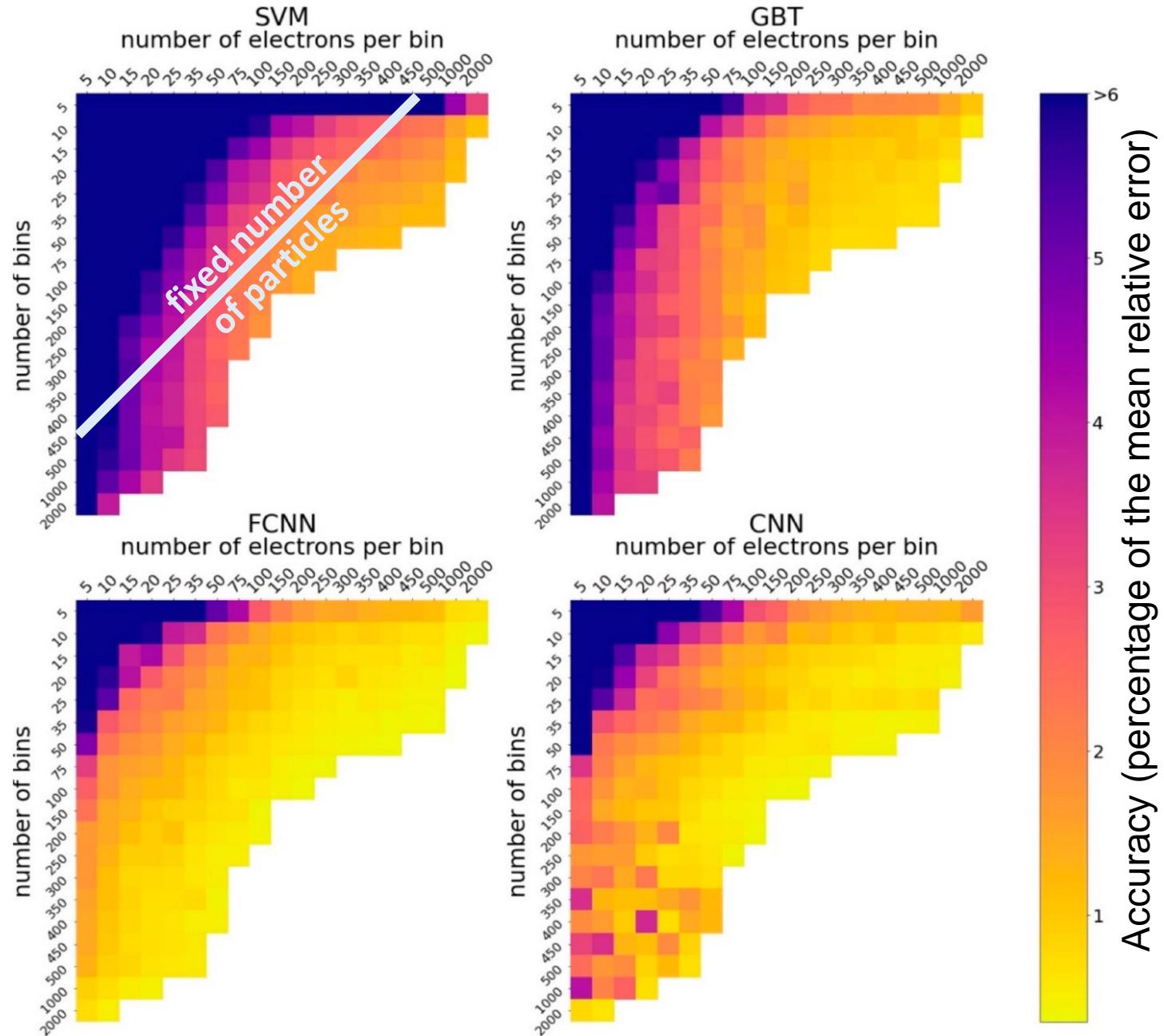
Motivation: experimental tests of strong-field QED require strong fields of known amplitude.



Problem 1: results

Conclusions:

- Non-optimal binning can crucially deteriorate the performance of SVM and GBT, and, to a less extent, FCNN and CNN.
- PCA (linear) can reduce training time at the cost of minor accuracy deterioration, but doesn't provide higher accuracy overall.



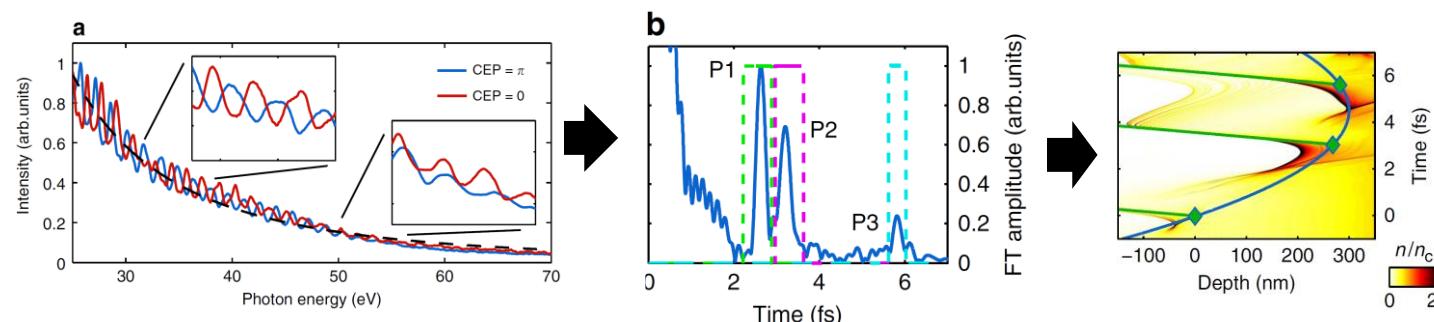
Y. Rodimkov et al. ML-Based Analysis of Particle Distributions in High-Intensity Laser Experiments: Role of Binning Strategy, Entropy, 23 (1), 21 (2020)

Problem #2: problem statement

Process: An intense few-cycle laser pulse with some carrier envelope phase (CEP) impinges on an overdense plasma target at some incidence angle and causes the generation of secondary radiation.

Problem: infer CEP, pre-plasma scale length and angle of incidence from the spectrum of secondary emission (the only routinely measurable data).

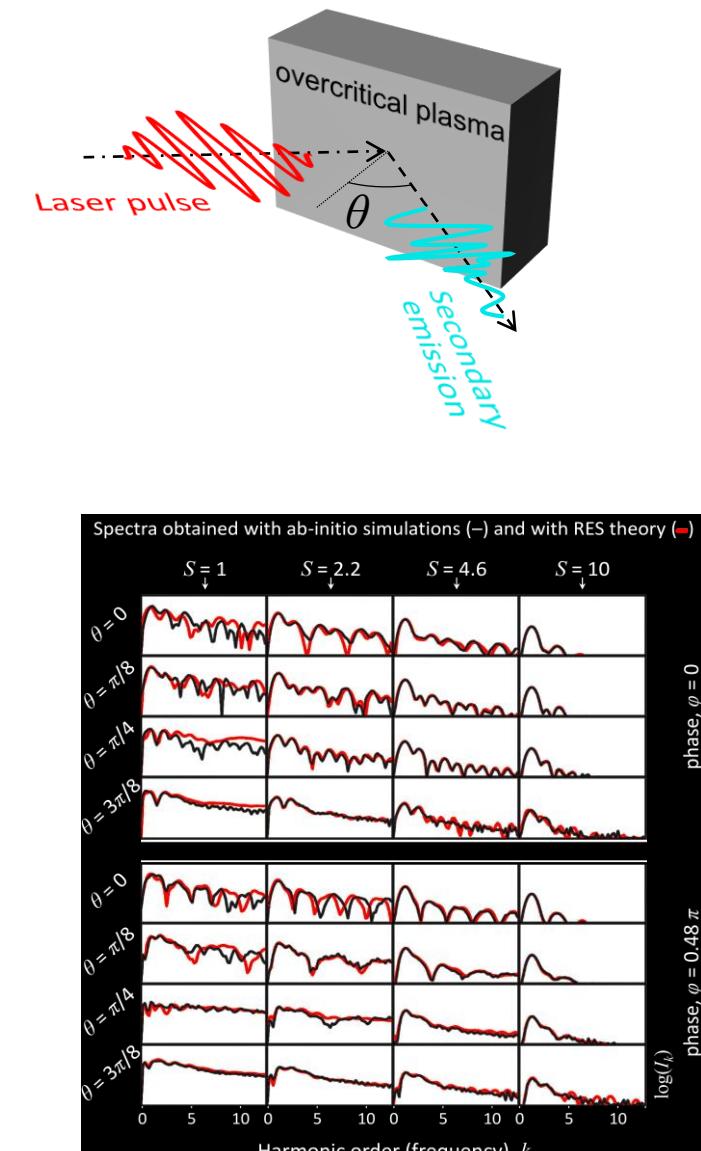
Spectral interferometry (designed for 2-3 cycle pulses, known parameters):



D. Kormin et al. Nat. Comm. 9, 4992 (2018)

Goals:

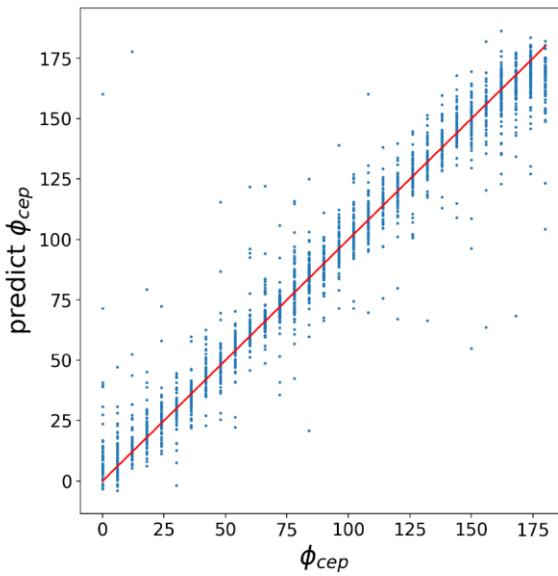
- use ML to learn more general features (reconstruct more parameters)
- apply transfer learning to reach applicability for experimental data RES (~ 1 ms per simulation), PIC (~ 1 min, $\sim 10^5$ cases), experiment ($\sim 10^3$ cases)
- determine (highlight?) indicative features



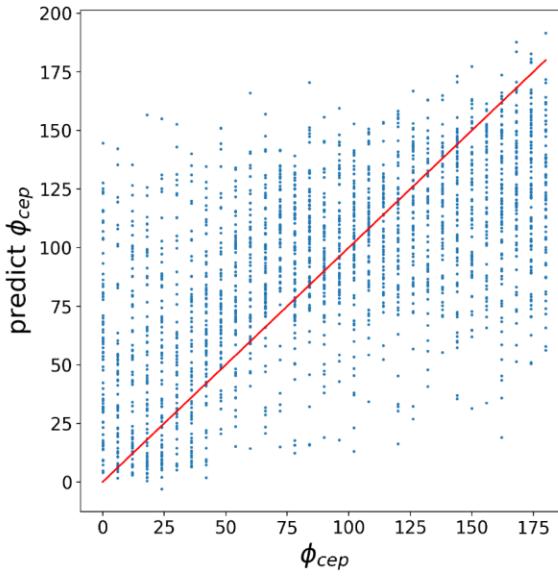
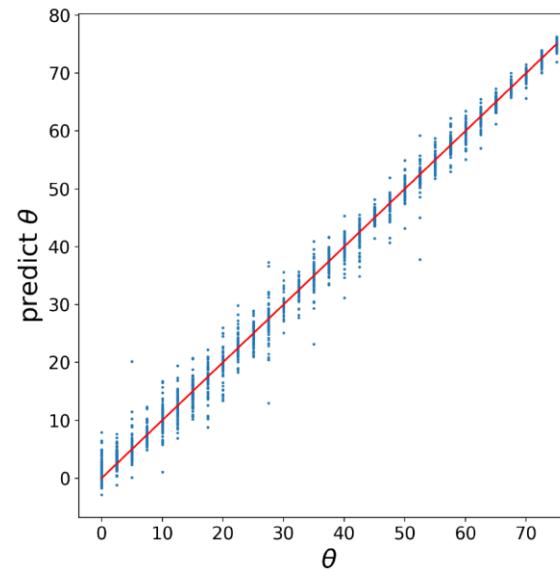
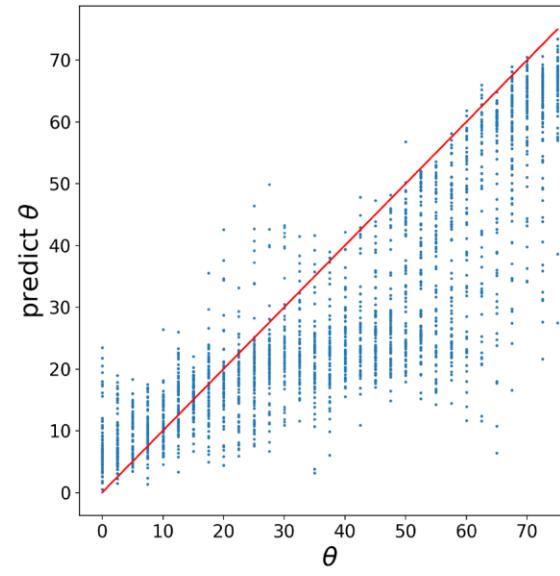
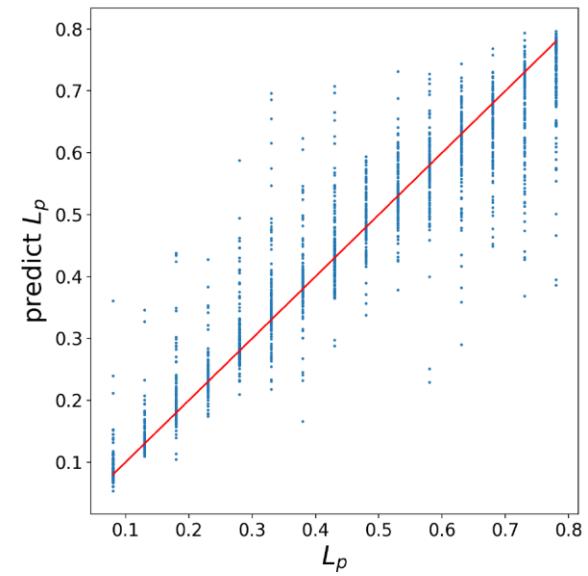
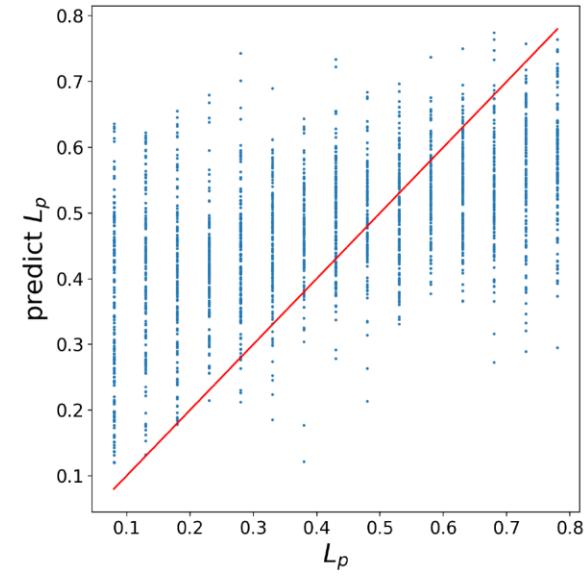
Gonoskov et al., Sci. Rep. 9 (1), 1-15 (2019)
RES model: Gonoskov, Phys. Plasmas (2018)

Problem #2: results, FCNN trained with PIC simulations

**clean
data**



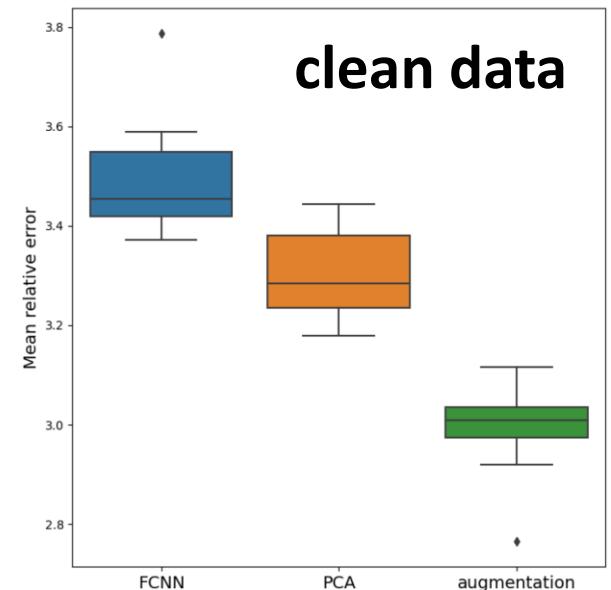
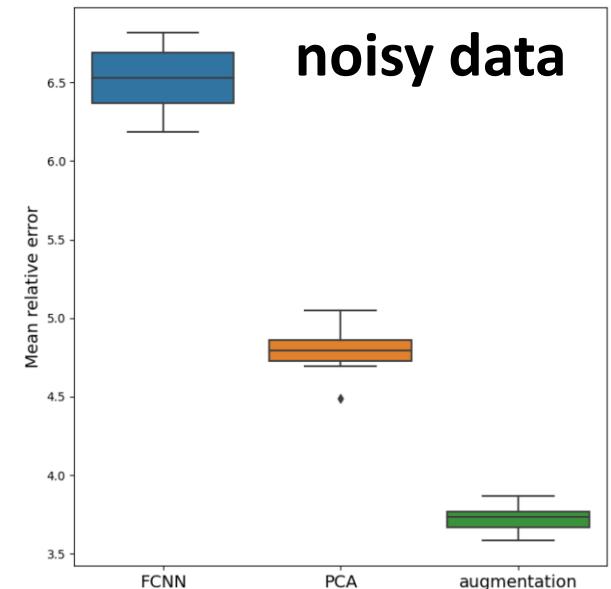
**“noisy”
data**



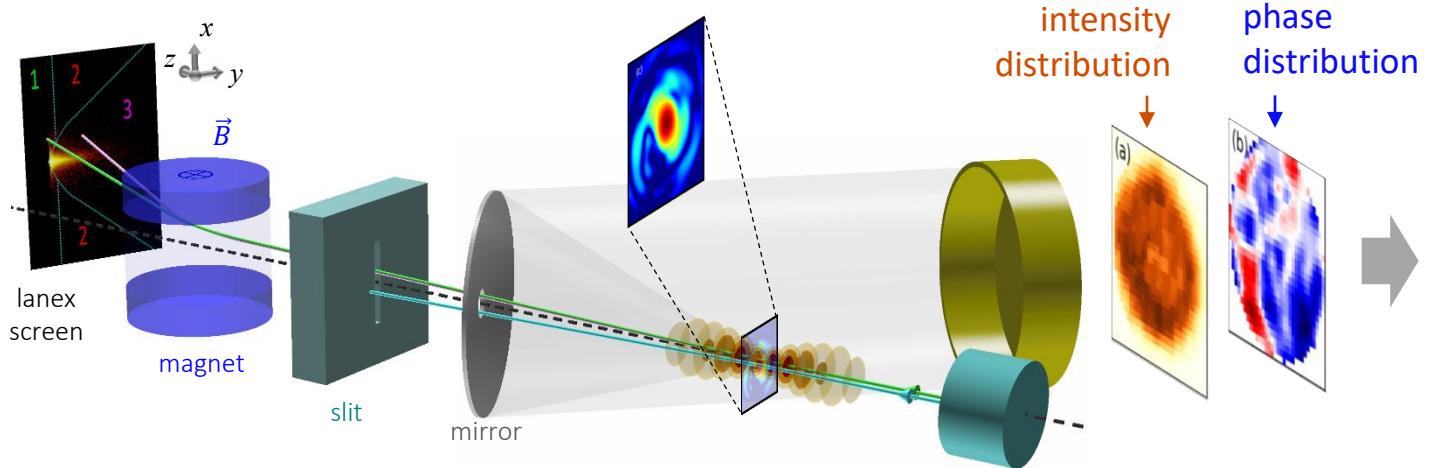
Problem #2: tolerance to noise

Accuracy measures: $MAPE = \frac{100}{n} \sum_{i=1}^n \frac{|\hat{y}_i - y_i|}{\max(\hat{y})}$, $R^2 = 1 - \sum_{i=1}^n \frac{(\hat{y}_i - y_i)^2}{(y_i - \bar{y})^2}$

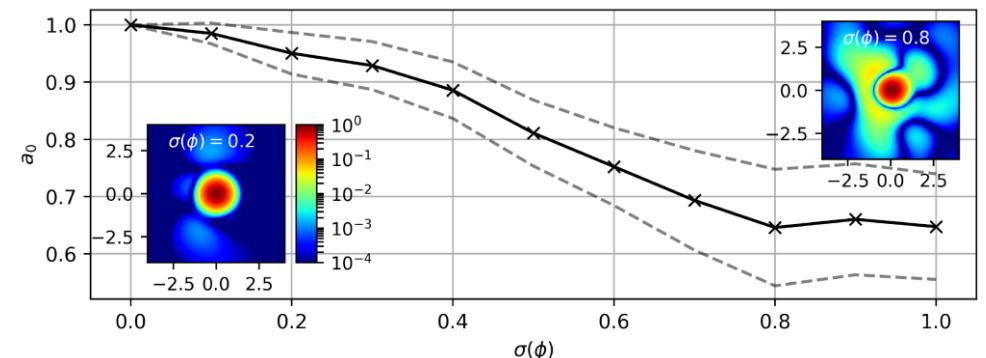
Model	Metrics	Φ_{CEP}	θ	L_p
Baseline model trained on clean data, tested on clean data	MAPE	3.823	1.781	4.890
	R^2	0.952	0.991	0.904
Baseline model trained on clean data, tested on noisy data	MAPE	18.675	13.297	18.601
	R^2	0.327	0.638	0.304
Baseline model trained on noisy data, tested on noisy data	MAPE	7.638	3.179	8.743
	R^2	0.841	0.968	0.756
PCA preprocessing	MAPE	5.385	2.434	6.537
	R^2	0.944	0.988	0.893
Adding noise to data gradually	MAPE	4.170	1.911	5.095
	R^2	0.946	0.988	0.897



Problem #3: problem statement

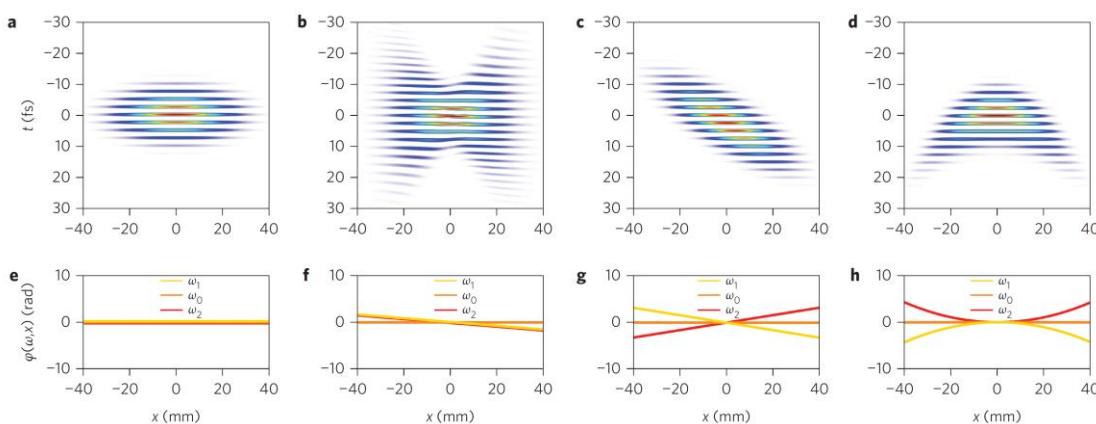
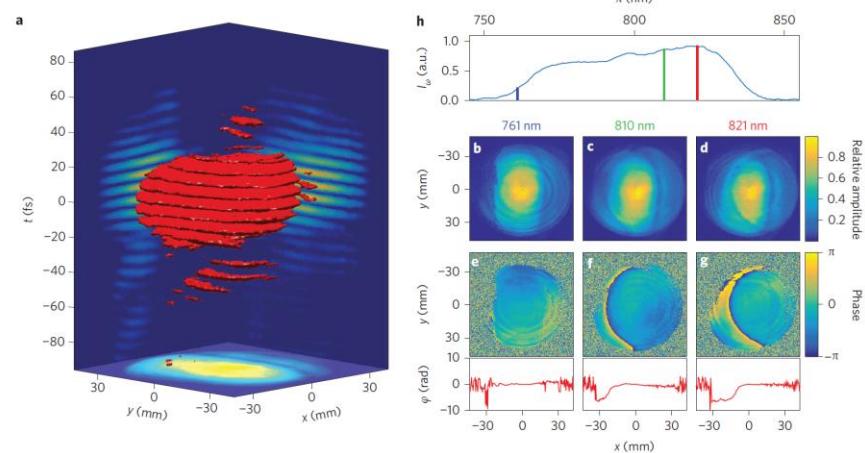


Phase deviations decrease peak field amplitude and affect its structure:



E. Panova *et al.* Appl. Sci., 11, 956 (2021)

Broad spectrum (spans over $\omega_1 < \omega_0 < \omega_2$) causes further complications:



G. Pariente *et al.* Nature Photonics 10, 547–553 (2016)

To reduce the costs and overcome limitations (tight focusing of short pulses) we try to use ML:

- infer angles of phase tilts (for three frequencies) and their orientations from intensity distribution at the focus
- suggest optimal/automated tuning of adaptive optics