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Problems:
 simulated results can differ
 and in an unknown way!

Methods:
 develop tolerance to differences
 extend simulator
 transfer learning

Experiment Simulator
(model)

Results

supervised 
learning

unknown known

Parameters

ML-based diagnostics:

training
results #1
unknown known

results #1
unknown known

results #1
unknown known

results #1
unknown known

results #1
unknown known

results #1
unknown known

result #1
unknown known



The layout of an inverse problem with latent parameters 
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parameters to be 
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𝑥
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Problem: Infer 𝜃 from experimental data

Approaches and difficulties:

1. Approximate Bayesian Computation (ABC): large dimensionality of 𝑥 and 𝑧 make the 
likelihood function intractable (requires integration over all possible outcomes)

2. ML: explanation and reliability; irreversibility due to probabilistic or/and stochastic 
nature of the process; difference between experiment and simulation

ABC: for each 𝑥𝑒: 𝑧𝑖 , 𝜃𝑖 ∼ 𝜋 𝑧, 𝜃 , simulate 𝑥𝑖 𝑧𝑖 , 𝜃𝑖 , 

summary statistics 𝑠(𝑥), accept if 𝐾 𝑠 𝑥𝑖 , 𝑠 𝑥𝑒 < ℎ.

ML



The overview of the activity in terms of ML

Incremental improvements:

 Achieve narrower distribution of errors

 Quantify upper limits for error distribution

 Identify reliable cutoffs

Game-changing improvements:

 Generalizability (simulations → experiment)

 Overcoming irreversibility (detect, explain)

 Reliability (retrieve sufficient summary 
statistics; identify indicative features)

Methodology:

1. Identify ML models tolerant to noise (varied by binning strategy): use noise to enhance generalizability.  

2. Transfer learning: (1) pre-train using simplified analytical models (uncostly data) to accentuate 
indicative features; (2) generalize using ab-initio simulations (cheap data); (3) fine-tune using actual 
experiment (expensive data).

3. Improve ML model invariance by using simulation-based generative (composabale) model for training.
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Problem #1: peak field determination in experiments on SFQED
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QED predictions

Problem: determine peak laser 
intensity achieved.

Motivation: experimental tests 
of strong-field QED require 
strong fields of known 
amplitude.



Problem 1: results
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 Non-optimal binning can crucially 
deteriorate the performance of 
SVM and GBT, and, to a less extent, 
FCNN and CNN.

 PCA (linear) can reduce training 
time at the cost of minor accuracy 
deterioration, but doesn’t provide 
higher accuracy overall. 

Y. Rodimkov et al. ML-Based Analysis of 
Particle Distributions in High-Intensity Laser 
Experiments: Role of Binning Strategy, 
Entropy, 23 (1), 21 (2020)



Problem #2: problem statement

θ

Process: An intense few-cycle laser pulse with some carrier envelope phase (CEP) 
impinges on an overdense plasma target at some incidence angle and causes the 
generation of secondary radiation. 

Problem: infer CEP, pre-plasma scale length and angle of incidence from the 
spectrum of secondary emission (the only routinely measurable data).

Spectral interferometry (designed for 2-3 cycle pulses, known parameters):

Goals:

 use ML to learn more general features 
(reconstruct more parameters)

 apply transfer learning to reach applicability for experimental data
RES (∼1 ms per simulation), PIC (∼ 1 min, ∼ 105 cases), experiment (∼ 103 cases)

 determine (highlight?) indicative features
Gonoskov et al., Sci. Rep. 9 (1), 1-15 (2019)

RES model: Gonoskov, Phys. Plasmas (2018)

D. Kormin et al. Nat. Comm. 9, 4992 (2018)



Problem #2: results, FCNN trained with PIC simulations
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Problem #2: tolerance to noise

Accuracy measures:

Y. Rodimkov et al. Sensors 21 (21), 6982 (2021)
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Problem #3: problem statement
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Broad spectrum (spans over 𝝎𝟏 < 𝝎𝟎 < 𝝎𝟐) causes further complications:

Phase deviations decrease peak field 
amplitude and affect its structure:

E. Panova et al. Appl. Sci., 11, 956 (2021)

G. Pariente et al. Nature Photonics 10, 547–553 (2016)

To reduce the costs and overcome limitations (tight focusing of short pulses) we try to use ML:
 infer angles of phase tills (for three frequencies) and their orientations from intensity distribution at the focus
 suggest optimal/automated tuning of adaptive optics  


