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Optimization of high-intensity laser-solid interactions using 
gaussian process regression.

A Bayesian optimizer (BO) using Gaussian processes regression (GPR)
provides an efficient way to map a multi-dimensional parameter space
focusing on regions of parameter space with desirable properties.
Unlike alternative methods of optimization such as genetic algorithms,
the BO incorporates all data into the construction of the parameter
space model and provides a record of uncertainties.

Plots to the right demonstrate how a model (pink line) is built to
represent the parameter space (blue dashed line) from discrete data
points (red) and how the expectation value (blue solid line) guides the
data acquisition to efficiently map the maxima.

Bayesian Optimization:

Automated high-repetition rate laser-solid experiment @ GEMINI TA2, CLF:

Summary: 
• A Bayesian optimization based on Gaussian process regression was implemented within a

high-repetition rate, high-intensity laser-solid experiment to tune the experimental
parameters towards desirable outputs for the first time.

• Optimizations tuned laser wavefront, temporal pulse shape and target position, with on-
shot measured target position fed back into the optimization.

• Future developments will look to improve the model performance in sharply varying
parameters space and incorporate more powerful adjustor ‘knobs’.

We incorporated control and online feedback through a BO into a high-
intensity laser solid interaction at 5 Hz. A schematic of the system (right)
highlights the automated hardware and online diagnostics that were utilized for
automated optimization of experimental outputs.

The importance of providing the optimization with 
accurate measurements:

Dealing with model collapse to a diagnostic floor and noisy signal:

A 5D parameter optimization of laser wavefront
and target position, starting from manually
optimized focus, showed a > 2x gain in maximum
proton energy measured by the time-of-flight
diodes.
Plot below illustrates measured fitness for
consecutive bursts and predicted optimum
(model).

Determining the key interaction drivers through multi-dimensional optimization:

Targets were either a 
tape-drive with positional 
stability < 5 um,  or 
micron-scale liquid sheet.  
Target position was 
diagnosed on-shot using 
plasma self-emission.

The pair plots demonstrate the algorithm
explored the parameter space and
highlights the dominant effect of target
position on the fitness value.

Slices of 
parameter space 
mapped with 
grid scans 
provide valuable 
insight (left:
target position 
vs. astigmatism) 
but are 
inefficient for 
multi-
dimensional 
parameter 
space. 

Incorporating the 
measured target 
position into the 
optimization after 
data collection

Initial optimizations were performed using the target position
readout for target z. For these the algorithm struggled to
accept “good data” and incorporate it into the model (see
example below). Here, the optimization over the same 2D
parameter space failed to finding the brightest electron signal.
This was greatly improved by incorporating the measured
target position.

Optimization of electron flux in 
mapped 2D parameter space

(Left) Measured 
fitness for consecutive 
bursts with predicted 
optimum (red) with 
final value marked by 
orange star on 2D 
map above.

(Left) Predicted model 
optimum (red) 
significantly closer to 
mapped optimum 
marked by black star 
on 2D map above.

For diagnostics with threshold behavior (i.e.
measuring the maximum energy of a
spectrometer at the low signal-to-noise
threshold) obtaining the measurement error
from the standard deviation of
measurements will not represent the true
error of the measurement. As shown (right)
this can result in the GPR model over-
trusting these low points and ignoring the
measurements that return non-zero values
due to their relatively high errors. This can
be fixed by including the errors due to the
finite sensitivity of the diagnostic.


