
BELLA Center Controls System

1

Anthony Gonsalves

Lawrence Berkeley National Laboratory

LPA workshop on control systems and

machine learning

January 24th 2022

“What are the primary requirements of the future

robust experimental control system?”

Overview

2

• Control system requirements for the user and developer

• Design of the BELLA Center control system - GEECS

(Generalized experiment and equipment control system)

• GEECS user experience

• Integration of ML into GEECS

• The future of controls at the BELLA center

BELLA Center houses multiple LPA facilities, each requiring a flexible
& distributed control system

3

BELLA-PW

40 Joule in 30fs (1 PW)

GeV acceleration, Staging

BELLA-HTT

3 Joule in 30fs (100 TW)

Mono-chromatic gamma rays

BELLA-HTU

3 Joule in 30fs (100 TW)

X-ray laser

BELLA-iP2 at BELLA-PW

40 Joule in 30fs (1 PW)

Proton & ion acceleration

Example scale of controls: BELLA-PW
~90 computers
~300 devices
~60 cameras

>1000 process variables
≦1Tb/day data saved (1Hz)

BELLA-kHz

Few mJ in 5fs (TW)

MeV acceleration

Examples of what needs to be controlled

Laser (alignment, energy…)

Targets (position, density…)

Diagnostics (plasma, electron beam…)

Key control system user features required at the BELLA Center

4

• Control and acquire data from all systems (e.g., laser with associated cameras,

motors, etc)

• Remote “real-time” view, analysis and control from arbitrary number of locations

• Continuously log certain parameters (e.g., temperature, laser energy)

• Perform experiments by scanning variables and saving the synchronized data a

standard way, including “recipes”

• Fire laser pulse on demand

• Repetition rate up to 10Hz (this one is now changing)

• Alarm system

• Load/Save experiment configurations

• Fully automated single click startup and shutdown

• Full system deployment, including devices, GUIs, experiment configurations etc

with no programming knowledge (we have no software engineer)

5

System must also be efficient for the developer

• Based on standard principles

• ANSI/IEEE-1471-2000 (IEEE-2000a, “IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems”) as described in Documenting Software Architectures: Views and Beyond
by Paul Clements et al, Addison Wesley 2002.

• Efficient code reuse

• Hardware abstraction

• Object-oriented

• Easy to extend

• Open source

• At minimum, support data access and control to all common programming languages

• For us, developer time = scientist time. Less time spent on CS the better

• Creating an average device driver should take a few hours not days

In order to meet user and developer requirements with minimal
support, we developed GEECS

6

• Originally, controls at the BELLA center were monolithic

o GUI, hardware communication, data processing all in single, large programs with ad-hoc
communication with a few devices on other computers. Different beamlines had their own unique
controls systems with little code reuse. Classic examples of terrible LabVIEW code (but worked)

• In Jan 2011, with BELLA PW on the horizon, we decided we needed a distributed
and modular control system (CS) that could be used for any beamline/experiment

o Considered using EPICS, but development time for new features and drivers seemed long (no
experience in group). With no software engineering support, and deep LabVIEW experience
among the scientists, decided to build our own CS

• With 2 people 2hrs a week, the core of the control system was built in about 6 months

o Temporarily had support from software engineer: developed logger / alarm system, expanded
supported device list, and created GUIs for configuring devices and experiments

o By the end of 2011, we had the control system up and running on TREX (for staging experiments)
and the BELLA PW

Overview

7

• Control system requirements for the user and developer

• Design of the BELLA Center control system - GEECS

(Generalized experiment and equipment control system)

• GEECS user experience

• Integration of ML into GEECS

• The future of controls at the BELLA center

GEECS framework is modular, flexible, & uses hardware abstraction
to minimize coding effort

8

Computer
B

Common
exe

Publishe
r

Device
Specific

Computer A

DB File Server

Common
exe

Publishe
r

Device
Specific

Common
exe

Publishe
r

Device
Specific

Common
exe

D. Coms

Device
Specific

Computer
C

Common
exe

D. Coms

Device
Specific

Computer D

Common
exe

Publisher

Device
Specific

Common
exe

D. Coms

Device
Specific

Master
Control

I. Coms

GUIs

I. Coms

PLOTTERS
LOGGERS

I. Coms

Configuration Data

Measurement Data

Control
Commands

Analysis

Measurement Data Storage
(scans with synchronization)

DB

Measurement Data Storage
(continuous logging)

Configuration Data
Storage

DB editor

Analysis
Server

Code reuse in device drivers

(e.g. camera):
Base device class

Camera class

Thorlabs Camera class
Basler Camera class

Single executable for all

devices (Base device class),
plugin architecture calls device

specific code

Code reuse in GUIs:

All GUIs have same
communication layer

Overview

9

• Control system requirements for the user and developer

• Design of the BELLA Center control system - GEECS

(Generalized experiment and equipment control system)

• GEECS user experience

• Integration of ML into GEECS

• The future of controls at the BELLA center

Adding, configuring devices and experiments done with simple GUIs

10

Add device

Training videos and

documentation are on

the web

Configure experimentConfigure Device

Simple graphical interfaces provided for immediate access to device
control and viewing

11

Other general GUIs include
oscilloscopes, FROGs,
hexapods, digital delay

generators, filter wheels…

General GUI for spectrometersGeneral GUI for all cameras

General GUI for all devices

Immediately control any

device

Custom GUIs communicating with many devices are simple and quick
to create

12

User’s “code” GUI

Control & viewing without “programming” in minutes

Selected variables are continuously logged

13

Plotters access database & show trends over arbitrary
time scales. Alarming also implemented.

Logger continuously
gathers data from devices

and writes to database

General GUI provides many of the required user features for starting,
configuring, and performing experiments

14

Start/stop all or

individual devices

Load/Save partial

or complete
configurations

Start/stop individual

GUI or complete
pre-configured set

for experiment

Remote computer

control

Online plots Select Device

Simple or “recipe”

scans

Select variable

Set variable

Variable limits

from database

• Can start everything (all

devices/GUIs) for a given

experiment with a few clicks

Users write analysis codes but GEECS also has standard tools

15

• Post-scan analysis

• GEECS plotter visualizes data

• Plotting

• Fitting

• Comparison with simulation

• Scripting & report generation

• Can call Python functions

• GEECS analyzer analyzes data

• Images

• Spectra

• DAQ

• Etc

Overview

16

• Control system requirements for the user and developer

• Design of the BELLA Center control system - GEECS

(Generalized experiment and equipment control system)

• GEECS user experience

• Integration of ML into GEECS

• The future of controls at the BELLA center

GEECS augmented with Ocelot framework. Initial optimization tests

successful

17

• Large, robust community is developing ML/AI tools and techniques, e.g.

tensorflow, pytorch etc. which we need to leverage

• Recently interfaced Ocelot generic optimizer1 to GEECS enabling a wide range

of optimization schemes (simplex, extremum seeking, Bayesian, etc.)

(a) Measured spectral shift of drive laser interacting with gas jet as a function of separation distance of the compressor gratings (i.e. pulse

compression). (b-c) Online maximization of spectral shifting using Ocelot framework using Bayesian optimization with Gaussian process.

(b) shows the history of positions explored, and (c) shows the value of the objective function at those positions.

1Duris et al., “Bayesian

Optimization of a Free-electron

laser,” PRL 124, 124801 (2020).

C
o

u
rt

e
s
y
 S

.
B

a
rb

e
r

Straightforward integration with Dragonfly allows for automated
capillary alignment

18

Task: Align capillary to laser pulse.

https://dragonfly-opt.readthedocs.io/en/master/

Bayesian Optimization Algorithm

Hexapod

Cameras
Laser Beam

Capillary mounted

onto Hexapod

Rms pointing fluct. = ~ 5 - 10 um

Mean centroid dist. <2 um

Conclusions:

ML based alignment

similar or better than

manual alignment.

Alignment time ~ 20 min.

Target

Courtesy M. Turner

GEECS devices controlled by Python ML code can improve corrections of

laser pointing by taking into account hysteresis in motors

19

• Mirror needs to be continuously adjusted in order to maintain

laser pointing on target

• However, picomotors have hysteresis, which limit accuracy and

requires multiple moves.

• ML techniques (LSTM neural network) can predict the hysteresis
and improve corrections of pointing

White areas: correcting pointing with a linear model of the motor response

Blue areas: correcting pointing with an ML model of the motor response

Courtesy R. Lehe

Overview

20

• Control system requirements for the user and developer

• Design of the BELLA Center control system - GEECS

(Generalized experiment and equipment control system)

• GEECS user experience

• Integration of ML into GEECS

• The future of controls at the BELLA center

• Low maintenance, scalable (modular/flexible) LabVIEW distributed control system

allowed us to run efficiently with minimal software engineering support for >10 yrs

o Installed on many beamlines (about a dozen, including one facility outside BELLA)

• For the future at BELLA, repetition rate increase needed (kHz)

o Currently when we need kHz rates, we use standalone codes

o GEECS was designed to display every shot every diagnostic in arbitrary number of locations.

• Need modifications to latest shot only & improvements to communication layer. But at some

point (maybe we are here already?), EPICS/TANGO/Other CS could provide a simple out of

the box solution with close to no effort

o More data to store

• Larger file servers (leverage larger facilities e.g. NERSC)

• Data reduction

Conclusion and the future

21

