Highly Performant, Deep Neural Networks with sub-microsecond latency on FPGAs for Trigger Applications

Christian Schmitt (JGU Mainz)

Precision Physics, Fundamental Interactions and Structure of Matter

Bundesministerium für Bildung und Forschung

Motivation

- Deep neural networks are widely used for reconstruction and analyses but only few examples exist yet within low-level hardware triggers
 - Tight constraints on data rate and latency
 - E.g. ATLAS L1 Trigger for Run-3 (FPGA based):
 - 40 MHz incoming data rate,
 - <2.5µs overall latency, i.e. **O(100ns)** for inference of DNN
- Our approach:
 - Hardware centric, bottom-up approach for implementation of general neural networks on FPGAs
 - Focus on LHC like conditions: 40MHz data rate and latency of O(10)-O(100) ns

FPGAs ("Field Programmable Gate Array")

- Programmable look-up tables (LUT, 1.2M)
 - Combinational logic
- Registers (FF, 2.4M)
 - Bit storage
- Programmable routing
 - LUT/register wiring
- Specialized units
 - DSPs (6840 'simple ALUs', MULT w/ subsequent ADD)
 - Block memory (~10MB)

Image: https://medium.com/@ckyrkou/what-are-fpgas-c9121ac2a7ae

Lots of IO, computation; predictable, ns-scale latencies

3 /12

Xilinx US+ XCVU9P-2

Development aims and arithmetics/performance

- Focus on efficient resource usage
- No in-depth understanding of implementation required by user (similar to hls4ml); easy translation from trained model to VHDL
- Arithmetics implementation
 - Fixed point with configurable precision (layer-wise)
 - <16 bits sufficient for DNNs, easier to implement
- Inference performance limit (theoretical)
 - DSP for multiply-accumulate (MAC) operations
 - 1 MAC/cycle per DSP
 - Xilinx US+ XCVU9P-2 \Rightarrow ~5 TMAC/s
 - LHC data frequency (40 MHz): ~100k ~150k MAC/event
- Support at least the following DNN layers
 - 2D convolution (image recognition), fully connected, maxpooling

- Exploit: every neuron needs every input
 - Implement neuron processing in DSP pipelines
 - Inputs completely reusable
 - Only weight loading/fetching/multiplexing
 - Simple design with easy parallelisation

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

IGU

- Exploit: every neuron needs every input
 - Implement neuron processing in DSP pipelines
 - Inputs completely reusable
 - Only weight loading/fetching/multiplexing
 - Simple design with easy parallelisation

- Exploit: every neuron needs every input
 - Implement neuron processing in DSP pipelines
 - Inputs completely reusable
 - Only weight loading/fetching/multiplexing
 - Simple design with easy parallelisation

- Exploit: every neuron needs every input
 - Implement neuron processing in DSP pipelines
 - Inputs completely reusable
 - Only weight loading/fetching/multiplexing
 - Simple design with easy parallelisation

2D Convolution Layer

- 2D convolution way more difficult to implement
 - Naive implementation would need large amount of resources
 for multiplexing of inputs/weights
- Optimised approach
 - Use "slices" (channel x width) and "rows" (fixed height and channel) as basic quantities
 - "Row units" yield good compromise of computational efficiency and input/weight reuse

Implementation results: resource usage

Xilinx US+ XCVU9P-2 (6840 DSPs, 2.4M FF, 1.2M LUT)

- Main limitation is number of DSPs
 - Fully-connected: $N_{\text{DSP}} \approx N_I \cdot N_N \cdot \frac{f_{Data}}{f_{FPGA}}$
 - 2D-Convolution:

$$N_{\rm DSP} \approx V_I \cdot V_K \cdot \frac{f_{Data}}{f_{FPGA}}$$

Implementation results: operating frequency

- Maximum layer frequency depends on resource usage (signal propagation, routing complexity, ...)
 - Fully-connected and pooling layers are less complex -> higher frequency
- Can run at >=400 MHz even for layers with 10k operations

ErUM-Data

- Python based toolkit for **automated network creation**
- Starting point: trained Keras network
 - Supported layers: Fully-connected, 2D-Conv, Maxpool
 - Activation: relu (best for FPGA)
- Additional design parameters can be specified:
 - Precision (integer and fractional bits)
 - Pipelining and routing behaviour
- Output:
 - VHDL code of the corresponding network

Results: timing closure

Relative Timing Closure Depending on Network Multiplication Count

 Successful network implementations up to 15k multiplications for a data frequency of 40 MHz (e.g. LHC)

Results: overall latency

- Latency depends on achievable frequency
- Full network output can be available in ~100ns

 $C = \frac{f_{FPGA}}{f_{Data}}$

Summary & Lessons Learned

- Full networks consisting of 2D-Conv, Maxpooling and Fully-connected layers implemented on FPGAs
 - Can cope with data frequencies of 40 MHz, full network latencies of O(100ns)
 - Publication: <u>2019 JINST14 P09014</u>
- Lessons learned:
 - Modern FPGAs are not monolithic
 - Potential bottleneck depending on inputs and network architecture (only ~17k inter-chip connections)

- **Data input distributed over all SLRs**, especially problematic for larger convolution layers at the start of the network
 - **Routing** via design tool (Xilinx Vivado) **becomes challenging** once resource usage increases (larger networks)
- Head hunters love Students with ML and FPGA knowledge...

Backup

Example network architectures

	Architecture (see text)	MACs	$T_{\rm P}$	WNS	latency	N _{LUT}	$N_{ m FF}$
Input: 14x14	(layer information)	(DSP eff.)	(ns)	(ns)	(cycles)	$N_{\rm DSP}$	$N_{\rm BRAM}$
	Arc _{A1} ($C = 16$) (input (7 × 7))	334	1.562	-	56	1793	3571
Naming	$(2 \times 2 \times 1) - (2 \times 2) - 10$	(0.485)				43	10.5
	$\operatorname{Arc}_{A2}(C = 14)$	1089	1.786	-	60	5060	9706
. •	$(2 \times 2 \times 1) - (2 \times 2) - 7$	(0.630)				108	17
convention:	$\operatorname{Arc}_{A3}(C = 14) (\operatorname{input}(7 \times 7))$	1024	1.786	-	57	3051	5654
	$(2 \times 2 \times 3) - (2 \times 2) - 16)$	(0.620)				118	19
• 2D-Conv:	$\operatorname{Arc}_{A4}(C = 13)$	3188	1.923	-	63	8689	16219
	$(2 \times 2 \times 2) - (2 \times 2) - 17)$	(0.774)				317	54.5
• $(H_K x W_K x)$	$\operatorname{Arc}_{A5}(C = 13)$	7854	1.923	-	68	15567	28450
	$(2 \times 2 \times 4) \text{-} (2 \times 2) \text{-} 25$	(0.967)				625	93.5
N _K)	$\operatorname{Arc}_{A6}(C=11)$	12884	2.273	-	68	20962	34711
	$(3 \times 3 \times 4) - (2 \times 2) - 50$	(0.894)				1310	166
	$\operatorname{Arc}_{B1}(C = 12)$	8858	2.083	-	76	18587	32886
• Maxpool:	$(2 \times 2 \times 4) - (2 \times 2) - (2 \times 2 \times 4) - 25$	(0.812)				909	99.5
1	$Arc_{B1} (C = 16)$	8858	2.083	-	87	17205	32760
• $(H_{\rm D} \times W_{\rm D})$	$(2 \times 2 \times 4) - (2 \times 2) - (2 \times 2 \times 4) - 25$	(0.812)				713	71.5
	$Arc_{B3} (C = 11)$	11362	2.273	-	79	28383	47140
	$(2 \times 2 \times 6) - (2 \times 2) - (2 \times 2 \times 4) - 25$	(0.792)				1305	102.5
Dense	$Arc_{B2} (C = 10)$	15610	2.500	-0.134	84	40998	69333
N T	$(3 \times 3 \times 6) - (2 \times 2) - (3 \times 3 \times 6) - 25$	(0.855)				1825	68
• N _{Neuron}	$\operatorname{Arc}_{B3}(C = 16)$	11362	1.562	-0.014	93	26006	45065
	$(2 \times 2 \times 6) - (2 \times 2) - (2 \times 2 \times 4) - 25$	(0.825)				861	71.5

Network creation toolkit: example usage

```
In [ ]: # assume all modules already imported
        model=load model(keras model)
        #define extra parameters for the layers
        lrExtraData = []
        for l in model.layers:
            lrExtraData.append((cycles, parallelization, precBitsV,
                                precBitsW, precBitsV, truncMode Dense, kwargs))
        # Creating the network object
        network = Network(name net, model, name din, name dout, name pkg, lrExtraData,
                          input scheme, name sim, verb = False)
        # Show network delay information
        print("latencies:", network.computeNetDelay(verb = False))
        ## Creating the network top VHDL code
        code net top = network.createNetTopCode()
        writeFile(code net top, file net top)
        # Creating the network package VHDL code
        code net pkg = network.createNetPkgCode()
        writeFile(code net pkg, file net pkg)
        # Creating the network sim VHDL code
        code net sim = network.createNetSimCode(iniFiles,
                                                file stim, file res
        writeFile(code net sim, file net sim)
        # Creating the init files
        # (control and weight data for Conv and Dense layers)
        network.createSimFiles(iniFiles)
```


Fully-connected: Implementation on the FPGA

 Use multiple but shorter pipelines with additional adder in parallel ("neuron unit") to reduce latency

2D-Convolution: Firmware implementation

Maxpooling layer

- no way of saving resources or input accesses
- no need to use complicated row allocation patterns
- For simplicity reasons, the concept of output rows and row units was still maintained

Activation function

- RELU activation:
 - Resource usage: B/2 LUTs or (B-1) FFs for B bit values
- Any other activation could be implemented using valuederivative lookup tables
 - Example for tanh and sigmoid with 16 sample points:

Network MACs assuming LHC Data Rate of 40MHz

