

Bundesministerium für Bildung und Forschung

GEFÖRDERT VON

Deep Learning for the Pierre Auger Observatory and its Upgrade

Martin Erdmann, Jonas Glombitza, Niklas Langner, Dominik Steinberg

III. Physikalisches Institut A **RWTH Aachen University**

Air Shower Properties

Shower Image Credit: https://www-zeuthen.desy.de/~jknapp/fs/proton-showers.html

ErUM Data Collaboration Meeting February 2022

Quality assurance criteria

- 1. Defining a meaningful **challenge**
- 2. Development of a dedicated **model**
 - Exploit data symmetries
 - Careful Preparation of **data**, e.g., no extrapolation
- 3. Verification of the **training**
 - Ensure adequate model configuration
 - Test set (check for overtraining)
- 4. Validation on simulations
 - Verification on various simulations
 - Systematic uncertainties
- 5. Validation on Data
 - Cross calibration
 - Systematic uncertainties
- 6. Performance measures
 - physical and model limits
- 7. Understanding the model and data
 - Input relevance

Training

Limits

Challenge: X_{max} reconstruction at the Pierre Auger Observatory

Pierre Auger Observatory

- Fluorescence Detector (15% duty cycle)
 - direct and precise observation of shower maximum X_{max}
- Surface Detector (~100% duty cycle)
- reconstruction of shower maximum using deep learning
- verification using hybrid measurements

ErUM-Data

Measurement of $\sigma(X_{\max})$

- sensitive to composition mix
- reconstructed using FD
- fluctuations 20-60 g/cm²
- uncertainty statistically dominated

ChallengeModel & DataTrainingValidation MCValidation on DataInterpretationLimits

Data preparation and model design

Network for X_{max} reconstruction

- signals vary on exponential scale
 - apply logarithmic transformation
- normalize timing measurements
- exploit data symmetries

Bidirectional LSTMs analyze signal traces

network shared over stations

Hexagonal convolution

- exploits hexagonal footprint
 - hexagonal filter
 - translational invariance
 - rotational invariance

III. Physikalisches

ErUM-Data

Challenge	Model & Data	Training	Validation MC	Validation on Data	Interpretation	Limits

Validation on simulation: additional interaction models

Simulation: phenomenological modeling of air showers \rightarrow various interaction models DNN trained using EPOS-LHC model Evaluated on simulations with different hadronic interaction models 3020QGSJetII-0420UGSJETII-0420UGSJET

- QGSJET-II.04
- SIBYLL2.3c
- similar resolution
 - interaction model independent
- bias depends on model
 - absolute scale shifted (negative)
 - X_{max} scale of the DNN depends on interaction model

15.2.2022

Challenge

III. Physikalisches

- Calibrate method using hybrid data (SD measurement and FD observation)
 - calibrate for -30 g/cm² offset

Model & Data

- shortcomings of (detector-)/simulation
- validate resolution

Validation on data: Auger Hybrid Measurements

simulations

Interpretation

Validation MC

C Validat

SIBYLL2.3

ErUM-Data

Validation on Data

Limits

Challenge	Model & Data	Training	Validation MC	Validation on Data	Interpretation	Limits

Validation on data: comparison to traditional methods

Estimate systematic uncertainties

Estimation of systematic uncertainties (using data and simulation)

highly dependent on analysis

- method calibrated using the FD
 - sys. uncertainty 10 15 g/cm²
- uncertainty similar to delta method

- no calibration using FD performed
 - sys. uncertainty 5 10 g/cm²
- 1st measurement beyond 80 EeV
- can provide new insights into cosmic-ray composition

Challenge	Model & Data	Training	Validation MC	Validation on Data	Interpretation	Limits

Expectations of network behavior

Image Credit: https://arxiv.org/abs/1604.03637

Image Credit: https://www.sciencedirect.com/science/article/abs/pii/S0927650517300105

 N_{μ} increases with $A \Rightarrow$ Stronger **rising edge** should **decrease** network output (heavier particle, smaller X_{\max}) Stronger **falling edge** should **increase** network output (lighter particle, larger X_{\max})

Challenge	Model & Data	Training	Validation MC	Validation on Data	Interpretation	Limits
	•	_				

ϵ -LRP Examples with Respect to X_{max} -Prediction

Challenge	Model & Data	Training	Validation MC	Validation on Data	Interpretation	Limits
-----------	--------------	----------	---------------	--------------------	----------------	--------

AugerPrime: Surface Scintillation Detector upgrade

III. Physikalisches

- Pierre Auger Observatory is currently being upgraded
- New Surface Scintillation Detector (SSD): additional time trace
- Improved sensitivity to cosmic-ray composition expected (better seperation between muon and electromagnetic components)
- Electronics upgrade: sampling rate three times higher

15.2.2022

Limits of physics observables

Composition merit factor for discriminating between proton and iron

ErUM-Data

Composition merit factor increase by combined measurement

Train DNN to form its own observable, with objective to maximize the merit factor

 \rightarrow Useful to assess performance limits on simulations but cannot be verified on data

- WCD measurements alone already able to surpass merit factor of X_{max}
- Clear improvement by SSD upgrade
- Combined WCD and SSD measurements have a large potential for improved mass separation
- ⇒ Challenge: Define a suitable (motivated by physics) observable that can harvest this potential

Summary

Deep Learning at the Surface Detector of the Pierre Auger Observatory

- extract mass-sensitive information, exploits symmetry of data (RNN + CNN)
- event-wise reconstruction of *X*_{max}
 - performance validated on simulations and data (hybrid events)
 - extensive study on systematic uncertainties
 - expected uncertainties for X_{max} , $\sigma(X_{max})$ measurements are small
 - raise in statistics of a factor 10 \rightarrow new insights into UHECR composition
- First steps towards DNN introspection
- AugerPrime Upgrade will enable additional insights and cross checks!
 - development of dedicated architecture
 - increased performance at the event level expected
 - challenge: find powerful observable that can be validated by data

Challenge	Model & Data	Training	Validation MC	Validation on Data	Interpretation	Limits

Backup

ϵ-Layer-Wise Relevance Propagation

$$\epsilon\text{-LRP: } R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'} z_{i'j} + \epsilon \cdot \operatorname{sign}(\sum_{i'} z_{i'j})} R_j^{(l+1)}$$

Image Credit: <u>http://iphome.hhi.de/samek/pdf/BinICISA16.pdf</u>

Layer-Wise Relevance Propagation

• Deep neural network: feed-forward graph of neurons:

•
$$x_j^{(l+1)} = g\left(\sum_i x_i^{(l)} w_{ij}^{(l,l+1)} + b_j^{(l+1)}\right)$$

• Use the networks output f(x) and a backward pass of same graph to calculate relevance scores

•
$$R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'} z_{i'j}} R_j^{(l+1)}$$
 with $z_{ij} = x_i^{(l)} w_{ij}^{(l,l+1)}$

- *i*: index of neuron at layer *l*; Σ_j sums over al upper-layer neutrons to which neuron *i* contributes
- Conservation property:

•
$$\sum_p R_p^{(1)} = f(\mathbf{x})$$

Layer-Wise Relevance Propagation

• Standard definition:

•
$$R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'} z_{i'j}} R_j^{(l+1)}$$

• $z_{ij} = x_i^{(l)} w_{ij}^{(l,l+1)}$

- ϵ -LRP (better numerical properties) • $R_i^{(l)} = \sum_j \frac{z_{ij}}{\sum_{i'} z_{i'j} + \epsilon \cdot \operatorname{sign}(\sum_{i'} z_{i'j})} R_j^{(l+1)}$
- β -LRP (conserving relevance)

•
$$R_{i}^{(l)} = \sum_{j} \left(\alpha \cdot \frac{z_{ij}^{+}}{\sum_{i'} z_{i'j}^{+}} + \beta \cdot \frac{z_{ij}^{-}}{\sum_{i'} z_{i'j}^{-}} \right) R_{j}^{(l+1)}$$

•
$$z_{ij}^{+} + z_{ij}^{-} = z_{ij} \text{ (positive and negative part)}$$

•
$$\alpha + \beta = 1, \alpha > 0, \beta \le 0$$

