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DNN Air Shower Properties

Shower Image Credit: https://www-zeuthen.desy.de/~jknapp/fs/proton-showers.html

https://www-zeuthen.desy.de/~jknapp/fs/proton-showers.html
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Quality assurance criteria
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1. Defining a meaningful challenge
2. Development of a dedicated model

• Exploit data symmetries
• Careful Preparation of data, e.g., no extrapolation

3. Verification of the training
• Ensure adequate model configuration
• Test set (check for overtraining)

4. Validation on simulations
• Verification on various simulations
• Systematic uncertainties

5. Validation on Data
• Cross calibration
• Systematic uncertainties

6. Performance measures
• physical and model limits

7. Understanding the model and data
• Input relevance
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Challenge: 𝑋𝐦𝐚𝐱 reconstruction at the Pierre Auger Observatory
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Measurement of 𝝈 𝑿𝐦𝐚𝐱

• sensitive to composition mix
• reconstructed using FD
• fluctuations 20-60 g/cm²
• uncertainty statistically dominated

Pierre Auger Observatory

• Fluorescence Detector (15% duty cycle)

• direct and precise observation of 
shower maximum 𝑋max

• Surface Detector (∼100% duty cycle)

• reconstruction of shower maximum 
using deep learning

• verification using hybrid measurements

𝑋max
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Network for 𝑋max reconstruction

• signals vary on exponential scale

• apply logarithmic transformation

• normalize timing measurements

• exploit data symmetries

Data preparation and model design
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Bidirectional LSTMs analyze signal traces

• network shared over stations
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Network training and basic verification
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• features ∼1.5 million parameters

• train with augmented simulation data

– mimic various detector states:
broken stations/PMTs, saturation

– training on GPU ∼ 1-2 days
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Check bias and variance/resolution

bias resolution
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Validation on simulation: additional interaction models
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QGSJetII-04
trained on EPOS-

LHC

Sibyll2.3c
trained on EPOS-

LHC

Simulation: phenomenological modeling of air showers → various interaction models

DNN trained using EPOS-LHC model
Evaluated on simulations with different 

hadronic interaction models

• QGSJET-II.04

• SIBYLL2.3c

• similar resolution

• interaction model independent

• bias depends on model

• absolute scale shifted (negative)

• 𝑋max scale of the DNN

depends on interaction model
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Validation on data: Auger Hybrid Measurements
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Calibrate method using hybrid data (SD measurement and FD observation)

• calibrate for -30 g/cm² offset

• shortcomings of (detector-)/simulation

• validate resolution

promising results to measure UHECR 

composition using SD statistics

simulations

SIBYLL2.3

Hybrid data Hybrid dataHybrid data

bias depends 

on hadr. model

agreement with 

simulations
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Validation on data: comparison to traditional methods
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A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D 96, 122003, 2017
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improvement of DNN

by almost 40% (correlation)

enable to measure 𝜎 𝑋max

Delta Method

determines composition

via rise time of signal

A. Aab et al. (Pierre Auger Collaboration), JINST 16 P07019 (2021)
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Estimate systematic uncertainties
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• method calibrated using the FD

• sys. uncertainty 10 – 15 g/cm²

• uncertainty similar to delta method

• no calibration using FD performed

• sys. uncertainty 5 – 10 g/cm²

• 1st measurement beyond 80 EeV

• can provide new insights into

cosmic-ray composition

Estimation of systematic uncertainties (using data and simulation)

• highly dependent on analysis
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Expectations of network behavior
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Rising edge: Muons Falling edge: Electromagnetic

𝑁𝜇 increases with 𝐴 ⇒ Stronger rising edge should decrease network output (heavier particle, smaller 𝑋max)
Stronger falling edge should increase network output (lighter particle, larger 𝑋max)

Image Credit: https://www.sciencedirect.com/science/article/abs/pii/S0927650517300105Image Credit: https://arxiv.org/abs/1604.03637

https://www.sciencedirect.com/science/article/abs/pii/S0927650517300105
https://arxiv.org/abs/1604.03637


Challenge Model & Data Training Validation MC Validation on Data LimitsInterpretation

𝝐-LRP Examples with Respect to 𝑋max-Prediction
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Traces

𝜖-LRP

x33.4 x52.1 x45.7

x12.3 x1.5 x14.0

x6.7 x1.0 x11.1

Look at 3 × 3 stations
around shower center

How does the input have to be
changed to increase the 𝑋max

output of the network?

+

−
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AugerPrime: Surface Scintillation Detector upgrade

• Pierre Auger Observatory is currently being upgraded

• New Surface Scintillation Detector (SSD): additional time trace

• Improved sensitivity to cosmic-ray composition expected (better seperation between muon and 
electromagnetic components)

• Electronics upgrade: sampling rate three times higher

15.2.2022 12

Incorporate into
network!

WCD

SSD

Image Credit: https://arxiv.org/abs/1905.04472

https://arxiv.org/abs/1905.04472
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Limits of physics observables

Composition merit factor for discriminating between proton and iron
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• merit factor of simulated 𝑋max,MC: ∼ 1.5
• DNN merit factor increases with energy

• above 10 EeV, merit factor = 1.5
• good separation for all interaction models

DNN using only WCD, 
pre-upgrade sampling rate

Pre-upgrade DNN reconstructing 𝑋max already reaches
physical limit of mass separation power (of 𝑋max,MC)

⇒ Another observable is needed to benefit from upgrade



Challenge Model & Data Training Validation MC Validation on Data LimitsInterpretation

Train DNN to form its own observable, with objective to maximize the merit factor

→ Useful to assess performance limits on simulations but cannot be verified on data

Composition merit factor increase by combined measurement
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Preliminary approach: 
Feed WCD and SSD traces
together into one CNN

• WCD measurements alone already able to 
surpass merit factor of 𝑋max

• Clear improvement by SSD upgrade
• Combined WCD and SSD measurements have a 

large potential for improved mass separation

⇒ Challenge: Define a suitable (motivated by 
physics) observable that can
harvest this potential
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Summary

Deep Learning at the Surface Detector of the Pierre Auger Observatory

• extract mass-sensitive information, exploits symmetry of data (RNN + CNN)

• event-wise reconstruction of 𝑋max

• performance validated on simulations and data (hybrid events)

• extensive study on systematic uncertainties

• expected uncertainties for 𝑋max, 𝜎(𝑋max) measurements are small

• raise in statistics of a factor 10 → new insights into UHECR composition

• First steps towards DNN introspection

• AugerPrime Upgrade will enable additional insights and cross checks!

• development of dedicated architecture

• increased performance at the event level expected

• challenge: find powerful observable that can be validated by data
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Backup
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𝝐-Layer-Wise Relevance Propagation
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𝜖-LRP: 𝑅𝑖
𝑙
= σ𝑗

𝑧𝑖𝑗

σ
𝑖′
𝑧𝑖′𝑗+𝜖⋅sign σ

𝑖′
𝑧𝑖′𝑗

𝑅𝑗
𝑙+1

Image Credit: http://iphome.hhi.de/samek/pdf/BinICISA16.pdf

http://iphome.hhi.de/samek/pdf/BinICISA16.pdf
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Layer-Wise Relevance Propagation

• Deep neural network: feed-forward graph of 
neurons:

▪ 𝑥𝑗
(𝑙+1)

= 𝑔 ൰൬σ𝑖 𝑥𝑖
𝑙
𝑤𝑖𝑗

𝑙,𝑙+1
+ 𝑏𝑗

𝑙+1

• Use the networks output 𝑓(𝒙) and a backward pass 
of same graph to calculate relevance scores

▪ 𝑅𝑖
𝑙
= σ𝑗

𝑧𝑖𝑗

σ
𝑖′
𝑧𝑖′𝑗

𝑅𝑗
𝑙+1

with  𝑧𝑖𝑗 = 𝑥𝑖
𝑙
𝑤𝑖𝑗

𝑙,𝑙+1

▪ 𝑖: index of neuron at layer 𝑙; Σ𝑗 sums over al 

upper-layer neutrons to which neuron 𝑖
contributes

▪ Conservation property:

▪ σ𝑝𝑅𝑝
1
= 𝑓(𝒙)
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• Standard definition:

▪ 𝑅𝑖
𝑙
= σ𝑗

𝑧𝑖𝑗

σ
𝑖′
𝑧𝑖′𝑗

𝑅𝑗
𝑙+1

▪ 𝑧𝑖𝑗 = 𝑥𝑖
𝑙
𝑤𝑖𝑗

𝑙,𝑙+1

• 𝜖-LRP (better numerical properties)

▪ 𝑅𝑖
𝑙
= σ𝑗

𝑧𝑖𝑗

σ
𝑖′
𝑧𝑖′𝑗+𝜖⋅sign σ

𝑖′
𝑧𝑖′𝑗

𝑅𝑗
𝑙+1

• 𝛽-LRP (conserving relevance)

▪ 𝑅𝑖
𝑙
= σ𝑗 𝛼 ⋅

𝑧𝑖𝑗
+

σ
𝑖′
𝑧
𝑖′𝑗
+ + 𝛽 ⋅

𝑧𝑖𝑗
−

σ
𝑖′
𝑧
𝑖′𝑗
− 𝑅𝑗

𝑙+1

▪ 𝑧𝑖𝑗
+ + 𝑧𝑖𝑗

− = 𝑧𝑖𝑗 (positive and negative part)

▪ 𝛼 + 𝛽 = 1, 𝛼 > 0, 𝛽 ≤ 0

• Higher 𝜖: Less sensitivity 
to noise, but potential 
dampening

• Higher values for 𝛽: 
Only keep strongest 
regions (more weight on 
inhibitors), but potential 
supression

Layer-Wise Relevance Propagation


