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e Peak luminosity ~ =—Integrated luminosity
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e Fast turn-around times of HEP analyses are driver of scientific insight
e Traditional analyses already O(weeks)
e Data increased in HL-LHC by x20
e [uture analyse must be: Faster & More resource efficient

=» Requires re-thinking of analysis computing!
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e F[ast and efficient analyses can be realised with vectorised computations
e Already used by many analyses

~—Event loop ~  Vectorised ~
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e |oad one event e |oad many events
e Evaluate expressions e Evaluate vectorised expressions
e Store results e Store results
o Repeat o Repeat
\ J y

¢ Problem: Some computations challenging to vectorise!
e E.g. Neutrino reconstruction (next page)
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e Reconstruction of longitudinal neutrino
momentum in e.g. ttH events

e Solved by assuming: E7 = p, 7, W mass = v l
e |Inputs: Lepton, E7 v
e Two branches: ’ \
= Real branch (h=1): Purely analytical :
1,k Pir Py
= Complex branch (h>1): Involves fitting Poa =00, P B 1= ( k )
\ \ ="
~ Optimal benchmark N
e Multiple Inputs (Lepton, MET)
e Different behaviour on event-basis
e Stateful computation: Fitting
. ® Physics result can easily be verified )

=» Vectorise using graph computing model!



5 Think Graphs! -@ | MTERR

Dennis Noll - 14.02.22

~Computing Graph N Example y = f(a(x), b(x)):
e Contents: —
= Nodes = Computations

= Edges = Data flow

® Properties:
= Directed = —»

= Acyclic = no loops

e Two levels of parallelism:
= |nter processing unit:
— Parallel units in directed acyclic graph (e.g. a & b) can run in parallel
= Intra processing unit (SIMD):
— If graph is same for multiple inputs (Nevents)
— Parallel execution over many events
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e Two branches (real and complex)
e Fit of neutrino momentum:
=  Unrolled for-loop with 100 iterations
= Using ADAM optimiser
e (Conditions (choices) guide logical rather than physical flow
= All expressions evaluated
=  Graph is the same for every event
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e Graph implemented with TensorFlow:
= Supports processing on GPU
=  Wrapped in Keras model:
— Portable (saving to/loading from disk)
— Straight forward integration
® Pre-processing:
= Structure of graph must be static
= Requires batching of events in fixed size chunks
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Experimental Setup - Hardware
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e Testing two different hardware scenarios for evaluation

~On-board ~

Pre-processing always on worker node

All computations on one
computing node

Cluster scenarios:

= CPU-only setup

= Each worker has own GPU

~Server ~

L @

Graph evaluations on central GPU
Accessed over network (1Gbit/s)
Using TensorFlow model server
Cluster scenario:

= Not each worker has own GPU
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Experimental Setup - Pre-heating

e Graph need to be built before evaluation

e Takes constant time ©(10s)
e TJesting two scenarios:

~Cold
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~Warm

R R
Setup Workload Workload
| | | |
| 1 | 1
Runtime Runtime
e Setup included in runtime e Setup not included in runtime
e Represents: e Represents:
=  Ad-hoc computation on worker = Cluster with central GPU
J y
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e For typical analysis (108 events):
=  Graph 100x faster than typical executable
=  On-board GPU: Fastest but also most expensive
= Server GPU: Saturates due to limited network speed



. — @) | RWTHAACHEN
11 Conclusion UNIVERSITY

Dennis Noll - 14.02.22

Future HEP analyses must be fast and resource efficient

Use vectorised computations and parallelism

Complex computations parallisable using graph computing models
Example of neutrino reconstruction:

= Up to 100x speedup possible for typical analysis

Try on &

https://bndr.it/8yw3z
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