

Vectorised Neutrino Reconstruction by Computing Graphs

Martin Erdmann, Peter Fackeldey, Benjamin Fischer, Dennis Noll

IDT-UM Collaboration Meeting

- Fast turn-around times of HEP analyses are driver of scientific insight
- Traditional analyses already O(weeks)
- Data increased in HL-LHC by x20
- Future analyse must be: Faster & More resource efficient

→ Requires re-thinking of analysis computing!

- Fast and efficient analyses can be realised with vectorised computations
- Already used by many analyses

- Load many events
- Evaluate **vectorised** expressions
- Store results
- Repeat

- Problem: Some computations challenging to vectorise!
- E.g. Neutrino reconstruction (next page)

- Reconstruction of longitudinal neutrino momentum in e.g. ttH events
- Solved by assuming: $\mathbb{Z}_T = p_{\nu,T}$, W mass
- Inputs: Lepton, \mathbb{Z}_T
- Two branches:
 - Real branch (h≤1): Purely analytical
 - Complex branch (h>1): Involves fitting

$$p_{\nu,z}^{1,2} = \frac{k}{p_{l,T}^{2}} \left(p_{l,z} \pm E_{l} \sqrt{1 - \left(\frac{p_{l,T} p_{\nu,T}}{k} \right)^{2}} \right)$$

Optimal benchmark

- Multiple Inputs (Lepton, MET)
- Different behaviour on event-basis
- Stateful computation: Fitting
- Physics result can easily be verified

→ Vectorise using graph computing model!

Computing Graph

- Contents:
 - Nodes = Computations
 - Edges = Data flow
- Properties:
 - Directed = →
 - Acyclic = no loops

Example y = f(a(x), b(x)):

- Two levels of parallelism:
 - Inter processing unit:
 - Parallel units in directed acyclic graph (e.g. a & b) can run in parallel
 - Intra processing unit (SIMD):
 - If graph is same for multiple inputs (Nevents)
 - Parallel execution over many events

- Two branches (real and complex)
- Fit of neutrino momentum:
 - Unrolled for-loop with 100 iterations
 - Using ADAM optimiser
- Conditions (choices) guide logical rather than physical flow
 - All expressions evaluated
 - Graph is the same for every event

7 Implementation of Computing Graph

- Graph implemented with TensorFlow:
 - Supports processing on GPU
 - Wrapped in Keras model:
 - Portable (saving to/loading from disk)
 - Straight forward integration
- Pre-processing:
 - Structure of graph must be static
 - Requires batching of events in fixed size chunks

Experimental Setup - Hardware

- Testing two different hardware scenarios for evaluation
- Pre-processing always on worker node

On-board

- All computations on one computing node
- Cluster scenarios:
 - CPU-only setup
 - Each worker has own GPU

Server -

- Graph evaluations on central GPU
- Accessed over network (1Gbit/s)
- Using TensorFlow model server
- Cluster scenario:
 - Not each worker has own GPU

- Graph need to be built before evaluation
- Takes constant time $\mathcal{O}(10s)$
- Testing two scenarios:

- For typical analysis (10⁸ events):
 - Graph 100x faster than typical executable
 - On-board GPU: Fastest but also most expensive
 - Server GPU: Saturates due to limited network speed

- Future HEP analyses must be fast and resource efficient
- Use vectorised computations and parallelism
- Complex computations parallisable using graph computing models
- Example of neutrino reconstruction:
 - Up to 100x speedup possible for typical analysis

