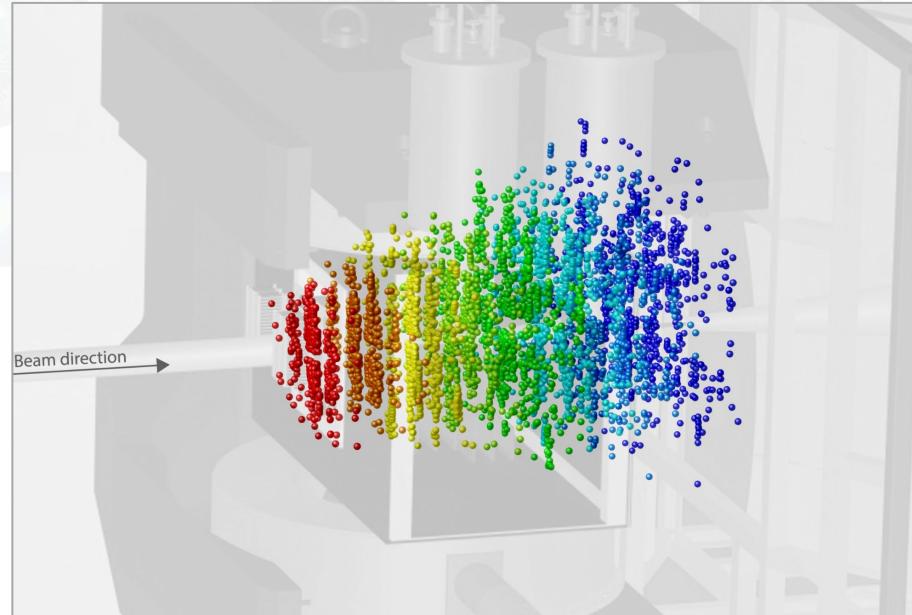


PointNet for event characterization at the CBM experiment

Manjunath Omana Kuttan, Jan Steinheimer, Kai Zhou, Andreas Redelbach,
Horst Stöcker

Experimental data as point clouds

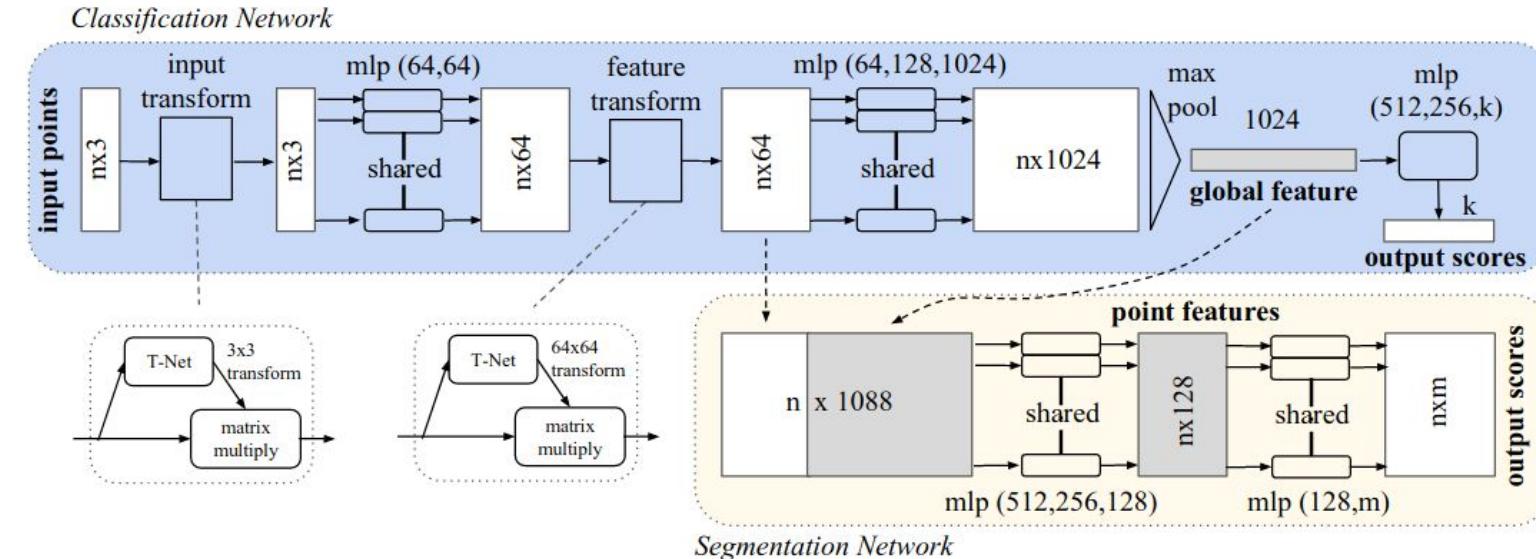
- Point cloud: set of data points in space
 - No ordering
 - $\{(x_1, y_1, z_1), (x_2, y_2, z_2), \dots (x_n, y_n, z_n)\}$
 - Not limited to 3 dimensions
- Electronically collected data often has point cloud structure
 - Data from sensors, detectors etc.



DL models operating on Point clouds

1. Works on free-streaming experimental data
2. No loss of information from histogram binning
3. Requires minimal preprocessing
4. Online physics analyses

PointNet: Deep Learning for point clouds



A point cloud is given by set of points "X"

$$X = \{x_1, x_2, x_3, \dots, x_n\}$$

PointNet learns a set of functions "F"

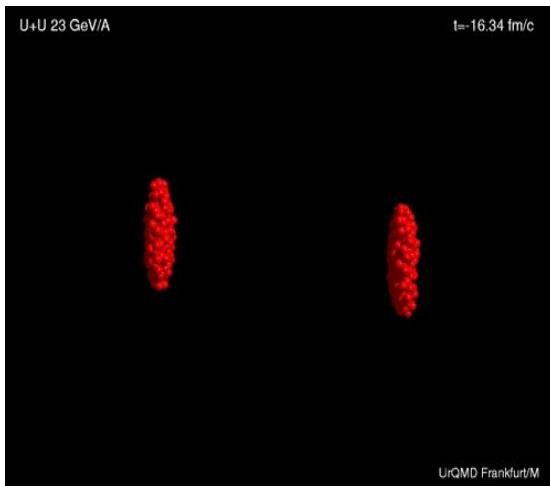
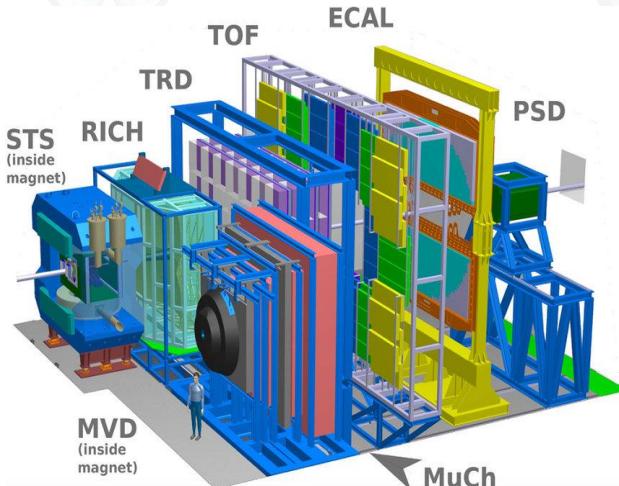
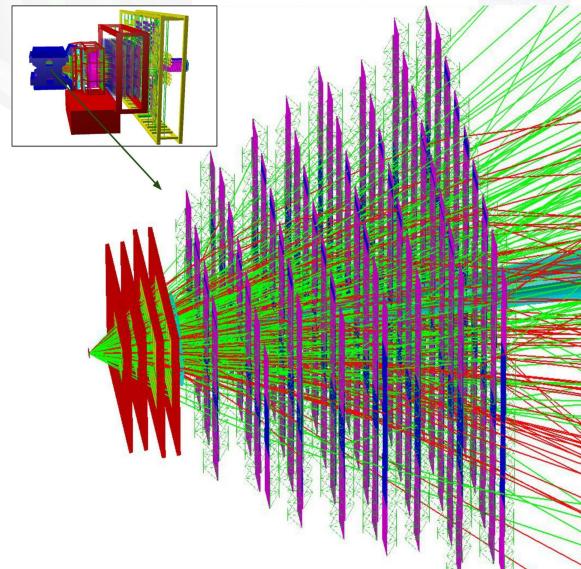
$$F = \{f_1, f_2, \dots, f_m\}$$

where $f_i(\{x_1, \dots, x_n\}) \approx g(h_i(x_1), \dots, h_i(x_n))$

$h \sim$ MLP with shared weights/ 1D CNN
 g =symmetric function (maxpool, avgpool, sumpool etc.)

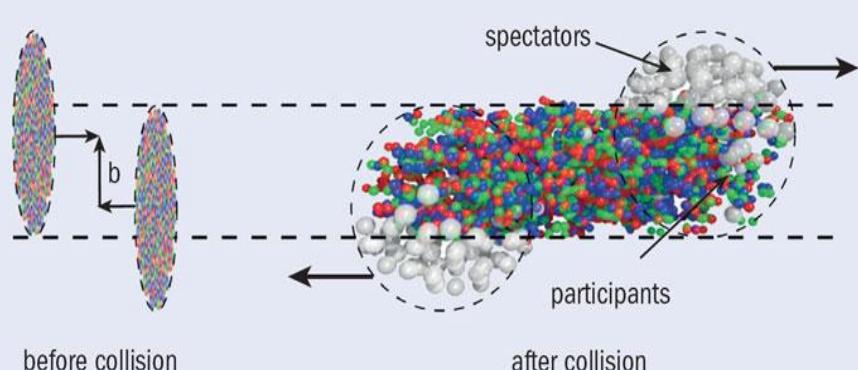
The CBM experiment: challenges and goals

- Explores QCD phase diagram at highest baryon densities through Heavy-ion collisions
 - EoS of highly compressed baryonic matter
 - the deconfinement phase transition
 - Search for critical point
- Up to 45 AGeV collisions
- 10^7 collisions/ Second
- 1000 tracks per collision
- 1 TBytes/Second raw data



Centrality determination at CBM

- Impact parameter 'b': not experimentally measurable
 - Glauber MC
 - Percentiles of N_{chg} , E_{spect} are mapped to collision centrality
 - Only a 'likely' distribution for b in a centrality bin is known



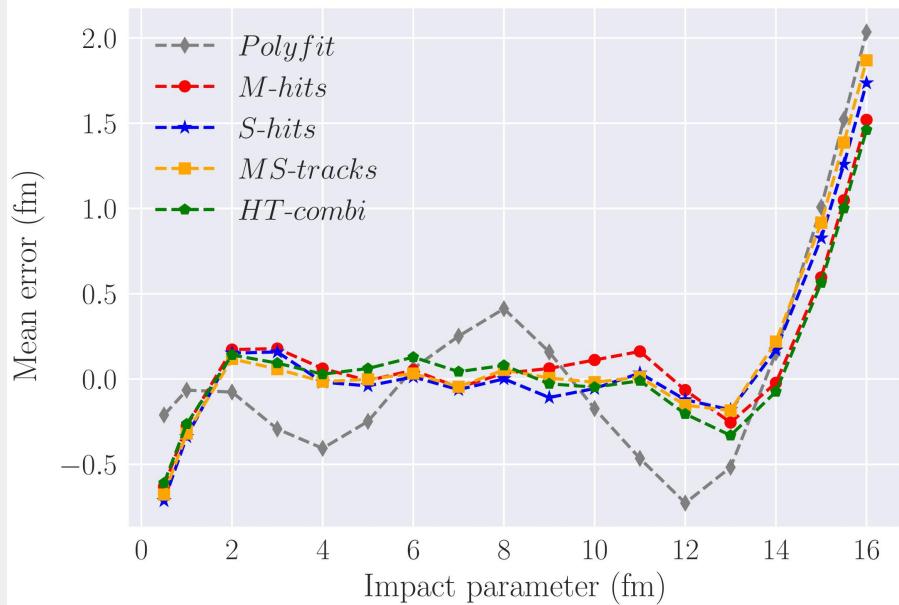
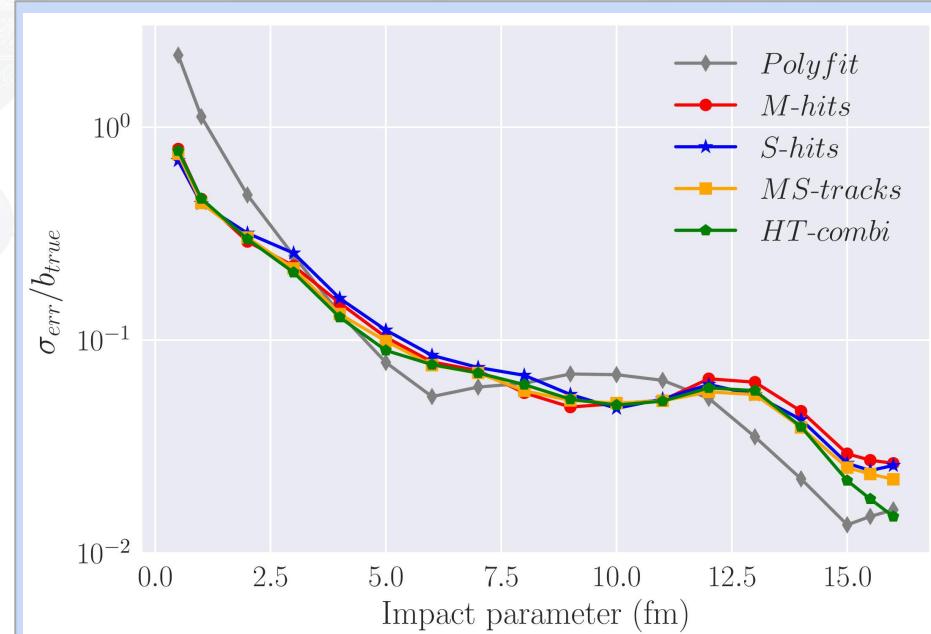
Our solution: PointNet based 'b' meter

- Event-by event
- Works on direct experimental output
- Online event characterisation

01	M-hits	<ul style="list-style-type: none">• Hits in MVD
02	S-hits	<ul style="list-style-type: none">• hits in STS
03	MS-tracks	<ul style="list-style-type: none">• tracks in MVD+STS
04	HT-combi	<ul style="list-style-type: none">• MVD hits + tracks from MVD+STS
05	Polyfit (non-ML baseline)	<ul style="list-style-type: none">• polynomial fit to N_{chg} vs. b

PointNet centrality meter

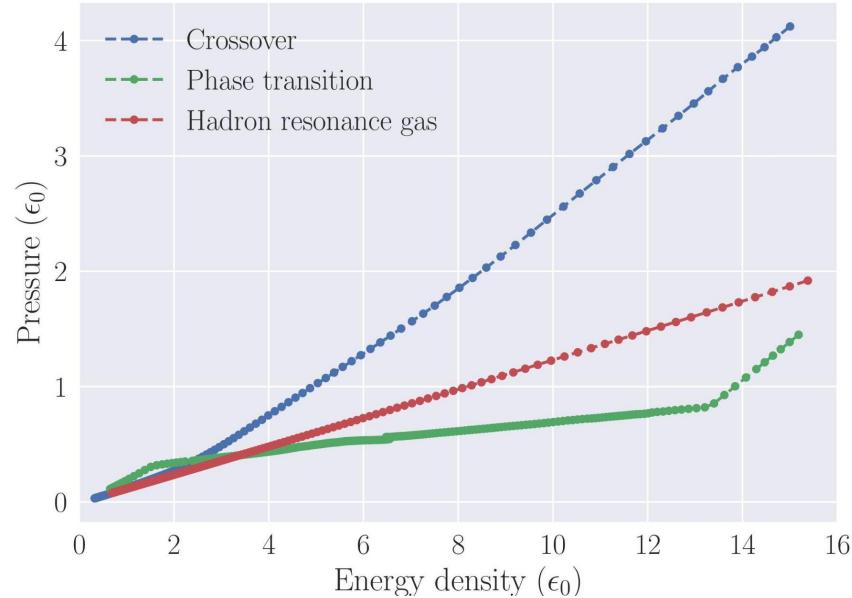
- mean error -0.3 - 0.2 fm for $b= 2- 14$ fm
- Polyfit: highly fluctuating



- Quantifies precision in predictions
- Polyfit fails for central events!
- Similar precision for $b>3$ fm

EoS classification with PointNet

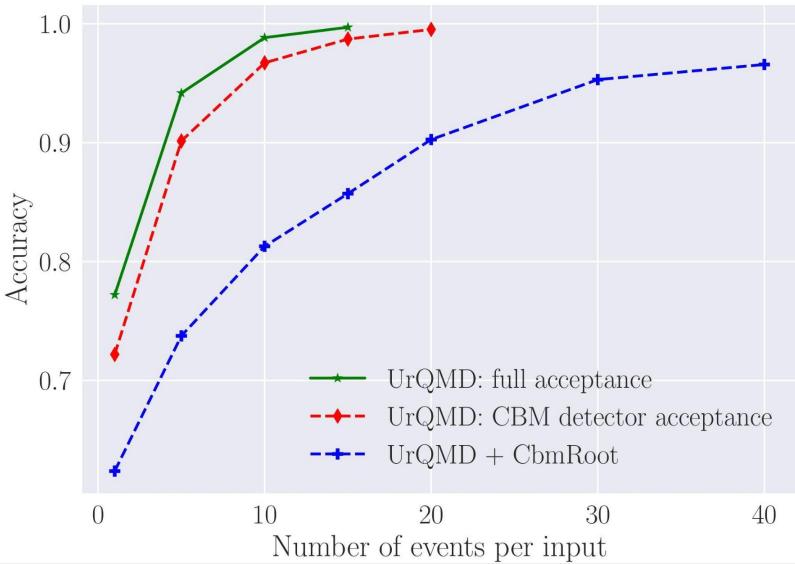
- Essential input to fluid dynamics evolution
 - pressure of the medium for any given energy and net baryon number densities
- Incorporates the QCD transition
 - Pressure gradients drives the evolution
- Not directly accessible experimentally
 - Comparisons with model calculations
 - Bayesian fit to different observables



Our solution: PointNet EoS classifier

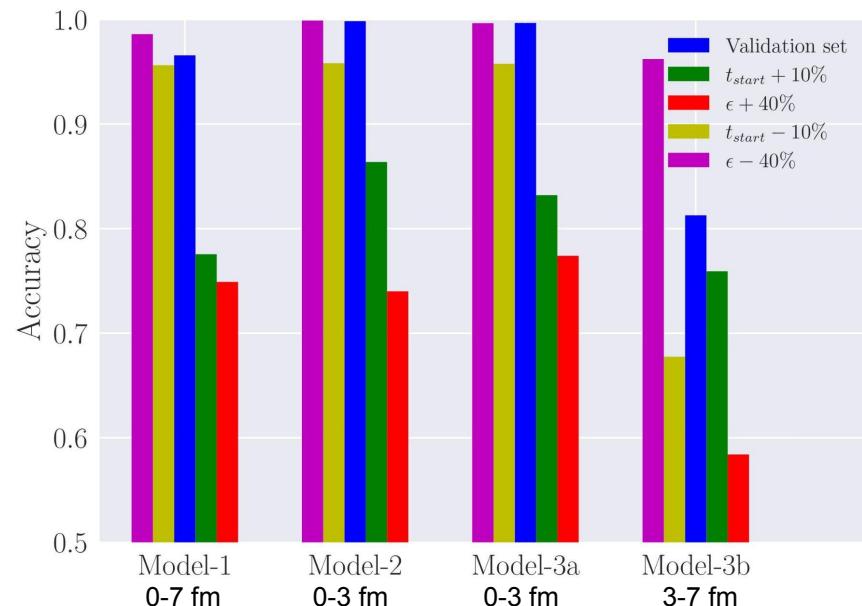
- We use:
 - **First Order Phase transition:** Maxwell construction between a bag model quark gluon EoS and a gas of pions and nucleons
 - **Crossover:** Chiral Mean Field hadron-quark EoS

PointNet EoS meter



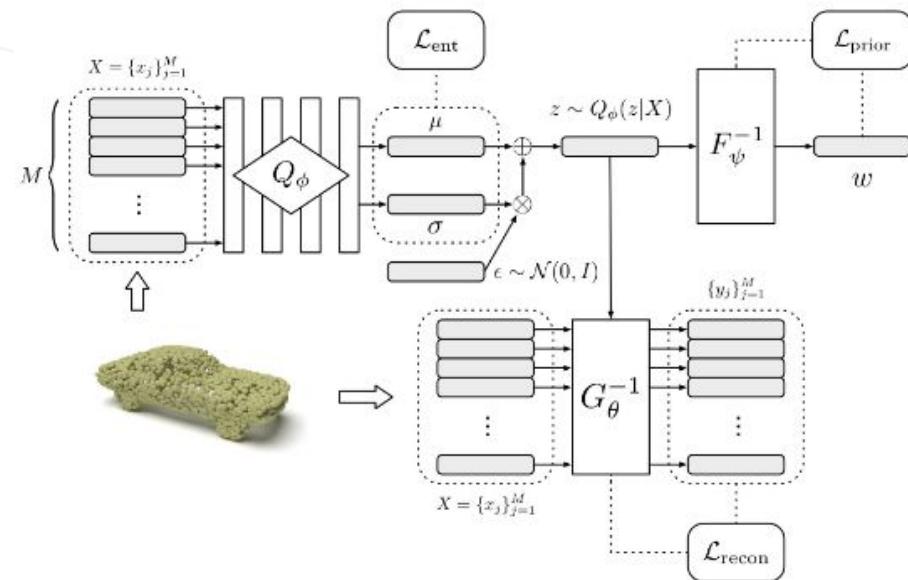
- Decrease in performance with increase in experimental effects
- Performance improves when events are combined

- Models tested for $t_{start} \pm 10\%$ and $\epsilon \pm 40\%$ from training value
- Decrease in accuracy with $t_{start} \pm 10\%$ or $\epsilon \pm 40\%$: underlying physics limitation



In progress: Generative modelling of Heavy-ion collisions

- HIC simulations are computationally expensive/ time consuming
- Experiments often rely on model simulations for analyses
- Generative modelling of Point cloud:
 - Invertible NN based on continuous normalising flows
- DL simulation of a collision event
 - Each point: a particle (E, p_x, p_y, p_z)
 - 2 stage generation
 - A. Generates the particle multiplicities
 - B. Generates the momentum 4 vector for each particle



Summary

- The DL models outperforms conventional methods for impact parameter determination
 - Event by event
 - Reconstructs 'b' from hits/ tracks
 - *Phys.Lett.B* 811 (2020) 135872, *Particles* 2021, 4(1), 47-52
- PointNet based DL models are an efficient tool for identifying phase transition at CBM
 - Accuracy upto 99.8%
 - Online algorithm- Works with direct experimental data
 - *Journal of High Energy Physics* 2021 (10), 1-25
- Ongoing works on Generative modelling of HIC
 - Generates collision event as point cloud
 - Invertible NN based on normalising flows