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Superconducting NISQ processors
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Superconducting NISQ processors
2D arrays

Google sycamore

Satzinger et al., Science 2021

IBM platforms
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Superconducting NISQ processors
2D arrays

Google sycamore

Satzinger et al., Science 2021

IBM platforms

2D platforms with ∼ 50 qubits and nearest neighbor CNOTs are available
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Quantum simulation of LGT in 2+1D

LGTs constitute an intriguing playground to test quantum simulation techniques

Most simulating platforms offer limited degrees
of freedom
Discretization or truncation of the gauge
groups are typically required

The Z2 gauge theory is the simplest toy model
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How can we efficiently initialize the ground states of this model?
How does topological order affect quantum simulations?
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Pure Z2 LGT
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∑
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Two phases:
Confined phase (h < hc):

1 Trivial
2 String tension
3 Area law of the Wilson loop

Deconfined phase (h > hc):
1 Topological order
2 Static charges and magnetic excitations are

anyons
3 Perimeter law of the Wilson loop
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Given a value of h, how can we prepare the ground state?
Basic attempt

Trivial initial state: |ΩE⟩ = ⊗l|+⟩l
The initial state corresponds to the GS at h = 0

Basic attempt: quantum annealing and Trotterization

H (m) = HE − h
m

P
HB , |ΨP ⟩ =

←P∏
m=1

[
e−iδtHEeih

m
P δtHB

]
|ΩE⟩

CONS:
1 Trotterization necessary for digital approaches but introduces considerable errors
2 This kind of adiabatic evolution works as long as h is sufficiently far from hc

PRO: It preserves gauge invariance
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Gauge-invariant circuit implementation of the digitized operators
See, for instance: Lamm, Laurence, Yamauchi, PRD (2019)

Electric: e−iβHE = e−i
∑

l βσ
x
l ⇒ Single-qubit rotations.

Magnetic: e−iγHB = ⊗pe
−iγσz

p1
σz
p2

σz
p3

σz
p4

We decompose it in single-qubit gates Up (γ) = eiγσ
z

and CNOTs:
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Parallelization of the magnetic operators

Open boundaries
Pairs of columns in parallel
Each magnetic step: depth 12

Total depth for each Trotterization step: 13
(worst case scenario: 18 for PBC with odd columns and rows)
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Preparation of the ground state

Quantum annealing and Trotterization:

H (m) = HE − h
m

P
HB , |ΨP ⟩ =

←P∏
m=1

[
e−iδtHEeih

m
P δtHB

]
|ΩE⟩

Total depth: 13P
For P = 200 (!), the results are still quite
disappointing.

Large Trotterization errors
Difficult to approach the phase
transition.
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Quantum approximate optimization algorithm (QAOA)
Fahri et al. 2014; Mbeng et al. 2019; Zhou et al. 2020

A more refined approach: QAOA

|ΨP ⟩ =
←P∏
m=1

[
e−iβmHEe−iγmHB

]
|ΩE⟩

We introduce and optimize 2P
variational parameters {βm, γm}

To which extent can QAOA work across
a topological phase transition?
How can we efficiently optimize the
variational parameters?
Can the variational parameters
calculated for small system sizes be
transferred to larger systems?
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Fidelity across the topological phase transition
3× 3 system
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1
−
F
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h =1.0

h =2.0

h =3.0

h =4.0

h =5.0

Initial state: |ψ0⟩ = |ΩE⟩

Fidelity improves exponentially with P

Fidelity is reduced across the transition
Creating topological order with local gates
requires a circuit of depth ∼ L

Bravyi, Hastings, Verstraete PRL 2006;
Chen, Gu, Wen PRB 2010

We include an overhead ∼ L to initialize the
system in the toric code ground state |ΩB⟩
Satzinger et al., Science 2021;
Liu, Shtengel, Smith and Pollmann 2021
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Fidelity across the topological phase transition
3× 3 system

Selection of the initial state:

|ψ0⟩ = |ΩE⟩ for h < hc

|ψ0⟩ = |ΩB⟩ for h > hc

Fidelity improves exponentially with P
Fidelity is reduced across the transition
Creating topological order with local gates
requires a circuit of depth ∼ L

Bravyi, Hastings, Verstraete PRL 2006;
Chen, Gu, Wen PRB 2010

We include an overhead ∼ L to initialize the
system in the toric code ground state |ΩB⟩
Satzinger et al., Science 2021;
Liu, Shtengel, Smith and Pollmann 2021
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Fidelity across the topological phase transition
4× 4 and 5× 5 systems

P = 6
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Wilson loops and Creutz ratio

We can characterize the phases based on the Wilson loops W:

Deconfined / topological phase:

⟨W⟩ ∝ eα Perimeter

Confined / trivial phase:

⟨W⟩ ∝ eχ Area

Creutz ratio:

χ(l, l) = − log
⟨Wl,l⟩⟨Wl−1,l−1⟩
⟨Wl,l−1⟩⟨Wl−1,l⟩

L = 5 , P = 6

(Empty symbols: |ΩE⟩ only)

Michele Burrello Initializing a Z2 LGT with QAOA



Topological entropy
3× 3 system

Stopo = SA + SB + SC

− SAB − SBC − SAC + SABC
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Different topological sectors on the torus

Degenerate GSs with topological order:
{|av, ah⟩ , av,h = 0, 1}
The QAOA commutes with non-contractible ’t
Hooft loops
Two strategies to get GS in different sectors:

|av, ah⟩P = Wav
v Wah

h U (γ∗, β∗) |ΩB⟩

|av, ah⟩′P = U (γ∗, β∗)Wav
v Wah

h |ΩB⟩
They provide analogous results and the optimized
variational parameters (γ∗, β∗) do not change
In both cases, the non-contractible Wilson
operators W introduce excitations

L = 3 P = 6

0 1 2 3 4 5
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0
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2

3

E
/h

|+ +〉P
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Some detail on the optimization of the parameters
Fidelity vs Residual energy in local optimizations

Results from random local optimizations:

0 1 2 3 4

(EP − EGS)/h
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0.5
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0.7

0.8

1
−
F

P

h = 5.0

h = 4.0

h = 3.0

Good correlation between fidelity and
residual energy
Many local minima:
local optimization is not viable!
Global optimization is computationally
expensive

We adopt an alternative two-step
optimization
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Two-step optimization
Inspired by Mbeng, Arceci, Santoro, PRB 2019

First step: annealing. For fixed P :

|ΨP ⟩ =
←P∏
m=1

[
e−iδtHEeih

m
P δtHB

]
|ΩE⟩

We optimize δt

Second step: QAOA
We locally optimize the 2P variational {γm, βm} from the annealing result (+ noise)
The obtained parameters are quite “regular”
Smooth parameters: transferability to larger system sizes
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Smoothness and scalability from |ψ0⟩ = |ΩE⟩
Smooth parameters Transferability from L = 3

0 1 2 3 4 5
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F

global + local, L = 4

two-steps, L = 4

two-steps + local, L = 4

global + local, L = 5

two-steps, L = 5

two-steps + local, L = 5

Global opt.:
∼ 100 times more expensive than local opt.
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Transferability of the variational parameters
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Conclusions
L. Lumia, P. Torta, G. Mbeng, G. Santoro, E. Ercolessi, M.B., M. Wauters, PRX Quantum 2022

The quantum approximate optimization algorithm constitutes a practical technique to
prepare the gauge-invariant GS of 2D LGT with shallow circuits in small systems
Some care is required in crossing topological phase transitions
Observables and entanglement features of the Z2 phase transitions are obtained
already for small systems and circuits of depth ≲ 100

Two-step optimization: smooth parameters and transferability to larger systems
This GS preparation can be used to initialize the system for the simulation of its
dynamics
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Overhead circuit for generating |ΩB⟩
Satzinger et al., Science 2021

|ΩB⟩ is exactly prepared without
variational parameters
It requires a circuit of depth L
Long range entanglement cannot be
obtained with a fixed depth circuit
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