Disorder-free localization in lattice gauge theories

European Research Council

Center for Electronic Correlations and Magnetism University of Augsburg

Universität

Augsburg

University

12.5.22 MCQST Gauge Workshop

Work together with

ICTP & SISSA: M. Dalmonte, M. Brenes, A. Scardicchio, F. Surace, R. Fazio, S. Notarnicola MPI-PKS: P. Karpov, R. Moessner, N. Chakraborty, G.-Y. Zhu, R. Verdel, A. Russomanno, Y.-P. Huang Cologne: M. Schmitt

Markus Heyl

Disorder-free localization in gauge theories

Markus Heyl

New kinds of order

Conventional matter

New kinds of order

Conventional matter

Matter with gauge constraints

Not happening (generically) in thermodynamic systems \rightarrow requires **new mechanism**

Quantum thermalization

Isolated quantum magnet

?

Realistic (homogeneous) systems thermalize Ensemble equivalence: long-time steady state \Leftrightarrow thermal Gibbs state $\rho_A = \operatorname{tr}_B \rho(t \to \infty) = \operatorname{tr}_B \frac{1}{Z} e^{-\beta H}$ Subsystems thermalize (remainder acting as an effective bath)

Markus Heyl

Breaking ergodicity

No thermalization: avoid equipartition

New quantum states *beyond thermodynamic constraints*

Breaking ergodicity

Integrability

- Fine-tuning
- Not robust
 → no stable
 nonthermal states

Disorder

- (Many-body) Localization
- Robust in 1D
- But unstable beyond 1D!

Vosk & Altman, Nandkishore & Huse, Annu. Rev. '15

Local constraints

- Fractons
- Quantum many-body scars
- Gauge invariance

 \rightarrow Disorder-free localization

Smith et al. PRL'17 Brenes, **MH** et al. PRL '18

Polkovnikov et al. RMP '11

Markus Heyl

Breaking ergodicity

Robust ergodicity breaking in any dimension \rightarrow Disorder-free localization

Integrability

- Fine-tuning
- Not robust
 → no stable
 nonthermal states

Disorder

- (Many-body) Localization
- Robust in 1D
- But unstable beyond 1D!

Vosk & Altman, Nandkishore & Huse, Annu. Rev. '15

Local constraints

- Fractons
- Quantum many-body scars
- Gauge invariance

→ Disorder-free localization

Smith et al. PRL'17 Brenes, **MH** et al. PRL '18

Polkovnikov et al. RMP '11

Markus Heyl

Disorder-free localization

Gauge invariance & conservation laws

Noether theorem: local symmetry \rightarrow local conservation law

Extensive # local conserved operators/quantities (almost like *integrable* systems, but not equal to the # DOF)

LGTs have builtin constrained dynamics

Fragmentation & Superselection sectors

Abelian LGT \rightarrow Generators: $[G_n, H] = 0 \quad [G_n, G_{n'}] = 0 \quad \forall n$

Hamiltonian eigenstates can be labeled by the *eigenvalues of the generators*

Superselection sector $\{q_{\alpha}\}_{\alpha=1,...,N}$ $G_{n}|\Psi_{\{q_{\alpha}\}}\rangle = q_{n}|\Psi_{\{q_{\alpha}\}}\rangle$ $\Rightarrow [\nabla E_{n} - \rho_{n} - q_{n}]|\Psi_{\{q_{\alpha}\}}\rangle = 0$ `static background charge'

Markus Heyl

"disorder average" even though the state might be homogeneous

Disorder-free localization from strong random background charges

Smith et al. PRL '17 & Brenes, MH et al. PRL '18

DFL Mechanisms

Localization through interference

Disorder landscape generated by the background charges (disorder often spatially correlated)

 \rightarrow Anderson or many-body localization

 \rightarrow Johannes' talks on Friday

Localization through kinetic constraints

Fragmentation in real & Hilbert space

 \rightarrow Quantum/classical percolation problem

 \rightarrow this talk

Markus Heyl

DFL in interacting 2D LGTs

U(1) quantum link model (QLM)

$$H = H_0 + V \equiv \lambda \sum_{\substack{\square \\ \text{Potential energy} \\ \text{counting # flippable} \\ \text{plaquettes}} (U_{\square} + U_{\square}^{\dagger})^2 - J \sum_{\substack{\square \\ \text{Potential energy} \\ \text{Correlated spin flip on full plaquette}} Correlated spin flip on full plaquette}$$

Quantum spin ice ($G_n=0$) \rightarrow Emergent strong-coupling QED, quantum dimer model ($G_n=(-1)^n$), ...

Markus Heyl

Nonequilibrium dynamics

Initial condition:

$$|\psi_0\rangle = | \rightarrow \rangle = \frac{1}{\sqrt{\dim_H}} \sum_s |s\rangle$$

 \rightarrow superposition over all superselection sectors

No propagation of quantum correlations

Is this just *slow dynamics* or really *nonergodic* behavior?

Solution via classical networks Verdel, MH et al. PRB '21

Background charges & kinetic constraints

All 4 spins will be frozen forever

At least 2 neighboring plaquettes unflippable

Key question: kinetics local or can excitations still propagate?

Mapping onto percolation problem

Typical superselection sector

Kinetics & clusters

Percolation of clusters

No percolation \rightarrow Small clusters \rightarrow Ergodicity breaking

Signatures in quantum dynamics

Energy density in column

Markus Heyl

Background charges & mixed states

$$Z = \operatorname{tr} e^{-\beta H} = \sum_{\{q_{\alpha}\}} \operatorname{tr}_{\{q_{\alpha}\}} e^{-\beta H_{\{q_{\alpha}\}}}$$

low temperatures: typically favoring homogeneous configurations (lower entropy)

$$Z \to \operatorname{tr}_{\{q_{\alpha}=0\}} e^{-\beta H_{\{q_{\alpha}=0\}}}$$

High temperatures: background charges increasingly random

 \rightarrow disorder-free localization

New kinds of order

Conventional matter

Matter with gauge constraints

New types of order

Localization protected quantum order

Gauge time crystal

Russomanno, MH et al. PRR '20

Quasi long-range order

Summary & outlook

- Disorder-free localization as a new mechanism for ergodicity breaking
- Robust ergodicity breaking even in 2D (provided gauge invariance is preserved)
- What new types of nonequilibrium phases are possible?
- What about 3D? Can there still be a nonergodic phase?
- What happens in the presence of matter in 2D?
- Implications on high-temperature spectral functions?

Quantum localization transition

Chakraborty, MH et al. '22

Universality class of 2D site percolation

Level-spacing statistics for individual clusters

cluster size

Clusters ergodic

Quantum thermalization transition = classical percolation transition

Markus Heyl

Signatures in quantum dynamics

Energy density in column

Markus Heyl

Challenge: no efficient compression of quantum states available 2D

$$|\psi\rangle = \sum_{s} \psi(s) |s\rangle$$
amplitudes exponential in system size

Challenge: no efficient compression of quantum states available 2D

$$|\psi\rangle = \sum_{s} \psi(s) |s\rangle$$
 # amplitudes exponential in system size

Classical networks: "Don't store. Generate on the fly."

$$|s\rangle$$
 — Machine $\tilde{\psi}(s) \approx \psi(s)$

Sample using MC techniques

Schmitt & MH SciPost '18

Markus Heyl

Many-body localization dynamics from gauge invariance

$$s \rangle \longrightarrow \text{Classical network} \longrightarrow \tilde{\psi}(s,t) = e^{\mathcal{H}_{\text{eff}}(s,t)}$$

Schmitt & MH SciPost '18
Effective classical Hamiltonian

 Structure obtained from cumulant expansion (around a classical limit)

 $\mathcal{H}_{\text{eff}}(s,t) = h_0(s,t) + \epsilon h_1(s,t) + \epsilon^2 h_2(s,t) + \dots$

- Further variationally optimized
- "Simple artificial neural network"

