Hyperbolic band theory

Joseph Maciejko University of Alberta

Discrete LGTs – Emergence & Quantum Simulations MPQ Garching May 11, 2022

JM & S. Rayan, Sci. Adv. 7, eabe9170 (2021) JM & S. Rayan, PNAS 119, e2116869119 (2022)

S. Rayan (Saskatchewan)

I. Boettcher, A. V. Gorshkov, A. J. Kollár, JM, S. Rayan, R. Thomale, PRB 105, 125118 (2022)

T. Bzdušek (PSI/Zürich)

I. Boettcher (Alberta)

A. Gorshkov (JQI/UMD)

A. Kollár (JQI/UMD)

R. Thomale (Würzburg)

T. Bzdušek & JM, in preparation

Euclidean lattices

 $\{4, 4\}$

(p-2)(q-2) = 4

(p-2)(q-2) > 4

ARTICLE

Hyperbolic lattices in circuit quantum electrodynamics

Alicia J. Kollár^{1,2,3}*, Mattias Fitzpatrick¹ & Andrew A. Houck¹

4 JULY 2019 | VOL 571 | NATURE | 45

Hyperbolic lattices in circuit quantum electrodynamics

Alicia J. Kollár^{1,2,3}*, Mattias Fitzpatrick¹ & Andrew A. Houck¹

ARTICLE

4 JULY 2019 | VOL 571 | NATURE | 45

 $H_{\rm TB} = \omega_0 \sum_i a_i^{\dagger} a_i - t \sum_{\langle i,i \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i)$

"hyperbolic kagome lattice"

Electric-circuit realization of a hyperbolic drum

Patrick M. Lenggenhager (D,^{1,2,3,*} Alexander Stegmaier (D,^{4,*} Lavi K. Upreti (D,⁴ Tobias Hofmann,⁴ Tobias Helbig (D,⁴ Achim Vollhardt,² Martin Greiter,⁴ Ching Hua Lee,⁵ Stefan Imhof,⁶ Hauke Brand,⁶ Tobias Kießling,⁶ Igor Boettcher (D,^{7,8} Titus Neupert (D,^{2,†} Ronny Thomale (D,^{4,†} and Tomáš Bzdušek (D),^{1,2,†}

 $\{3,7\}$ "hyperbolic triangular lattice"

Observation of novel topological states in hyperbolic lattices

Weixuan Zhang^{1*}, Hao Yuan^{1*}, Na Sun¹, Houjun Sun², and Xiangdong Zhang¹

"hyperbolic honeycomb lattice"

arXiv:2203.03214

Kollár, Fitzpatrick, Houck, Nature 571, 45 (2019)

Kollár, Fitzpatrick, Houck, Nature 571, 45 (2019)

Outline

- Hyperbolic geometry & Fuchsian groups
- Hyperbolic Bloch ansatz
- Periodic boundary conditions & automorphic Bloch theorems
- Flat bands & topological bands
- Summary & outlook

Poincaré disk

$$\mathbb{H} = \{ |z| < 1 \}$$

$$ds^{2} = \frac{4(dx^{2} + dy^{2})}{(1 - |z|^{2})^{2}}$$

Poincaré disk

$$\mathbb{H} = \{ |z| < 1 \}$$

PSU(1,1) ≅ PSL(2,R):

$$\gamma = \begin{pmatrix} \alpha & \beta \\ \beta^* & \alpha^* \end{pmatrix}, \det \gamma = 1$$
$$z \to \gamma(z) = \frac{\alpha z + \beta}{\beta^* z + \alpha^*}$$

$$ds^{2} = \frac{4(dx^{2} + dy^{2})}{(1 - |z|^{2})^{2}}$$

Poincaré disk

$$\mathbb{H} = \{ |z| < 1 \}$$

PSU(1,1) ≅ PSL(2,R):

$$\gamma = \begin{pmatrix} \alpha & \beta \\ \beta^* & \alpha^* \end{pmatrix}, \det \gamma = 1$$
$$z \to \gamma(z) = \frac{\alpha z + \beta}{\beta^* z + \alpha^*}$$

$$ds^{2} = \frac{4(dx^{2} + dy^{2})}{(1 - |z|^{2})^{2}}$$

$$d(z, z') = d(\gamma(z), \gamma(z'))$$

Nonabelian translation group

Balazs & Voros, Phys. Rep. 143, 109 (1986)

Nonabelian translation group

 $\Gamma = \langle \gamma_1, \gamma_2, \gamma_3, \gamma_4 : \gamma_1 \gamma_2^{-1} \gamma_3 \gamma_4^{-1} \gamma_1^{-1} \gamma_2 \gamma_3^{-1} \gamma_4 = 1 \rangle$

Balazs & Voros, Phys. Rep. 143, 109 (1986)

Compactified unit cell

 $\Gamma \cong \pi_1(\Sigma_2)$

 $\gamma_1 \gamma_2^{-1} \gamma_3 \gamma_4^{-1} \gamma_1^{-1} \gamma_2 \gamma_3^{-1} \gamma_4 = 1$

Balazs & Voros, Phys. Rep. 143, 109 (1986)

Hyperbolic Bloch ansatz

 $H\psi = E\psi$

$$\psi(\gamma_j(z)) = e^{ik_j}\psi(z),$$

$$j = 1, 2, 3, 4$$

JM & Rayan, Sci. Adv. 7, eabe9170 (2021)

Hyperbolic crystal momentum

 $\boldsymbol{k} \equiv (k_1, k_2, \dots, k_{2g-1}, k_{2g}) \in (-\pi, \pi]^{2g} \cong T^{2g} \cong \operatorname{Jac}(\Sigma_g)$

JM & Rayan, Sci. Adv. 7, eabe9170 (2021)

Bravais unit cell

{8,3} = {8,8} + 16-site basis

{7,3} = {14,7} + 56-site basis

Boettcher, Gorshkov, Kollár, JM, Rayan, Thomale, PRB 105, 125118 (2022)

Bravais unit cell

{8,3} = {8,8} + 16-site basis

{7,3} = {14,7} + 56-site basis

Boettcher, Gorshkov, Kollár, JM, Rayan, Thomale, PRB 105, 125118 (2022)

Two issues

- Do hyperbolic Bloch states form a complete set (ansatz vs theorem)?
- What about finite lattices (experiment)?

Two issues

- Do hyperbolic Bloch states form a complete set (ansatz vs theorem)?
- What about finite lattices (experiment)?
- Solution: proper formulation of PBC

Euclidean PBC

N sites = *N* Bloch states: complete set

Euclidean PBC: algebraic viewpoint

N allowed *k* values = *N* unitary irreps of G/G_{PBC}

Hyperbolic PBC

normal subgroup of index N

PBC cluster with N unit cells

 $\psi(\gamma_{\rm PBC}(z)) = \psi(z)$

Bloch states = unitary irreps of Γ/Γ_{PBC}

Normal subgroups

- For a given *N*, many distinct subgroups $\Gamma_{PBC} \triangleleft \Gamma$
- Enumerate all normal subgroups of index up to $N_{\rm max}$ using computational group theory methods

Abelian clusters

- Eigenstates of the clusters fall into irreps of the residual translation group Γ/Γ_{PBC} = finite group of order *N*
- For many clusters (e.g., all prime *N*), this group is abelian!

Abelian Bloch theorem

$$\psi^{(\lambda)}(g_k^{-1}(z_i)) = \chi^{(\lambda)}([g_k])\psi^{(\lambda)}(z_i), \quad [g_k] \in \Gamma/\Gamma_{\text{PBC}}$$

Nonabelian clusters

• For N < 25, nonabelian Γ/Γ_{PBC} found only at N = 12,16,18,20,21,24

Nonabelian Bloch theorem

• Nonabelian Γ/Γ_{PBC} possesses higher-dimensional unitary irreps:

$$\psi_{\nu}^{(\lambda)}(g_k^{-1}(z_i)) = \sum_{\mu=1}^{r_{\lambda}} \psi_{\mu}^{(\lambda)}(z_i) D_{\mu\nu}^{(\lambda)}([g_k]), \quad [g_k] \in \Gamma/\Gamma_{\text{PBC}}$$

Nonabelian Bloch theorem

• Example (N=24): 8 abelian irreps, 4 nonabelian (2D) irreps

C	1	2	3	4	5	6	7	8	9	10	11	12		4	
n_C	1	1	1	1	2	2	2	2	3	3	3	3		.	2
$D^{(1)}$	1	1	1	1	1	1	1	1	1	1	1	1		2	
$D^{(2)}$	1	1	1	1	1	1	1	1	-1	-1	-1	-1			$\frac{7}{4}$ $\frac{8}{5}$ $\frac{9}{9}$ $\frac{9}{9}$
$D^{(3)}$	1	-1	a	-a	1	-1	a	-a	c	-c	-1/c	1/c		0	
$D^{(4)}$	1	-1	a	-a	1	-1	a	-a	-c	c	1/c	-1/c			
$D^{(5)}$	1	-1	-a	a	1	-1	-a	a	-1/c	1/c	c	-c	जि - 2	2	3_6
$D^{(6)}$	1	-1	-a	a	1	-1	-a	a	1/c	-1/c	-c	c			
$D^{(7)}$	1	1	-1	-1	1	1	-1	-1	a	a	-a	-a		۱	11 12
$D^{(8)}$	1	1	-1	-1	1	1	-1	-1	-a	-a	a	a		+	
$D^{(9)}$	2	2	-2	-2	-1	-1	1	1	0	0	0	0			
$D^{(10)}$	2	2	2	2	-1	-1	-1	-1	0	0	0	0	-6	o -	
$D^{(11)}$	2	-2	b	-b	-1	1	-a	a	0	0	0	0			
$\overline{D^{(12)}}$	2	-2	-b	b	-1	1	a	-a	0	0	0	0	3-	8	1

Nonabelian Brillouin zones

Are higher-dimensional irreps important?

T. Bzdušek & JM, in preparation

T. Bzdušek & JM, in preparation

Hyperbolic band topology?

Chern insulator in a hyperbolic lattice

Zheng-Rong Liu,¹ Chun-Bo Hua,¹ Tan Peng,¹ and Bin Zhou^{1,*}

Observation of novel topological states in hyperbolic lattices

arXiv:2203.03214 (th+exp)

Weixuan Zhang^{1*}, Hao Yuan^{1*}, Na Sun¹, Houjun Sun², and Xiangdong Zhang^{1\$}

Hyperbolic topological band insulators

David M. Urwyler,¹ Patrick M. Lenggenhager ,^{1,2,3} Igor Boettcher ,^{4,5} Ronny Thomale ,⁶ Titus Neupert ,¹ and Tomáš Bzdušek ,^{2,1,*} arXiv:2203.07292 (th)

arXiv:2203.02101 (th)

Hyperbolic Haldane model

Hyperbolic topological insulators

chiral/helical edge propagation

topological protection

Hyperbolic band topology

Hyperbolic band topology

а			Hald	ane	Kane-Mele			
f	μ	$\mathcal{C}_a \mid \mathcal{C}_b$		\mathcal{C}_{RS}	ν_a	$ u_b $	$ u_{RS}$	
5/16	-1.3	-1	1	-0.986	1	1	-0.971	
8/16	0	0	0	0	0	0	0	
11/16	+1.3	-1	1	-0.986	1	1	-0.971	

10.08

0.06

0.04

0.02

_0.00

topological invariants in 2D planes of 4D Brillouin zone

Summary

- Hyperbolic lattices have a nonabelian translation group: $\Gamma \cong \pi_1(\Sigma_g)$
- Hyperbolic (automorphic) Bloch states: $\psi_k(\gamma(z)) = \chi_k(\gamma)\psi_k(z)$
- Hyperbolic Brillouin zones: $Jac(\Sigma_g) \cong T^{2g} \cong \mathcal{M}(\Sigma_g, U(1))$ $\mathcal{M}(\Sigma_g, U(r)), r > 1$
- Finite clusters with PBC correspond to $\Gamma_{PBC} \triangleleft \Gamma$
- Automorphic Bloch theorems (abelian/nonabelian)
- Hyperbolic flat bands
- Hyperbolic topological bands

Outlook

- Why does abelian HBT work so well?
- Parametrization of nonabelian Brillouin zones
- Physics of nonabelian Bloch states?
- Bulk-boundary correspondence ($C_{\text{real-space}} \leftrightarrow C_{k-\text{space}}$)?
- Implement PBC in experiment (e.g. electrical circuits)

JM & S. Rayan, Sci. Adv. 7, eabe9170 (2021) JM & S. Rayan, PNAS 119, e2116869119 (2022) I. Boettcher *et al.*, PRB 105, 125118 (2022)

Thank you!

New Frontiers in Research Fund Fonds Nouvelles frontières en recherche

