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quarks

• Renormalisation group as a tool 
to study Nature at different scales
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Requirements for the quantum simulation of parton correlators:

• encode in quantum degrees of freedom both matter and gauge fields 

• preparation of a reference state, e.g., vacuum, proton, glue-ball

• simulate gauge-invariant quantities, e.g., minimal gauge-matter coupling

• real-time evolution, since the Wilson line is non-local in time

• carry out measurements after the evolution, i.e., quantum interferometer
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W(τ, λ) = WC1
Wτ1

WC2
Wτ2

⋯WCk
Wτk

⋯

x+ ≡ (ct + x3)/ 2x−
t

x3

x⊥ ≡ (x1, x2)

W(τ, λ)

W(t, λ)

W(τ, λ) = %1e−iτ1H%2e−iτ2H⋯%ke−iτkH⋯%N

W(τ, λ)

Discretisation of space-time 
in a Hamiltonian formulation

Note: in the Hamiltonian formulation

the temporal gauge A0=0 is chosen
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W(τ, λ) = %1e−iτ1H%2e−iτ2H⋯%ke−iτkH⋯%N

W(τ, λ)

e−iHτ|ψ(0)⟩ |ψ(τ)⟩

Time-evolution by 
a single time step

e−iH ≃ [e−iHel/2nTe−iλHmag/nTe−iHel/2nT]
nT

Digital simulation can simulate any model but requires many gate operations

Decompose dynamics induced by systems’ Hamiltonian into sequence of quantum gates

H = Hel + Hmag

Trotter-Suzuki approximation

S. Lloyd, Science (1996)

Efficient for local interactions

Stroboscopic simulation in an analog simulator
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Tr [𝒲†𝒲nT]

⟨g . s . |𝒲†𝒲nT
|g . s.⟩

Proof of principle: Z2 pure gauge model

operator norm:

ground state fidelity:

within a few Trotter steps a fidelity closed to one is achieved
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Ĥ = Ec ( ̂n − ng)

2

[ ̂θ, ̂n] = i



Free quantum 
particle on a ring

̂θ
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Any rotation is a symmetry of the quantum Hamiltonian: Ûα = ei ̂nα SO(2) ∼ U(1)

About the reflexion symmetry…
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n → − n
θ → − θ

ÛP

ÛPÛαÛP = Û−α
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ng = 1/2

n → 1 − n
θ → − θ

̂VP = e−i ̂θÛP

̂VPÛα
̂VP = e−iαÛ−α

O(2) = SO(2) × ℤ2 redefining: Ŵα = eiα/2Ûα

̂VPŴα
̂VP = Ŵ−α

Ŵ2π = − 1
double cover of

{
O(2)
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About the reflexion symmetry…
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ℤ2 × ℤ2
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multiplication relations
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Superconducting qubits

Example: the transmon

qubits. Amazingly, the transmon can at the same time in-
crease the strength of electrical coupling between qubits, or
between a qubit and a transmission line cavity serving as a
bus.

Although the transmon has an EJ /EC ratio in between that
of typical charge qubits and typical phase qubits, it is impor-
tant to emphasize that the transmon is very different from
both the CPB and phase qubits, including the capacitively
shunted phase qubit proposed recently by Steffen et al. !17".
In the transmon, it is the natural anharmonicity of the cosine
potential which allows qubit operations, whereas in the phase
qubit, the EJ /EC ratio is so large that the required anharmo-
nicity can only be restored by driving a current I very close
to IC through the system, creating a washboard potential, see
Refs. !5–7" for recent reviews. The device presented in Ref.
!17" operated at an energy ratio of EJ /EC#2!104, whereas
the transmon will typically involve ratios of the order of
several tens up to several hundreds and is operated without
the need for any dc connections to the rest of the circuit.
Thus, the transmon is a new type of superconducting qubit
that should fix the main weakness of the CPB by featuring an
exponential gain in the insensitivity to charge noise. The fa-
vorable insensitivity of CPBs to other noise sources such as
critical current and flux noise is maintained $and further im-
proved% in the transmon system, rendering it a very promis-
ing candidate for the next generation of qubits. A comple-
mentary proposal for using a capacitor to modify the EJ /EC
ratio in superconducting flux qubits is put forward in Ref.
!18".

The outline of the paper is as follows. In Sec. II A, we
introduce the transmon and its effective quantum circuit. The
solution of the corresponding Schrödinger equation and an
analysis of its asymptotics enable a quantitative discussion of
the charge dispersion and the anharmonicity in Secs. II B and
II C, respectively. Section II D compares the transmon to
phase qubits, and Sec. II E provides additional information
about the flux degree of freedom in the split transmon, and
the role of asymmetry in the two Josephson junctions. The
circuit quantum electrodynamics $circuit-QED% physics !19"
of the transmon is investigated in Sec. III, where we show
that despite the smallness of the charge dispersion, the trans-
mon is expected to reach the strong-coupling limit of circuit
QED. That is, we show that even though the transmon en-
ergy levels are insensitive to low frequency voltages, transi-
tions between levels can strongly be driven by resonant ra-
diation. We discuss in detail the modifications of the
dispersive limit and the Purcell effect due to the increased
EJ /EC ratio. Sections IV and V are devoted to the investiga-
tion of noise in the transmon system and its projected effect
on relaxation $T1% and dephasing $T2% times. We conclude
our paper with a summary and a comprehensive comparison
of the transmon with existing superconducting qubits in Sec.
VI.

II. FROM THE COOPER PAIR BOX TO THE TRANSMON

A. Model

In close resemblance to the ordinary CPB $see, e.g., Ref.
!6"%, the transmon consists of two superconducting islands

coupled through two Josephson junctions, but isolated from
the rest of the circuitry. This dc-SQUID setup allows for the
tuning of the Josephson energy EJ=EJ,max &cos$"# /#0%& by
means of an external magnetic flux #. For simplicity, we
initially assume that both junctions are identical. $The dis-
cussion of the general case including junction asymmetry is
postponed until Sec. II E.% Schematics of the device design
and the effective quantum circuit for the transmon are de-
picted in Fig. 1.

As usual, the effective offset charge ng of the device, mea-
sured in units of the Cooper pair charge 2e, is controlled by
a gate electrode capacitively coupled to the island such that
ng=Qr /2e+CgVg /2e. Here Vg and Cg denote the gate voltage
and capacitance, respectively, and Qr represents the
environment-induced offset charge.

The crucial modification distinguishing the transmon from
the CPB is a shunting connection of the two superconductors
via a large capacitance CB, accompanied by a similar in-
crease in the gate capacitance Cg. As shown in Appendix A,
the effective Hamiltonian can be reduced to a form identical
to that of the CPB system !20",

Ĥ = 4EC$n̂ − ng%2 − EJ cos $̂ . $2.1%

It describes the effective circuit of Fig. 1$a% in the absence of
coupling to the transmission line $i.e., disregarding the reso-
nator mode modeled by Lr and Cr%, and can be obtained from
an analysis of the full network of cross capacitances as pre-
sented in Appendix A. The symbols n̂ and $̂ denote the num-

FIG. 1. $Color online% $a% Effective circuit diagram of the trans-
mon qubit. The two Josephson junctions $with capacitance and Jo-
sephson energy CJ and EJ% are shunted by an additional large ca-
pacitance CB, matched by a comparably large gate capacitance Cg.
$b% Simplified schematic of the transmon device design $not to
scale%, which consists of a traditional split Cooper pair box, shunted
by a short $L#% /20% section of twin-lead transmission line, formed
by extending the superconducting islands of the qubit. This short
section of line can be well approximated as a lumped-element ca-
pacitor, leading to the increase in the capacitances Cg1, Cg2, and CB!
and hence in the effective capacitances CB and Cg in the circuit.

KOCH et al. PHYSICAL REVIEW A 76, 042319 $2007%

042319-2
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Ĥ =
(2e)2

2C
̂n2 = 4EC ̂n2



Superconducting qubits

Charging hamiltonian of the SC: 
Junction also acts as a capacitor

−−−−−−−−

+

+
+
+
+
+

+
+

AlAlOx
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FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum har-
monic oscillator, QHO), with inductance L in parallel with
capacitance, C. The superconducting phase on the island is
denoted „, referencing ground as zero. (b) Energy potential
for the QHO, where energy levels are equidistantly spaced
~Êr apart. (c) Josephson qubit circuit, where the nonlinear
inductance LJ (represented with the Josephson-subcircuit in
the dashed orange box) is shunted by a capacitance, Cs. (d)
The Josephson inductance reshapes the quadratic energy po-
tential (dashed red) into sinusoidal (solid blue), which yields
non-equidistant energy levels. This allows us to isolate the
two lowest energy levels |0Í and |1Í, forming a computational
subspace with an energy separation ~Ê01, which is di�erent
than ~Ê12.

poses a practical limitation†.
To mitigate the problem of unwanted dynamics in-

volving non-computational states, we need to add anhar-
monicity (or nonlinearity) into our system. In short, we
require the transition frequencies Ê0æ1

q and Ê1æ2
q be su�-

ciently di�erent to be individually adressable. In general,
the larger the anharmonicity the better. In practise, the
amount of anharmonicity sets a limit on how short the
pulses used to drive the qubit can be. This is discussed
in detail in Sec. IV D 3.

To introduce the nonlinearity required to modify the
harmonic potential, we use the Josephson junction – a
nonlinear, dissipationless circuit element that forms the
backbone in superconducting circuits46,47. By replacing
the linear inductor of the QHO with a Josephson junc-
tion, playing the role of a nonlinear inductor, we can
modify the functional form of the potential energy. The
potential energy of the Josephson junction can be derived
from Eq. (3) and the two Josephson relations

†Even though linear resonant systems cannot be addressed properly,
their long coherence times have proven them useful as quantum ac-
cess memories for storing quantum information, where a nonlinear
ancilla system is used as a quantum controller for feeding and ex-
tracting excitations to/from the resonant cavity modes45.

I = Ic sin(„), V = ~
2e

d„

dt
, (15)

resulting in a modified Hamiltonian

H = 4ECn2
≠ EJ cos(„), (16)

where EC = e2/(2C�), C� = Cs + CJ is the total ca-
pacitance, including both shunt capacitance Cs and the
self-capacitance of the junction CJ , and EJ = Ic�0/2fi is
the Josephson energy, with Ic being the critical current
of the junction‡. After introducing the Josephson junc-
tion in the circuit, the potential energy no longer takes
a manifestly parabolic form (from which the harmonic
spectrum originates), but rather features a cosinusoidal
form, see the second term in Eq. (16), which makes the
energy spectrum non-degenerate. Therefore, the Joseph-
son junction is the key ingredient that makes the oscilla-
tor anharmonic and thus allows us to identify a uniquely
addressable quantum two-level system, see Fig. 1(d).

Once the nonlinearity has been added, the system dy-
namics is governed by the dominant energy in Eq. (16),
reflected in the EJ/EC ratio. Over time, the super-
conducting qubit community has converged towards cir-
cuit designs with EJ ∫ EC . In the opposite case when
EJ Æ EC , the qubit becomes highly sensitive to charge
noise, which has proven more challenging to mitigate
than flux noise, making it very hard to achieve high co-
herence. Another motivation is that current technologies
allow for more flexibility in engineering the inductive (or
potential) part of the Hamiltonian. Therefore, working
in the EJ Æ EC limit, makes the system more sensitive
to the change in the potential Hamiltonian. Therefore,
we will focus here on the state-of-the-art qubit modalities
that fall in the regime EJ ∫ EC . For readers who are
interested in the physics in the EJ Æ EC regime, such
as the earlier Cooper-pair box charge qubit, we refer to
Refs. 48–51.

To access the EJ ∫ EC regime, one preferred approach
is to make the charging EC small by shunting the junction
with a large capacitor, Cs ∫ CJ , e�ectively making the
qubit less sensitive to charge noise – a circuit commonly
known as the transmon qubit52. In this limit, the super-
conducting phase „ is a good quantum number, i.e. the
spread (or quantum fluctuation) of „ values represented
by the quantum wavefunction is small. The low-energy
eigenstates are therefore, to a good approximation, local-
ized states in the potential well, see Fig. 1(d). We may
gain more insight by expanding the potential term of Eq.
(16) into a power series (since „ is small), that is

‡The critical current is the maximum supercurrent that the junction
can support before it switches to the resistive state with non-zero
voltage.

Ĥ = 4EC ̂n2 − EJ cos ̂θ

EJ ≫ EC ω = 8ECEJ
Designed regime:
(Potential dominated)
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FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum har-
monic oscillator, QHO), with inductance L in parallel with
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tential (dashed red) into sinusoidal (solid blue), which yields
non-equidistant energy levels. This allows us to isolate the
two lowest energy levels |0Í and |1Í, forming a computational
subspace with an energy separation ~Ê01, which is di�erent
than ~Ê12.
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To mitigate the problem of unwanted dynamics in-

volving non-computational states, we need to add anhar-
monicity (or nonlinearity) into our system. In short, we
require the transition frequencies Ê0æ1

q and Ê1æ2
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ciently di�erent to be individually adressable. In general,
the larger the anharmonicity the better. In practise, the
amount of anharmonicity sets a limit on how short the
pulses used to drive the qubit can be. This is discussed
in detail in Sec. IV D 3.

To introduce the nonlinearity required to modify the
harmonic potential, we use the Josephson junction – a
nonlinear, dissipationless circuit element that forms the
backbone in superconducting circuits46,47. By replacing
the linear inductor of the QHO with a Josephson junc-
tion, playing the role of a nonlinear inductor, we can
modify the functional form of the potential energy. The
potential energy of the Josephson junction can be derived
from Eq. (3) and the two Josephson relations

†Even though linear resonant systems cannot be addressed properly,
their long coherence times have proven them useful as quantum ac-
cess memories for storing quantum information, where a nonlinear
ancilla system is used as a quantum controller for feeding and ex-
tracting excitations to/from the resonant cavity modes45.

I = Ic sin(„), V = ~
2e

d„

dt
, (15)

resulting in a modified Hamiltonian

H = 4ECn2
≠ EJ cos(„), (16)

where EC = e2/(2C�), C� = Cs + CJ is the total ca-
pacitance, including both shunt capacitance Cs and the
self-capacitance of the junction CJ , and EJ = Ic�0/2fi is
the Josephson energy, with Ic being the critical current
of the junction‡. After introducing the Josephson junc-
tion in the circuit, the potential energy no longer takes
a manifestly parabolic form (from which the harmonic
spectrum originates), but rather features a cosinusoidal
form, see the second term in Eq. (16), which makes the
energy spectrum non-degenerate. Therefore, the Joseph-
son junction is the key ingredient that makes the oscilla-
tor anharmonic and thus allows us to identify a uniquely
addressable quantum two-level system, see Fig. 1(d).

Once the nonlinearity has been added, the system dy-
namics is governed by the dominant energy in Eq. (16),
reflected in the EJ/EC ratio. Over time, the super-
conducting qubit community has converged towards cir-
cuit designs with EJ ∫ EC . In the opposite case when
EJ Æ EC , the qubit becomes highly sensitive to charge
noise, which has proven more challenging to mitigate
than flux noise, making it very hard to achieve high co-
herence. Another motivation is that current technologies
allow for more flexibility in engineering the inductive (or
potential) part of the Hamiltonian. Therefore, working
in the EJ Æ EC limit, makes the system more sensitive
to the change in the potential Hamiltonian. Therefore,
we will focus here on the state-of-the-art qubit modalities
that fall in the regime EJ ∫ EC . For readers who are
interested in the physics in the EJ Æ EC regime, such
as the earlier Cooper-pair box charge qubit, we refer to
Refs. 48–51.

To access the EJ ∫ EC regime, one preferred approach
is to make the charging EC small by shunting the junction
with a large capacitor, Cs ∫ CJ , e�ectively making the
qubit less sensitive to charge noise – a circuit commonly
known as the transmon qubit52. In this limit, the super-
conducting phase „ is a good quantum number, i.e. the
spread (or quantum fluctuation) of „ values represented
by the quantum wavefunction is small. The low-energy
eigenstates are therefore, to a good approximation, local-
ized states in the potential well, see Fig. 1(d). We may
gain more insight by expanding the potential term of Eq.
(16) into a power series (since „ is small), that is

‡The critical current is the maximum supercurrent that the junction
can support before it switches to the resistive state with non-zero
voltage.
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FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum har-
monic oscillator, QHO), with inductance L in parallel with
capacitance, C. The superconducting phase on the island is
denoted „, referencing ground as zero. (b) Energy potential
for the QHO, where energy levels are equidistantly spaced
~Êr apart. (c) Josephson qubit circuit, where the nonlinear
inductance LJ (represented with the Josephson-subcircuit in
the dashed orange box) is shunted by a capacitance, Cs. (d)
The Josephson inductance reshapes the quadratic energy po-
tential (dashed red) into sinusoidal (solid blue), which yields
non-equidistant energy levels. This allows us to isolate the
two lowest energy levels |0Í and |1Í, forming a computational
subspace with an energy separation ~Ê01, which is di�erent
than ~Ê12.

poses a practical limitation†.
To mitigate the problem of unwanted dynamics in-

volving non-computational states, we need to add anhar-
monicity (or nonlinearity) into our system. In short, we
require the transition frequencies Ê0æ1

q and Ê1æ2
q be su�-

ciently di�erent to be individually adressable. In general,
the larger the anharmonicity the better. In practise, the
amount of anharmonicity sets a limit on how short the
pulses used to drive the qubit can be. This is discussed
in detail in Sec. IV D 3.

To introduce the nonlinearity required to modify the
harmonic potential, we use the Josephson junction – a
nonlinear, dissipationless circuit element that forms the
backbone in superconducting circuits46,47. By replacing
the linear inductor of the QHO with a Josephson junc-
tion, playing the role of a nonlinear inductor, we can
modify the functional form of the potential energy. The
potential energy of the Josephson junction can be derived
from Eq. (3) and the two Josephson relations

†Even though linear resonant systems cannot be addressed properly,
their long coherence times have proven them useful as quantum ac-
cess memories for storing quantum information, where a nonlinear
ancilla system is used as a quantum controller for feeding and ex-
tracting excitations to/from the resonant cavity modes45.

I = Ic sin(„), V = ~
2e

d„

dt
, (15)

resulting in a modified Hamiltonian

H = 4ECn2
≠ EJ cos(„), (16)

where EC = e2/(2C�), C� = Cs + CJ is the total ca-
pacitance, including both shunt capacitance Cs and the
self-capacitance of the junction CJ , and EJ = Ic�0/2fi is
the Josephson energy, with Ic being the critical current
of the junction‡. After introducing the Josephson junc-
tion in the circuit, the potential energy no longer takes
a manifestly parabolic form (from which the harmonic
spectrum originates), but rather features a cosinusoidal
form, see the second term in Eq. (16), which makes the
energy spectrum non-degenerate. Therefore, the Joseph-
son junction is the key ingredient that makes the oscilla-
tor anharmonic and thus allows us to identify a uniquely
addressable quantum two-level system, see Fig. 1(d).

Once the nonlinearity has been added, the system dy-
namics is governed by the dominant energy in Eq. (16),
reflected in the EJ/EC ratio. Over time, the super-
conducting qubit community has converged towards cir-
cuit designs with EJ ∫ EC . In the opposite case when
EJ Æ EC , the qubit becomes highly sensitive to charge
noise, which has proven more challenging to mitigate
than flux noise, making it very hard to achieve high co-
herence. Another motivation is that current technologies
allow for more flexibility in engineering the inductive (or
potential) part of the Hamiltonian. Therefore, working
in the EJ Æ EC limit, makes the system more sensitive
to the change in the potential Hamiltonian. Therefore,
we will focus here on the state-of-the-art qubit modalities
that fall in the regime EJ ∫ EC . For readers who are
interested in the physics in the EJ Æ EC regime, such
as the earlier Cooper-pair box charge qubit, we refer to
Refs. 48–51.

To access the EJ ∫ EC regime, one preferred approach
is to make the charging EC small by shunting the junction
with a large capacitor, Cs ∫ CJ , e�ectively making the
qubit less sensitive to charge noise – a circuit commonly
known as the transmon qubit52. In this limit, the super-
conducting phase „ is a good quantum number, i.e. the
spread (or quantum fluctuation) of „ values represented
by the quantum wavefunction is small. The low-energy
eigenstates are therefore, to a good approximation, local-
ized states in the potential well, see Fig. 1(d). We may
gain more insight by expanding the potential term of Eq.
(16) into a power series (since „ is small), that is

‡The critical current is the maximum supercurrent that the junction
can support before it switches to the resistive state with non-zero
voltage.
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ber of Cooper pairs transferred between the islands and the
gauge-invariant phase difference between the superconduct-
ors, respectively. By means of the additional capacitance CB,
the charging energy EC=e2 /2C! !C!=CJ+CB+Cg" can be
made small compared to the Josephson energy. In contrast to
the CPB, the transmon is operated in the regime EJ!EC.

The qubit Hamiltonian, Eq. !2.1", can be solved exactly in
the phase basis in terms of Mathieu functions, see, e.g., Refs.
#6,16$. The eigenenergies are given by

Em!ng" = EC a2#ng+k!m,ng"$!− EJ/2EC" , !2.2"

where a"!q" denotes Mathieu’s characteristic value, and
k!m ,ng" is a function appropriately sorting the eigenvalues;
see Appendix B for details. Plots for the lowest three energy
levels E0, E1, and E2, as a function of the effective offset
charge ng, are shown in Fig. 2 for several values of EJ /EC.
One clearly observes !i" that the level anharmonicity depends
on EJ /EC, and !ii" that the total charge dispersion decreases
very rapidly with EJ /EC. Both factors !i" and !ii" influence
the operation of the system as a qubit. The charge dispersion
immediately translates into the sensitivity of the system with
respect to charge noise. A sufficiently large anharmonicity is
required for selective control of the transitions, and the ef-
fective separation of the Hilbert space into the relevant qubit
part and the rest, H=Hq ! Hrest. In the following sections,
we systematically investigate these two factors and show that
there exists an optimal range of the ratio EJ /EC with suffi-
cient anharmonicity and charge noise sensitivity drastically
reduced when compared to the conventional CPB.

B. The charge dispersion of the transmon

The sensitivity of a qubit to noise can often be optimized
by operating the system at specific points in parameter space.

An example for this type of setup is the “sweet spot” ex-
ploited in CPBs #21$. In this case, the sensitivity to charge
noise is reduced by biasing the system to the charge-
degeneracy point ng=1/2, see Fig. 2!a". Since the charge
dispersion has no slope there, linear noise contributions can-
not change the qubit transition frequency. With this proce-
dure, the unfavorable sensitivity of CPBs to charge noise can
be improved significantly, potentially raising T2 times from
the nanosecond to the microsecond range. Unfortunately, the
long-time stability of CPBs at the sweet spot still suffers
from large fluctuations which drive the system out of the
sweet spot and necessitate a resetting of the gate voltage.

Here, we show that an increase of the ratio EJ /EC leads to
an exponential decrease of the charge dispersion and thus a
qubit transition frequency that is extremely stable with re-
spect to charge noise; see Fig. 2!d". In fact, with sufficiently
large EJ /EC, it is possible to perform experiments without
any feedback mechanism locking the system to the charge
degeneracy point. In two recent experiments using transmon
qubits, very good charge stability has been observed in the
absence of gate tuning #22,23$.

Away from the degeneracy point, charge noise yields
first-order corrections to the energy levels of the transmon
and the sensitivity of the device to fluctuations of ng is di-
rectly related to the differential charge dispersion !Eij /!ng,
as we will show in detail below. Here Eij %Ej −Ei denotes
the energy separation between the levels i and j. As expected
from a tight-binding treatment, the dispersion relation Em!ng"
is well approximated by a cosine in the limit of large EJ /EC,

Em!ng" & Em!ng = 1/4" −
#m

2
cos!2$ng" , !2.3"

where

#m % Em!ng = 1/2" − Em!ng = 0" !2.4"

gives the peak-to-peak value for the charge dispersion of the
mth energy level. To extract #m, we start from the exact ex-
pression !2.2" for the eigenenergies and study the limit of
large Josephson energies. The asymptotics of the Mathieu
characteristic values can be obtained by semiclassical
!WKB" methods !see, e.g., Refs. #24–26$". The resulting
charge dispersion is given by

#m & !− 1"mEC
24m+5

m!
' 2

$
( EJ

2EC
)m

2
+ 3

4
e−'8EJ/EC, !2.5"

valid for EJ /EC!1. The crucial point of this result is the
exponential decrease of the charge dispersion with 'EJ /EC.

The physics behind this feature can be understood by
mapping the transmon system to a charged quantum rotor,
see Fig. 3. We consider a mass m attached to a stiff, massless
rod of length l, fixed to the coordinate origin by a frictionless
pivot bearing. Using cylindrical coordinates !r ,% ,z", the mo-
tion of the mass is restricted to a circle in the z=0 plane with
the polar angle % completely specifying its position. The
rotor is subject to a strong homogeneous gravitational field
g=gex in x direction, giving rise to a potential energy
V=−mgl cos %. The kinetic energy of the rotor can be ex-
pressed in terms of its angular momentum along the z axis,

FIG. 2. !Color online" Eigenenergies Em !first three levels, m
=0,1 ,2" of the qubit Hamiltonian !2.1" as a function of the effec-
tive offset charge ng for different ratios EJ /EC. Energies are given
in units of the transition energy E01, evaluated at the degeneracy
point ng=1/2. The zero point of energy is chosen as the bottom of
the m=0 level. The vertical dashed lines in !a" mark the charge
sweet spots at half-integer ng.

CHARGE-INSENSITIVE QUBIT DESIGN DERIVED FROM… PHYSICAL REVIEW A 76, 042319 !2007"

042319-3

Other (control) parameters

Ĥ = 4EC ( ̂n − ng)
2

− EJ cos ̂θ

ng → Gate charge

J. Koch et al., Phys. Rev. A (2007)

Transmon: insensitive to charge noise



qubit0 π-
Control and Coherence Time Enhancement of the 0-⇡ Qubit 3

Figure 1. The 0-⇡ qubit in a nutshell. (a) Circuit diagram for the symmetric 0-⇡ qubit, with pairwise identical circuit elements. (b) Pictorial
illustration of co-tunneling of pairs of Cooper pairs across the two junctions, explaining the approximate ⇡-periodic potential energy, and an
equivalent circuit element with only a single degree of freedom ✓.

Introducing the e↵ective impedances Z� =
p

(L/2)/C� and Z✓ =
p

(LJ/2)/C✓, where LJ = '2
0/EJ , the 0-⇡ regime

is defined by
Z✓ ⌧ RQ ⌧ Z�, (3)

where RQ = h/(2e)2 ' 6.5 k⌦ is the superconducting quantum of resistance. We say that a device is in the “moderate,”
or “deep” 0-⇡ regime, depending on the degree to which the impedance relations are satisfied. The problem of
fabricating a qubit in the deep 0-⇡ regime, includes that of realizing a high-impedance superinductor [26–28].

2.2. Exciton tunneling picture

Figure 1 (b) shows an approximate equivalence between the 0-⇡ circuit (to the left) and a circuit element describing
tunneling of pairs of Cooper pairs (to the right). The co-tunneling of Cooper pairs or “exciton” in the 0-⇡ circuit
can be understood as a consequence of a circuit layout combining branches of superinductors (high impedance) and
large capacitances (low impedance). Here, we schematically illustrate how tunneling of a Cooper pair across the left
junction of the 0-⇡ circuit is “mirrored” by the simultaneous tunneling of a Cooper pair across the right junction: A
Cooper pair tunneling event across the left junction leads to a build up of �2e negative charge on one side of one of
the large capacitors, which must be compensated for by a positive charge on the other side. This can happen through
a positive +2e Cooper pair tunneling event across the right junction in the opposite direction. The co-tunneling of a
negative and positive Cooper pair in opposite direction together form an e↵ective exciton tunneling event [21].

Note that no current flows through the superinductors in the limit of L ! 1 (Z�/RQ ! 1). Superinductors
are, however, crucial in defining the non-trivial topology of the circuit, as in their presence we can identify two
distinct circuit islands shown as blue (bottom) and violet (top) in Fig. 1 (b). Due to the simultaneous co-tunneling of
Cooper pairs across the two junctions, we expect the potential energy to be ⇡-periodic rather than 2⇡-periodic in the
superconducting phase di↵erence across the two islands, in the limit L ! 1. This expectation can be verified by an
e↵ective model for the ✓ degree of freedom alone, derived in Appendix B following a Born-Oppenheimer approach
and resulting in the e↵ective Hamiltonian

He↵
0�⇡ = 4EC✓ (n✓ � n✓g)

2 � E2('ext) cos 2✓ � E1('ext) cos ✓, (4)

where EC✓ = e2/2C✓ and n✓g are, respectively, the charging energy and the o↵set charge corresponding to the ✓
coordinate. The flux dependence of the potential energy is given by the coe�cients E2('ext) = E↵ � E� cos('ext)
and E1('ext) = E� cos('ext/2), where E↵, E� and E� are constants dependent on the qubit design parameters and
studied below.

In the moderate-to-deep 0-⇡ regime, the relations E↵ � EC✓ and E↵ � E�, E� are satisfied. The e↵ective one-
dimensional potential in Eq. (4) is shown in Fig. 2 (a) for a set of 0-⇡ circuit parameters. As a function of flux, the two
nearly degenerate minima are detuned one with respect to the other, except at 'ext = ⇡, where the potential becomes
perfectly ⇡-periodic. With E2 � EC✓ , tunneling between the two wells is highly suppressed. In the presence of a
small, positive E1 (�⇡ < 'ext < ⇡), the lowest energy state is localized in ✓ = 0 and a nearly degenerate first excited
state is localized in ✓ = ⇡. At 'ext = ⇡, the two minima at ✓ = 0 and ✓ = ⇡ are exactly degenerate and the logical
wavefunctions become hybridized independently of the circuit design parameters. For E1 smaller than or comparable
to the tunneling rate between the potential wells, hybridization can also occur at 'ext , 0.
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degeneracies independent of energy parameters
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