A Hitchhikers Guide to the Inversed RICH Micromegas

Joint Seminar 2022

Maximilian Rinnagel

AG Biebel

8th June 2022

Prelude: The Cherenkov Effect

On a microscopic level:

- Medium with refractive index n(w) > 1
- Traversing charged particle with $\beta = \frac{v}{c} > \frac{1}{n}$
- Polarisation of medium in a conic shape
- Photon emission due to constructive interference
- Emission angle dependent on photon frequency :

$$cos\theta_{C}(\omega) = (\beta * n(\omega))^{-1}$$

Particle Identification

- Cherenkov Detectors established in large systems: HADES, BELLE II, LHCb, ALICE
 - Momentum determination *p* of charged particle *q* (magnetic field) via Lorentz Force curvature *r*

• Determination of particle mass via Cherenkov angle

measurement
$$m = \frac{p}{\beta \gamma}$$

→ OUR GOAL:

p (GeV/c)

- → Momentum measurement via the Cherenkov effect (known particle e.g. cosmic µ)
 - Simultaneous position and momentum measurement
- Application: Beam Monitoring

in Medical or High Energy Physics

Maximilian Rinnagel Joint Seminar 2022

ALI-PERF-11754

Cherenkov Photon Yield

Frank-Tamm formula

Number of photons per frequency $(d\omega)$ and unit length (dx) in the radiator :

$$\frac{d^2 N}{d\omega dx} = \frac{q^2}{4\pi} \omega \alpha (1 - \frac{1}{n^2 \beta^2})$$
$$\sin \vartheta_c^2$$

Continuous photon emission spectrum (Integrated):

$$N_{ph} \sim n \cdot \beta \cdot \omega^2 \cdot d$$

 \rightarrow Guidelines for Cherenkov medium (High yield N_{ph}):

- High radiator thickness d•
- High refractive index of the radiator n٠
- Materials with far UV photon emission (large ω) •

 \rightarrow e.g. Fluoride crystals (MgF₂, LiF, CaF₂)

light in a

Typical Ring Imaging Cherenkov Detectors (RICH)

Pb-Pb event display

Example: HMPID of ALICE

- Consisting of a radiator, photon conversion layer, electron amplification stage
- Requirements:
 - Fine position sensitivity
 - Single Photon Resolution
- Determination of Ring diameter R
 - → Cherenkov angle $\vartheta_c = \arctan(\frac{R/2}{D})$
- CHALLENGE: seperate signal from noise

5

Our Detector Schematic

Detector Schematic: Cherenkov Radiator

Based on similar working Detector (Picosec)

Sim: Cherenkov Photons inside the Radiator

Simulated photon position at the Cr layer

Simulation of Photons in LiF:

- Radiator: $n \sim 1.57$; d = 20mm
- Muon: $E_{\mu} = 1.5 \ GeV$
- Simulated X-Y Position on bottom of the radiator
- → Cone Radius [perpendicular]: ~ 20mm
- → Creation of 1500 Cherenkov Photons

Detector Schematic: Photocathode

Detector Schematic: Photocathode

Photocathode:

4nm Chromium (Cr) layer:

- Cr as sticky surface for conversion layer
- HV contacting and usage as cathode
- Reflection measured of 30% in agreement with literature

15nm Caesium Iodide (Csl) layer:

- Photoconversion via photo effect to e-
- e-elevated to the conduction band: $E_{gap} = 5.9 eV$
- Mean QE of Csl: ~7% (range: 5.9 11.5 eV)

 \rightarrow high overlap with LiF transmission region \odot

→ Conversion of 75 photo electrons

Detector Schematic: Micromegas (e-Amplification)

$$x = \frac{\sum_{strip} Q_{strip} * strip}{Q_{total}}$$

- Drift region:
 - Low electrical field (~ 600 V/cm)
 - Primary lonziation of the gas by µ
 - Photo-e- & µe- drift towards a micro-mesh
- Micro-mesh: 0 V, e- funneled through holes
- Amplification region:
 - High electrical field (~ 50 kV/cm)
 - Multiplication of the initial electron by

Townsend avalanches

 \rightarrow Anode Strips:

Position & Timing reconstruction with a

segmented anode (2D strips readout)

11

Design: Electron Amplification (Micromegas)

Photocathode Production

- 1. Evaporation in a vacuum chamber at TUM of Cr/CsI
- 2. Transportation of radiator in vacuum dessicator
- 3. Detector assembly in a glove box with Ar atmosphere
 - → Required due to hygroscopic nature of CsI

Detector assembly

1. Contact between LiF Cr layer and HV Supply

via a copper tape and silver paste

2. Gas frame on top of anode \rightarrow We are finished!

NOW its time for measurements

Measuring Cherenkov Cones in LiF

 \rightarrow Compare angle & hit position with CHMM signal

What about the Photons? (Signal shape)

Muon signals ("normal" Micromegas (MM))

- Visible in Micromegas detector (also in Cherenkov MM)
- ~4-12 hit strips \rightarrow 1-3mm broad (0.25 mm pitch)
- Duration: few time bins (5*25ns)

CHMM (signature)

Typical Signature (Cherenkov MM):

- Reference hit position determined by reference detectors
- Multiple cluster ~3-4 cm (~140 strips)
- muon cluster (prolonged) and late signals (hint @ photons)

Timing of the Muon- and Photoelectrons

- Muon electrons are equally distributed on drift space
- Photoelectrons arriving ALL on the same time longest time to arrive
- Small photopeak in data possibly due to age of Csl
 - →Strong hint for Cherenkov photons ©©©

Position of secondary Cluster

Joint Seminar 2022

Number of Cluster per Events

- Typical Micromegas: ~1.3 Cluster
 - → Expected 1 cluster (likely noise)
- Multiple cluster in Cherenkov detector (5-9)
 - → Possibly photon cluster

Distance between muon & 2ndary cluster

- Cherenkov Micromegas:
 - mean distance ~25 mm [many angle]
 - \rightarrow Very close to expectation for the

Cherenkov radius (22 mm [0 deg]) 😊

→ More detailled investigation necessary

How can we extract the Cherenkov angle?

50

Two Separate 1D Information per event:

Maximilian Rinnagel Joint Seminar 2022

2D conic Cherenkov shape

- Centre of Ellipse x_{μ} (muon hit position)
- Cherenkov Angle ϑ_c (radius R)
- Muon incident angle α_{μ}

Reconstruction Algorithms: Analytic Fit

Analytic Fit of the Photon Intensity (1D)

- Work in progress by Edis (first attempt)
- Determination of radius R, incident angle of the muon α_{μ} ,

Cherenkov angle ϑ_c

- Caveat: few data points (~70 photons)
- Alternative: Circular Hough Transform (CHT)
 - Finding intersection of circles in a parameter space
 - \rightarrow Circles in data determined
 - \rightarrow Caveat: 2x1D strip information ordered as (x,y)

20

Improvement: Segmented Anode

- Multiple Particles arriving at the same time
 - \rightarrow No unique 2D Position reconstruction possible

 $\overline{\mathbf{S}}$

Pixel Micromegas Anode (Felix)

- Unique position for multiple particles
 - 1 mm pitch @ 10x10 cm²
 - \rightarrow difficult mapping (10k electr. channels)
 - 10 x 10 mm Pixel: unprecise position

Improvement: Segmented Anode

- General design will allow for position and momentum reconstruction
- First prototype is functional:
 - Electrons can be extracted from the Cr cathode
 - Characteristic Photon signatures visible
- Next: second prototype using 100mm CaF2 crystal covering the whole active detector area
- Investigation of reconstruction algorithms (especially for strip readout; Edis)
- Pixel Readout will be advantageous (Felix Utsch) ...
- ... combining with xyv-Readout (Christophs talk) for an unambigous position determination of individual photons with a high spatial resolution

23

24

Search for the Radiator

Variation of the Refractive Index

- $n = f(\omega) \rightarrow \text{larger } \Delta n$
 - \rightarrow Angle variance $\Delta \theta_c$ of created photons
 - \rightarrow Low desirable (lower Δp)

 \rightarrow With high Δn hardly distinguishable

if angle or position of photons in radiator

Transmission into far ultraviolet advantageous

 \rightarrow increased photon yield

- → MgF & LiF $\Delta \theta_c \sim 3^\circ$ are our candidates
- → CaF also behaving nicely

Working Principle: Photocathode

(1) ALKALI PHOTOCATHODE

(source: Hamamatsu)

λ(nm) 200 150 e 1.0 T (Quarzglas) VACUUM LEVEL 0.8 ΕA Ο 0.6 T (CaF₂) T oder WORK FUNCTION **W** Q (TMAE) 0.4 EG LIGHT hv FERMI LEVEL 22 0.2 Q (Csl) Q (TEA) 0 VALENCE BAND 100 He Ne iC₄H₁₀ C_2H_6 50 Gas (1 bar) Quantum Efficiency [%] ¹⁴Source: $CF_4 C_2F_6 C_6F_{14}$ (>56°C) γ_{th} ₁₂⊞amamatsu RADIATOREN C₅F₁₂(>30°C) 10 He (2.7K) 5 10 flüssig Ne (25K) Ar (85K) C₆F₁₄(20°C) 1.45 Festkörþer-Radiatoren ► NaF 1.40 LiF γ_{th} 1.35 MgF 1.30 CaF_2 1.25 10 11 6 9 6 10 7 C6F14 8 9 11 E_{ph}(eV) Si02 BaF CaF TMAE TEA Energy [eV] Quarzfenster und CH₄

Maximilian Rinnagel Joint Seminar 2022

100

(a)

(b)

Radiatortransmissions

bereiche

(c)

12

Photon-

nachweis

Test of the Cr adhesion layer

Measured Data with the prototype detector

• Reconstruction of muons on the

active detector area

• Expected strip (92 – 292) strips from

s50mm radiator

- → Reconstruction of circular radiator shape
- \rightarrow Chromium cathode part of the detector

working 😊

Reconstruction Algorithms: Circular Hough Trafo

Maximilian Rinnagel Joint Seminar 2022

Future possibility: Circular Hough Transform

Points on circle with radius:

$$(x-a)^2 + (y-b)^2 = r^2$$

- \rightarrow Transformation into parameter space (*a*, *b*, *r*)
- Determination of Radius R & centre of circle x_µ
- Robust to noise (used in ALICE, HADES)
- Caveat: 2x1D strip information has to be ordered

as (x,y) before (or with) Hough Trafo

