Photon Detection (Position Sensitive) by Structured Converter Layers in Micro-Pattern Gaseous Detectors

Joint Particle Physics Group Seminar 29.6.2022

Motivation

- Micro-Pattern Gaseous Detector: extremely good spatial resolution and high-rate capability
- but: low gas density \rightarrow poor detection efficiency for photons
- idea: increase detection efficiency by using several solid converter layers

multiple converter layers

multiple converter layers in detector

The GEM Detector Principle

- Gaseous Electron Multiplier
- amplification by GEM foils:

- copper plated Kapton foils
- electron amplification factor per foil: 20 \rightarrow 3 foils \rightarrow 20³ = 8000

advantages: → excellent spatial resolution
 (< 100 μm)
 → high-rate capability

Photon Detection Process

- first attempt: optimize detection for $E_{\gamma} = 59 \text{ keV}$
- solid copper layer enhances detection efficiency compared to pure argon due to:
 - \rightarrow Photoelectric effect: $\sigma_{ph} \sim Z^5$
 - → higher mass attenuation coefficient $\mu(Ar) \approx 0.001 \text{ cm}^{-1}$ $\mu(Cu) \approx 20 \text{ cm}^{-1}$

aim: enhance detection efficiency by **multiple** solid converter layers with high-Z coating

Simulation: Photon Conversion Efficiency

- Geant4 simulation
- on top of GEM foil: 0-4 stacked layers vs. 4 tilted layers
- 20 µm thick copper layers
- irradiation with 50 keV photons
- simulated detection of electrons exiting converter layer
- $\rightarrow \epsilon = 0.5 \%$ per copper layer 20 layers $\rightarrow \epsilon = 10 \%$

Simulation: Principle of Electron Guiding

Geometry: Tilted Converter Cathodes

- electron guided by voltages $diff_x$ and $diff_y$
- electron drift direction described by electric field vectors
- voltage dependent electron extraction (on the right for $diff_y = 400 \text{ V}$)

Alternative: Perpendicular Setup

Shown: 5 different X-ray events

- 1. high guidance efficiency (optimized electric field)
- 2. high detection efficiency when using many layers, $\varepsilon = 0.5$ % per layer
- 3. 3D tracking for potential reconstruction of point sources
 - x, y, z resolution necessary
 - y: trigger on conversion electrons and drift time (complex) or by different geometry (slide 23)

Measurement Setup

Electron Guiding

 \rightarrow structured copper-plated layers with vertical guiding E-field:

- copper strips on PCB
- connected with resistors

\rightarrow positioning in detector

- 5 layers with a certain distance
- perpendicular arrangement to anode

Measurement Results (without collimator)

x, z - anode plane

- irradiation with Am-241 (59.5 keV photons)
- $diff_y = 400 \text{ V} \text{ and } diff_x = 0 \text{ V}$
- red boxes: assumed converter layer position
- significantly more hits between two converter layers
- FR4 thickness: 1.5 mm

 \rightarrow comparison with simulation

1. Electric Guidance Field Simulation

Geant4:

- photon-matter interaction
- creation of electrons
- get electron position

ANSYS:

- creation of potential distribution
- electrons drift perpendicular to equipotential lines
- here shown for: $diff_y = 400 \text{ V}$, $diff_x = 600 \text{ V}$

Garfield++:

- imports electron position and electric field
- simulates electron drift

1. Comparison of Results: Profile

measurement

• both for $diff_v = 400 V$ and $diff_x = 0 V$

simulation

- in both cases exponential peak height decrease
- agreement between simulation and measurement

40

Position x [mm]

10

20

30

50

1. Comparison of Results: diff_x influence

simulation

measurement

- both show maximum around $diff_x = 0$ V as expected
- shift in measurement due to misalignment of layers
- in simulation extraction of nearly 100 % achievable due to simplifications (long drift time of electrons with no collisions) but not in measurement \rightarrow discrepancies

1. Comparison of Results: diff_y Influence

- allowance of large drift time also lead here to differences in $diff_x = 0$ V behavior
- same behavior for simulation and measurement:
- \rightarrow highest guidance efficiency for diff_x = 0 V and high diff_y

2. Photon Conversion Efficiency

Investigation of 3 different layer types

- copper layer made of 125 μm FR4 and 35 μm Cu on one side

 \rightarrow simpler design, useful for pre-studies

 structed copper layers made of FR4 (1.5 mm and 0.3 mm) and 35 μm Cu strips on both sides

 \rightarrow homogeneous electric guidance field

2.1 Copper Layers: Setup

Measurement setup: 5 Layers with FR4 facing source, copper facing away ($\sigma_{ph} \sim Z^5$); additional cathode on top (not shown)

Applied voltages:

U_{GEM30}

- converter plate at same potential as cathode
- diff_y guides down electrons

2.1 One Layer: Comparison

- electric potential distribution guides electrons away from layer
- measurement and simulation show agreement for $diff_v = 500 V$
- differences between simulation and measurement due to discrepancies in geometry, source characterization (collimator), simplification of simulation (no momentum)

2.1 One Layer: Efficiency

- measurement for same number of events: high diff_y for enhanced efficiency
- comparison of no layer and one layer in conversion area: frequency increases by a factor of up to 2 \rightarrow layers increase conversion efficiency

2.1 Two Layers: Distance

- variation of distance for two copper layers
- for comparison take frequency per area between layers
- smaller distance has tendency of higher frequency

2.1 Five Copper Layers

- for five layers there is an exponential peak height decrease
- take measured frequency per area in each gap for different voltages \rightarrow later used for comparison
- \rightarrow these layers allow for increased photon detection
- \rightarrow but the electric guidance field is improvable

2.2 Structured Copper Layers: Measurement

Set the set of the se

measurement

structured layer

- $diff_y = 500 \text{ V} \text{ and } diff_x = 0 \text{ V}$
- structured copper layers with 0.3 mm FR4 carrier material and no additional cathode
- same experimental result as for copper layers:
 - exponential peak height decrease
 - highest frequency for large diff_y
- \rightarrow comparison of both layer-types

2.2 Comparison of Layer-Types

2 layer-types with distance of 13 mm: copper (c) layers and structured copper (cs) layers

- nearly same frequency per area
- for larger diff_y structed layers provide higher frequency

 \rightarrow although structured copper layers have preferable electric field the measured frequency is nearly the same for the copper layer due to thinner FR4 layer (300 µm vs. 125 µm)

2.3 Structured Layers: FR4 Thickness

- measured frequency per area in each gap for both thicknesses for structured copper layers
- frequency decreases with each layer
- \rightarrow measured frequency per area about a factor of 2.5 higher for 0.3 mm FR4

2.4 Comparison of All Layers

• comparison of all layer types for $diff_y = 600 V$ \rightarrow thin FR4 material provides high efficiency

Katrin Penski

У

3. Theoretical 3D Position Reconstruction

Basic idea:

- use tilted layers \rightarrow defines y-position by x-measurement
- can be reconstructed by the 2D GEM readout
- \rightarrow under investigation

Achieved:

- optimized fields
- higher efficiency

Summary and Outlook

- \rightarrow successful pre-studies \rightarrow cathode works as intended
- \rightarrow good agreement of simulation and measurement
- \rightarrow diff_x = 0 V and high diff_y lead to high efficiency
- \rightarrow use small distance between layers
- \rightarrow thinner FR4 layer increases detection efficiency

Outlook

- improvement of structured cathode regarding thickness of carrier material and copper, layer distance and design for further increasement of conversion efficiency
- 3D position reconstruction by tilted conversion layers

Thank you for your attention!

Literature

[1]: Fabio Sauli. The gas electron multiplier (gem): Operating principles and appli- cations. Nuclear Instruments and Methods in Physics Research Section A: Ac- celerators, Spectrometers, Detectors and Associated Equipment, 805:2–24, 2016. <u>https://doi.org/10.1016/j.nima.2015.07.060</u>, [Online; Accessed: 5.10.2021]

[2]: Deutsches Elektronen-Synchrotron DESY. FLC - Forschung mit Lepton Collidern – GEM Gas Electron Multipliers (GEMs), <u>https://flc.desy.de/tpc/basics/gem/index_eng.html</u>, [Online; Accessed: 5.10.2021]

[3]: Zabołotny, W.M., Kasprowicz, G., Poźniak, K. et al. FPGA and Embedded Systems Based Fast Data Acquisition and Processing for GEM Detectors. J Fusion Energ 38, 480–489 (2019) doi:10.1007/s10894-018-0181-2, <u>https://doi.org/10.1007/s10894-018-0181-2</u>, [Online; Accessed: 5.10.2021]
[4]: National Institute of Standards and Technology: XCOM: Photon Cross Sections Database. https://www.nist.gov/pml/xcom-photon-cross-sections-database, [Online, Accessed: 5.10.2021]

Appendix

→ photon conversion: $1e^-$ → inverted Micromegas amplification: $\approx 10^5 e^-$ → transparency: $\approx 10^2 e^-$ → further ionization: $\approx 10^3$ drift e^-

 \rightarrow voltages and geometries have to be optimized

Appendix

Optimization of structured converter foils

- coating, thickness, design
- minimization of dead material
- direction memory of photoelectric effect:

$$J(\theta,\beta) = A \cdot \beta^2 \sin^2 \theta \left(\frac{\sqrt{1-\beta^2}}{(1-\beta\cos\theta)^4} - \frac{1-\sqrt{1-\beta^2}}{2\sqrt{1-\beta^2}(1-\beta\cos\theta)^2} + \frac{2(1-\sqrt{1-\beta^2})}{4(1-\beta\cos\theta)(1-\beta\cos\theta)^3} \right)$$

