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Current Monte Carlo Simulation data flow

MC —>» Det.Sim —>» Reco Analyse [----

computationally expensive Fail

Simulation with smart background selection

Pass*

MC | Det. Sim —>»  Reco Analyse ---- >

Fail* computationally expensive Fai

Previous Works:
- PhD Thesis: Hadronic Tag Sensitivity Study of B - K®vv and Selective Background Monte
Carlo Simulation at Belle Il, James Kahn, 2019

« Talk: Selective background Monte Carlo simulation at Belle I, James Kahn, CHEP 2019 510
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Traditional programming

Data e
Computation —— > Results
Program ——

Machine Learning Approach
Data —_— )
Computation ——> Program
Results —_—

* No need for understanding and describing the detailed mechanisms
* FEasier to achieve
* Beyond human limits of knowledge and observation

e Simulation with high efficiency

* Large datasets available
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Unsupervised Generative

Our Task:

* In: Particle decay generated by Monte Carlo

« Out: Whether it will pass the skim afterwards Supervised, Classification
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— TrUFh Estimation:
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CB y 1 2 3 i

X
with X = <x2>
x3

g Loss: the difference between estimation and truth
-10 L (§—y)
3 Cost: the average of losses over all the samples
-20 m m
def 1 1 A 2
_4 s 3 ; y J(W,b) = %z Li = %E(Y(xi) —y(x))
i=1 i=1
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20

—— Estimate ~ def 2 3 def WX h = Wi X: + b
CB y = b + w1 X + WoX + W3 X~ = | — i

X
with X = <x2>
x3

g Loss: the difference between estimation and truth
-10 L (§—y)
3 Cost: the average of losses over all the samples
-20 m m
def 1 1 A 2
_4 s 3 ; y J(W,b) = %z Li = %E(Y(xi) —y(x))
i=1 i=1

Training: find proper parameters W, b to minimize the cost
-> Best model
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20

—— Estimate ~ def 2 3 def WX h = Wi X: + b
CB y = b + w1 X + WoX + W3 X~ = | — i

X
with X = <x2>
x3

Loss: the difference between estimation and truth
~10 L (§-y)?

Cost: the average of losses over all the samples

defim ,_im"._ )2
! J(W,b>=2m;u—2m;(y(xl> y(x)

Analytic solution: W* = (XTX)"1xTy

Complexity: 0(n>) -> Best model

i) Training: find proper parameters W, b to minimize the cost
Complexity: 0(n?)
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Update parameters in the opposite direction of the gradient of loss function in each step
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Point of convergence, i.e.
where the cost function is
at its minimum
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Update parameters in the opposite direction of the gradient of loss function in each step

Loss / Starting point f w,b (x)

1000 —

800 - 750 FROSCS
x 500 -
600 - 250 A
- Q 0

400 - -250 -

=500 -
200 - -750 A

1000

0 1000 2000 3000 4000 5000
X

:..

l Value of weigh;

Point of convergence, i.e.
where the cost function is
at its minimum

Various of algorithms based on GD:
* Batching: MiniBatchGD, StochasticGD, -

* Momentum: Nesterov, Adam, -
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* Regression with boundary [0,1]
* Represent the probability of an event occurring
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Probability of passing exam versus hours of studying

1.00

* Regression with boundary [0,1]
* Represent the probability of an event occurring
* Generated by logistic function:

g(z) = —

1+e~ %2

o
39
o1

with z = w - X + b called “logit”

o
3
o

Basic Sigmoid Function

Probability of passing exam

1.0 - - =2 L= — ==

o
o
o

0.00

Hours studying

* Classification achieved by introducing a threshold
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Logistic
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0,otherwise s
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h Attention Networks
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* Sigmoid functions (Logistic, Tanh)
* Bounded - ideal for classification
* Gradient vanish easily — harmful for
hidden layers

z,z>0
az,otherwise
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Logistic Tanh <
1.0 1.0
i) / o5l olz)=t * Sigmoid functions (Logistic, Tanh)
l+e g . * Bounded — ideal for classification
. —]0 _5 . 5 IO . . .
* Gradient vanish easily — harmful for
-0. -
hidden layers
-10 -5 0 5 10 0
(@) ®) « (Partially) Linear activations
RelU LeakyRﬁ)LU(a=0.2) * Fast to calculate
10 * Allowing large values
2,250 5 LeakyReLU(z)={*0 * Not differentiable at 0 — some
ReLU(z): ’ az,otherwise . .
0.otherwise 5 m — e BT solutions available
-5
-10 -5 % 5 10 -10
() (d)
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Tree Structures of Particle Decay

N PDG id
Graph Neural Network Features () anti-B0
() COEEN O C) OICEIOXO
Dataset: CIOIOIOICEICEIICICIICIOIOIO OE>
* Each event (each Graph): 10500 Cane) Gs) ) ()
> Decay of Y (4S) » BYBY Gond) G ()

» Particles (Nodes)
» Mother/Daughter relations (two way Edges) + self loops
O Each particle (each Node)
» PDG ids
> 8 Features: Production time, Energy, Position (3d), Momentum (3d)
* Labels per event: Pass/Fail after the reconstruction of B decays (FEI skims)
* Other event level attributions for further analysis: e.g. My, etc.
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Information from all of its neighbours and itself
* Each pair has an attention weight «;;, calculated

~ from the information of both nodes h; and flj

* Several sets of attention weights are trained
parallelly to extract different aspects of
correlation between nodes

softm

Py
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* Update the node ﬁl by adding up the
concat/avg information from all of its neighbours and itself
:@ * Each pair has an attention weight «;;, calculated

~ from the information of both nodes k; and fzj

* Several sets of attention weights are trained
parallelly to extract different aspects of
correlation between nodes

softmax

)

Global Attention Pooling (GAP)

* Aggregate the information from all the nodes with learned attention weight for each node
-> Deconstruction of graph structure
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Y(45)

Darker 2 More attention
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False-Positive (FP) True-Negative (TN) 14/19
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Weighting Methods to Reduce Bias

_ Sampling Method Reweighting Method

As probability to keep As score for selection
P I NE L event randomly according to fix threshold
Weight Inverse of NN output Diegetsel Wit G Welfp e

another classifier

Loss to train NN Speedup Binary cross entropy
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--Improvement of computation time to produce the same

effective number of events with the help of NN filter:

tno_ filter

Speedup: s =

trilter

0 wl)z

Effective Sample Size: Ners = > o7
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loss

Metric: Binary Cross Entropy

-- Amount of information provided by the prediction

HG) = = ) yi(0)log(pi(x)

=1
—y(x) log(p(x)) — (1 — y(x))log(1 — p(x))
_ {—mg(p(x)), for y(x)=1

—log(1 —p(x)), fory(x)=0

0.0 0.2 04 06 0.8 1.0

predicted probability
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Performances on another skim with sampling E\W Ej

Predictions during training Predictions in test workflow Sa _
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Speedup in practice

18/19



LUDWIG-

MAXIMILIANS-

UNIVERSITAT
MUNCHEN Summary

Results:

Graph Attention Networks can learn the information from particle decay trees
and help to simulate skims with low retention rate at early stage

Bias is avoided with sampling method while a speedup of factor 2 can still be
maintained.

Reweighting method can reach much higher speedup up to 6.5 but will still
have some bias in the variables that are not used in the training of the extra
classifier.

SmartBKG can be invested to other skims
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Thank You for your Attention

Boyang Yu, Nikolal Hartmann, Luca Schinnerl, Thomas Kuhr
Joint Seminar of Particle Physics Groups, July 13th, 2022
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Smart Background Simulation with Graph Neural Networks
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MUNCHEN T Backup: Network Structures

PDG ids
PDG ids

Particle Features Embedding
Particle Features Embedding

Concatenate
Concatenate
Dense Layers(3) Adjacency Matrix(Graph)
Adjacency Matrix(Graph)

~

Dense Layers(3) -

~

GATConv Layers(num_heads)(n_layers)

—

GraphConv Layers(n_layers) [

Features |
Average over heads

. — Separated
Global Average Pooling °

Global Global Average Pooling
— = 7 Features =T — —

— -~
—_— -~

Dense Layer

Dense Layer

1D Output

1D Output

GCN
(sep) GAT(sep)
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Backup: Network Structures

PDG ids PDG ids

Particle Features Embedding

Particle Features Embedding

Concatenate

Adjacency Matrix(Graph)

Concatenate

GATConv Layer(num_heads)
Node

Dense Layers(3) Features

Adjacency Matrix(Graph)

/
/
; / GATConv Layers(num_heads)(n_layers)
/
Separated
S Average over heads
=~ Global

Features

Global Average Pooling

Q 1D Output

Dense Layer

1D Output GAT(gen)
or
GAT(sep) GAT+GAP(gen)

Dense Layer

GATModule

*

n_modules
(=n_layers)

Concatenate
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S Graph Attention Networks

Final Architecture: 206 o )
GAT+GAP

Particle Features Embedding

Cenesitarie Adjacency Matrix(Graph)

Y
Node GATConv Layer(num_heads) GATModule
Features *

Flatten over heads n_modules
(=n_layers)

Global Attention Pooling

Concatenate

Global
Features

Dense Layer

Dense Layer

1D Output
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S Backup: Network Structures
Quantitative Studies \\\b‘\
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S Backup: Evaluations
_ S . = /i b=
Comparison Yol o acedracy M \ b‘w

— gcﬁ-ll\-.lsen \§
0.825 A 44 —— GATsep N . Z
Parameters: . — omeen N2 ;
] X —— GATGAPgen
. n_heads =4 0.815 0.42 1
* n_layers =6 0810 041
. 0.805 1
* n_units =128 2500 | 040
. B — GCNse| 1
° batCh_SIZe =128 0.795 —_ GATSE:: 039
. —— GATgen 0.35 -
* n_train = 0.9M 0750 1 — GATGAPgen
* nwal =0.1M Training ’ ’ ) epcs>chs ’ ’ :
° n_teSt = 05M loss 0.45 | —— GCNsep 10
— o
. 0.44 - —— GATGAPgen
Loss:
* Entropy 042
04
0.40
EarlvStobbina: T T
ar y Opplng- 0.38 1 = ROC curve of GATgen model
° anence — 3 | | | | | , | , o0 =— ROC CIJINE of GATG;AF\gen modTI i
. delta _ 1e_ 5 0 2 4 EepocBhs 10 12 14 00 02 04 06 0.3 10
_ GCN(sep) GAT(sep) GAT(gen) GAT+GAP(gen)
TrainingTime 3619.46s 4047.47s 3471.48s 5049.81s

AUCValues 0.90831 0.90937 0.90891 0.91216 25/21
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Backup: Evaluations

AUC

AUC
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MONCHEN Sampling

Previous method: Cut according to neural network outputs

Problem: Inevitable bias

Our method: Sampling with probability given by neural network outputs

Problem: Statistical uncertainty

| W Sampling Method
Expected
- Cut with threshold=0.5

5.24 525 5.26 5.27 5.28 525
Mbc

&

Percentage of events
5

=

=]

&

S

1 = Sampling Method

Expected

524 525

e Cut with threshold=0.5
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Mbc

’//Nl! \WA ‘
@- '

217/21



Improved Selective Background Monte Carlo Simulation at
LUDWIG- Belle Il with Graph Attention Networks and Weighted Events

MAXIMILIANS-

MONCHEN |
’//)W!\\\W/S ‘
Implementation of NN filters ‘%-

tgen tNN B@ TP @

MC Det. Sim —> Reco

Analyse [---- >

Fail

Lower efficiency @)

tgen InN Tsr

™ v v Vv @

FP v v Vv ®
True-Positive (TP) False-Negative (FN) FN vV &)
False-Positive (FP) True-Negative (TN) TN Vv ®
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’//N/l 2 =
Sampling Method: %-

Compare

Event 2

Event N

Bool X = Output X > Value X
Weight X = 1 / Output X
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. . (/
Reweighting Method: % ALIANZ

Selection & Reweighting

Event O Output 0

Event 1 S

Event 2

Studied reweighters:
Threshold « GBDT Reweighting

& * Histogram Reweighting
Reweighter

Output 1

Qutput 2

Event N Qutput N

Bool X = Output X > Threshold
If Bool X:
Weight X = f(Output X)
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Reweighting Method:

« Train a Gradient Boosting Decision Tree (GBDT) classifier with some event level
variables to distinguish between True-Positve events and False-Negative events

« GBDT Reweighting: use the outputs of the classifier directly:

I 1 __ DPpass_skim
w = = =
Pcif  PTP/DTP+FN pTP
« Histogram Reweighting: compare the score histogram of all the events that can
pass the skim (True-Positive + False-Negative) with the score histogram of True-

Positives to give each bin of score a scaling factor:

_ H pass_skim,i

W= Wbinilpclfebini |Pczf€bini

Hrp,i
Pass True-Positive (TP) False-Negative (FN)
Fail False-Positive (FP) True-Negative (TN)
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Relative statistical uncertainty and effective sample size

NN outputs / Probabilities to {p;)
pass o

_ 1
Weights {w;i} = {p_}

i
Relative statistical Y w?p;
uncertainty S = S

: : 1
Effective sample size Nerr = 52

‘I' refers to each event in the whole sample (batch)

Infinities (at p; = 0) are excluded and set to 0
Avoid the bias by construction

Zwizpi = Zwi

Ywip; =N
Here consider only passed events (label = 1)

Number of events needed to reach the same statistical
uncertainty without sampling
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| variable | Formula Remark

Backup: Speedup

Skim retention rate r = 0.05 Probability to pass the skim process
Times of different tgen = 0.08 | |
hases in ms tyy = 0.63 Taken from previous studies
p tSR == 9704

Effective number of
events after
sampling

Time consuming
with NN filter

Time consuming
without NN

(Inverse) Speedup
rate

n, = zpi
n_= 2(1 —Pi)

ty = [nppr + npp(1 — T)](tgen +tyn + tSR)
t_ = [npyr + npy(1 — r)](tgen + tNN)
lp = Neff(tgen + tNN)

t, +t_
R=-2
to

{p;} will be devided into two subsets where the events will/won'’t pass the
skim process

Positive/Negative: Result of sampling
True/False: Result of sampling == skim process

To reach the same statistical uncertainty

The lower the better
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: .. N\MANZY A
Performances of different training l0SSes  speedup always as validation loss! \ b\\ Eﬂ

Entropy: Binary cross entropy between NN outputs {p;} and skim results {y; € {0,1}}

Speedup: (Inverse) Speedup rate R

Entropeedup: Training-epoch-dependent combination of Entropy and Speedup
Entropeedup = e ~¢P°"/10Fntropy + Speedup

0.62 —— Entropy 082 oo | ™= Entropy
—— Entropeedup 0814 58 Entropeedup
0.60 —— Speedup W Speedup
Ey 0.80 1 4000 Expected
T 058
o 0.79 4
2] (=)
T 056 1 ® 078 1 3000 1
v E
4 054 0.77 4
2 2000 1
£ os2 0.76 1 —
— Entropy
0.75 4 1000 A
050 = Entropeedup
0.74 4 — Speedup
T T T T T T T T T T T T o
o 2 4 b 8 10 o 2 4 B 8 10 526 527
epochs epoch!
Entropy Speedup Entropeedup
35000 1 50 Failed events 50000 4 50 Failed events
Pass events Pass ts
30000 4
40000 A
25000 A
20000 1 30000 4
15000 1 20000 4
10000 4
10000 4
5000 A
o - 0- T T _J.
00 02 04 06 08 10 00 02 04 06 08 10
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’//Nl! 2 =/

- QU
Metric: Speedup 3>

--Improvement of computation time to produce the same
effective number of events with the help of NN filter:

tno_filter : - (X wip;)*
Speedup = — ~Effective Sample Size = >
trilter Y WD
Robustness:
062 : 062 1 t SR=97.04
Weak dependency of 060{ | 060 - T Roc13.0
Speedup on tyy and tgg oss{ i 056 4
l o 056 i o 056 -
054 i T 0541
_ & ; &
Safe to generalize 052 ! 052 1
0.50 E 050 |
1 t NN=0.63
0.48 : -=- t gen=0.08 0.48
046 - 1 Ratio=7.875
) 20 0 60 80 100 0 100 1000 2000 3000 4000 5000
t NN/t ogen t SR/t gen
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GBDT Reweighting

Hist Reweighting

Original

GBDT Reweighting
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