
Columnar data analysis
(+ dask)

Nikolai Hartmann

LMU Munich

July 20, 2022, LMU Joint Seminar of Particle Physics Groups

1 / 16



Columnar data analysis

1Plot from https://coffeateam.github.io/coffea/concepts.html
2 / 16

https://coffeateam.github.io/coffea/concepts.html


Motivation
Operate on columns - array-at-a-time instead of event-at-a-time

Advantages

• Predefined operations, no for loops!
→ Move slow bookkeeping out of the event loop
→ Write analysis code in python instead of C++

• Run on contiguous blocks in memory
→ fast (good for CPU cache, vectorization possible)

• Advances in tools in recent years
→ data science/machine learning
→ also in HEP: uproot, awkward array, coffea

Disadvantages

• Arrays need to be loaded into memory
→ need to process chunk-wise if amount of data too large

• Some operations complex to implement
(e.g combinatorics, nested selections, variable length lists per event)

3 / 16



But we want

• Objects
→ don’t want to manually operate on px, py, pz, . . .

• Variable length lists
→ each event has a list of Electrons, Muons, Jets, . . .

• Cross references
→ Electrons.trackParticles.pt should give me the right thing

. . . even if this is stored in a different column/array

4 / 16



https://awkward-array.org

• Developed by Jim Pivarski and others from Princeton University

• Supports nested records ( RecordArray )

e.g. Events -> [Electrons -> pt, eta, phi, ..., Jets -> pt, eta, phi ...]

• Variable length lists ( ListOffsetArray )

• Cross references via indices ( IndexedArray )

• Behavior/Dynamic quantities
e.g. Lorentz vectors - can add vectors, calculate invariant masses, . . .

• Everything operates on pure arrays of numbers
→ structure-of-arrays instead of array-of-structs

• ROOT files via uproot , but conversion to/from ROOT.RDataFrame also in development

5 / 16

https://awkward-array.org


Bring this together with DAOD_PHYSLITE

• DAOD_PHYSLITE : reduced ATLAS data format with (currently) 10kb per event
→ standard calibrations applied
→ readable (with caveats) without of ATLAS software stack
→ could be used to analyse with python tools and columnar data analysis
→ still in development, many details unclear

• At CMS there is some success with a similar NanoAOD format (2kb per event)

• The coffea framework provides many functionalities

→ coffea.nanoevents for representing such formats as awkward array
(including cross references, lazy loading etc)
→ developed prototype schema to support DAOD_PHYSLITE with this

6 / 16



Demo

https://github.com/nikoladze/agc-tools-workshop-2021-physlite

7 / 16

https://github.com/nikoladze/agc-tools-workshop-2021-physlite


Challenge - Systematics
• Vision: evaluate systematic variations on the fly on PHYSLITE

→ avoid to store Nsystematics copies

• Problem: currently run during calibration (already done in PHYSLITE)
→ need to find a way to parametrize based on “nominal” calibration
→ ideally not dependent on too many variables
→ could also reduce number of needed columns

• At CMS people have apparently managed to do this!

8 / 16



Systematics: The Vision

Reco format Reduced + calibrated 
analysis format

On-the-fly 
systematics 
evaluation

Systematically varied 
histograms or 
discriminants

Visualisation

Statistical analysis

1from Teng Jian Khoo’s summary at the Analysis Ecosystems Workshop
9 / 16

https://indi.to/tBhnL


Easy to use: ✔
Fast: ✔

next: Scalable

10 / 16



Dask
https://www.dask.org

• Python framework for parallel computing

• Low-level interface via delayed and futures
→ define custom computation graphs in python

• High-level: distributed equivalents of numpy arrays and pandas DataFrames
→ distributed awkward array in development

• Live dashboard with computations/status/profiler
→ very useful for debugging and optimizing (also looks nice)

• dask-jobqueue to spawn dask cluster on top of a batch system

→ slurm, HTCondor and more supported
→ single jobs, start immediately with as many workers as you got

• ROOT RDataFrame can also use dask as a backend
→ dask as a universal interface to interactive parallelism?

11 / 16

https://www.dask.org


Install via pip or conda

# pip

python3 -m pip install dask distributed dask-jobqueue

# conda

conda install dask distributed dask-jobqueue -c conda-forge

Easily swap from local to distributed cluster

from dask.distributed import Client

# creates a `LocalCluster` with as many workers as cores

client = Client()

from dask.distributed import Client

from dask_jobqueue import SLURMCluster

cluster = SLURMCluster()

client = Client(cluster)

# submit 4 slurm jobs to start workers

cluster.scale(4)

→ see ETP wiki for configuration and examples

12 / 16

https://wiki.physik.uni-muenchen.de/etp/index.php/Dask


Google cloud tests

• Tried dask cluster within ATLAS google cloud project
→ advantage of cloud: can scale almost “arbitrary” on-demand

• In principle dask can work with several thousands of cores
→ could process 100TB full Run2 data in 10 minutes

• But: Dasks scheduling model seems to come to limitations
→ seems currently better suited for up to several hundred cores/workers

13 / 16



Task stream plot for 4k workers

14 / 16



Conclusions

• Great benefits from columnar analysis paradigm:
• Separate bookkeeping from number crunching
• Analysis code in python

• Already widely used with tabular data
• candidate-based analysis (e.g. Belle II), global event-based quantities

→ TTree::Draw is effectively also columnar analysis
• not so much yet for earlier stages of Analysis

• Tools are available, but handling of systematic uncertainties needs to be sorted out

• Dask might become a universal layer for scaling interactive workflows

15 / 16



16 / 16


