Columnar data analysis (+ dask)

Nikolai Hartmann

LMU Munich

July 20, 2022, LMU Joint Seminar of Particle Physics Groups

Columnar data analysis

¹Plot from https://coffeateam.github.io/coffea/concepts.html

Motivation

Operate on columns - array-at-a-time instead of event-at-a-time

Advantages

- Predefined operations, no for loops!
 - \rightarrow Move slow bookkeeping out of the event loop
 - \rightarrow Write analysis code in python instead of C++
- Run on contiguous blocks in memory
 - \rightarrow fast (good for CPU cache, vectorization possible)
- Advances in tools in recent years
 - \rightarrow data science/machine learning
 - \rightarrow also in HEP: uproot, awkward array, coffea

Disadvantages

- Arrays need to be loaded into memory
 - \rightarrow need to process chunk-wise if amount of data too large
- Some operations complex to implement

(e.g combinatorics, nested selections, variable length lists per event)

But we want

- Objects
 - \rightarrow don't want to manually operate on px, py, pz, \ldots
- Variable length lists
 - \rightarrow each event has a list of Electrons, Muons, Jets, \ldots
- Cross references
 - \rightarrow Electrons.trackParticles.pt should give me the right thing
 - ... even if this is stored in a different column/array

https://awkward-array.org

- Developed by Jim Pivarski and others from Princeton University
- Supports nested records (RecordArray)

e.g. Events -> [Electrons -> pt, eta, phi, ..., Jets -> pt, eta, phi ...]

- Variable length lists (ListOffsetArray)
- Cross references via indices (IndexedArray)
- Behavior/Dynamic quantities e.g. Lorentz vectors - can add vectors, calculate invariant masses, ...
- Everything operates on pure arrays of numbers
 → structure-of-arrays instead of array-of-structs
- ROOT files via uproot , but conversion to/from ROOT.RDataFrame also in development

Bring this together with DAOD_PHYSLITE

- DAOD_PHYSLITE : reduced ATLAS data format with (currently) 10kb per event
 - ightarrow standard calibrations applied
 - \rightarrow readable (with caveats) without of ATLAS software stack
 - \rightarrow could be used to analyse with python tools and columnar data analysis
 - \rightarrow still in development, many details unclear
- At CMS there is some success with a similar NanoAOD format (2kb per event)
- The coffea framework provides many functionalities
 - \rightarrow coffea.nanoevents for representing such formats as awkward array (including cross references, lazy loading etc)
 - \rightarrow developed prototype schema to support <code>DAOD_PHYSLITE</code> with this

Demo

https://github.com/nikoladze/agc-tools-workshop-2021-physlite

Challenge - Systematics

- Vision: evaluate systematic variations on the fly on PHYSLITE \rightarrow avoid to store $N_{\rm systematics}$ copies
- Problem: currently run during calibration (already done in PHYSLITE)
 → need to find a way to parametrize based on "nominal" calibration
 - \rightarrow ideally not dependent on too many variables
 - \rightarrow could also reduce number of needed columns
- At CMS people have apparently managed to do this!

Systematics: The Vision

¹from Teng Jian Khoo's summary at the Analysis Ecosystems Workshop

Easy to use: ✓ Fast: ✓

next: Scalable

Dask

https://www.dask.org

- Python framework for **parallel** computing
- Low-level interface via delayed and futures
 → define custom computation graphs in python
- High-level: distributed equivalents of numpy arrays and pandas DataFrames \rightarrow distributed awkward array in development
- Live dashboard with computations/status/profiler
 → very useful for debugging and optimizing (also looks nice)
- dask-jobqueue to spawn dask cluster on top of a batch system
 → slurm, HTCondor and more supported
 - \rightarrow single jobs, start immediately with as many workers as you got
- ROOT RDataFrame can also use dask as a backend
 → dask as a universal interface to interactive parallelism?

Install via pip or conda

```
# pip
python3 -m pip install dask distributed dask-jobqueue
# conda
conda install dask distributed dask-jobqueue -c conda-forge
```

Easily swap from local to distributed cluster

```
from dask.distributed import Client
# creates a `LocalCluster` with as many workers as cores
client = Client()
```

```
from dask.distributed import Client
from dask_jobqueue import SLURMCluster
cluster = SLURMCluster()
client = Client(cluster)
# submit 4 slurm jobs to start workers
cluster.scale(4)
```

 \rightarrow see ETP wiki for configuration and examples

Google cloud tests

- Tried dask cluster within ATLAS google cloud project \rightarrow advantage of cloud: can scale almost "arbitrary" on-demand
- In principle dask can work with several thousands of cores \rightarrow could process 100TB full Run2 data in 10 minutes
- But: Dasks scheduling model seems to come to limitations \rightarrow seems currently better suited for up to several hundred cores/workers

Task stream plot for 4k workers

Conclusions

- Great benefits from columnar analysis paradigm:
 - Separate bookkeeping from number crunching
 - Analysis code in python
- Already widely used with tabular data
 - candidate-based analysis (e.g. Belle II), global event-based quantities
 - \rightarrow TTree::Draw is effectively also columnar analysis
 - not so much yet for earlier stages of Analysis
- Tools are available, but handling of systematic uncertainties needs to be sorted out
- Dask might become a universal layer for scaling interactive workflows

