
How to make analysis easy to use, scalable and

fast
David Koch

20. 7. 2022

What is this talk about?

2 / 1220. 7. 2022

• ever increasing luminosity→ more data→ is the currently established workflow for analyses

still feasable?

• Python’s ecosystem regarding HEP tools improved vastly during the last years + more and more

new physicists don’t have knowledge of C++→ being able to complete a full-fleshed analysis

using Python only would be desirable

This talk is a broad and short overview about some tools that are available today and ideas about how

analyses in the future could look like

Requirement for all future tools, frameworks and resources (in that order!):

easy to use

scalable

fast

ROOT::RDataFrame

3 / 1220. 7. 2022

ROOT is the jack of all trades in HEP for basically everything from IO to statistical analysis to plotting

RDataFrame is ROOT’s recommended way for working with root files

modern and easy to use declarative API

tree = ROOT.RDataFrame("mytree", "path/to/ntuples", daskclient=client)
tree = tree.Define("HT", calc_HT, ["jet_pt"])\

.Filter("HT > 500")
hist = tree.Histo1D("x")

Python ecosystem for analyses

4 / 1220. 7. 2022

Python ecosystem for analyses

5 / 1220. 7. 2022

numpy for fast computations with array-like data

np.mean(np.random.rand(1000))

matplotlib for creating plots

plt.hist(distribution, n_bins=20)
plt.title("p_T")

numba to compile python functions into machine code

@numba.njit
def square(x):

return x**2

dask for distributed computing

cluster = dask_jobqueue.SLURMCluster(cores=1, queue="ls-schaile")
cluster.scale(4)
client = dask.Client(cluster)
results = client.map(myfunction, data)

Python ecosystem for analyses

6 / 1220. 7. 2022

awkward for numpy-like operations with jagged arrays

x = ak.Array([[1., 1.2], [2.], [], [1., 2., 3.]])
x[x**2 > 4.0] # select entries from x whose square is larger than 4

hist and boost-histogram as high-level wrappers for boost::histogram
zfit for fitting

Python ecosystem for analyses

7 / 1220. 7. 2022

uproot for IO with ROOT files

with uproot.open(filename+":"+treename) as tree:
for data in tree.iterate(library="ak"):

process data ...

vector for computations with 4-vectors

lepton_p4 = vector.array(dict(pt=lepton_pt, phi=lepton_phi, eta=lepton_eta, M=lepton_m))

coffea framework for columnar data analysis in HEP

class MyAnalysis(coffea.processor.ProcessorABC):
def process(self, events):
selected_electrons = events.electron[events.electron.pt > 25]
selected_muons = events.muon[events.muon.pt > 25]
event_filters = ((

ak.count(selected_electrons.pt, axis=1)
+ ak.count(selected_muons.pt, axis=1)) == 1

)
selected_events = events[event_filters] # ...

Analysis Facilities

8 / 1220. 7. 2022

What kind of resources are needed / would be nice to run

such code?

Idea of an “Analysis Facility”, that provides enough hardware resources to serve analysts who want

to run complicated analyses on large datasets

• should be interactive (not like a grid)

• easily scalable

• switching between fully interactive workflow (ie producing plots in < 2 mins on a subset of the

data) and execution frameworks (ie Dask or Batch) should be seamless (no more custom batch

submission scripts)

• monitoring and performance metrics

Analysis Facilities: Coffea casa

9 / 1220. 7. 2022

JupyterHub with Dask

AF@Nebraska (CMS only), AF@Chicago (ATLAS only), AF@Nebraska (open data)

https://coffea.casa/hub/login?next=%2Fhub%2F
https://coffea.af.uchicago.edu/hub/login?next=%2Fhub%2F
https://coffea-opendata.casa/hub/login?next=%2Fhub%2F

Analysis Grand Challenge

10 / 1220. 7. 2022

𝑡 ̄𝑡-analysis as a proof of concept of the pythonic tech-stack (→notebook)
focus is on the technical demonstration, not the physics

• meant to be run on ∼ 200TB of CMS

open data

• easily scales up from test runs that can

be done on your laptop in a matter of

minutes to running on a cluster with

Dask

• benchmark of a full run is planned for

2023

https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.ipynb

The future of analysis?

11 / 1220. 7. 2022

AFs that provide a JupyterHub are just one approach→ not everyone likes to work with jupyter

another vision of future analyses: define the analysis in a domain specific descriptive language and

let the rest (ie retrieving the data in an effective way, running in parallel / distributed) be handled

automatically→ remove the technical aspects of how to run the analysis from the physicists and let

them focus on the what of the analysis

available today: func_adl + ServiceX (partially implemented in the AGC demo analysis)

hot topic of discussion: should we teach new physicists more basics of computer science or should

we attempt to make the tools so easy to use that no CS background is needed at all?

Thank you
for your attention

