Queue-based job monitoring ATLAS Belle II Computing Meeting

eric.schanet@cern.ch

Eric Schanet | LMU Munich | 12.08.2019

Introduction

- Central problem is one of the long-standing problems in ADC
 - Why specific variations in the numbers of running slots?
 - Want to make sure that we are not wasting resources due to e.g. one FTS server not working as expected.
 - Need to make sure we detect problems as fast as possible.
- Complex and multi-dimensional problem
 - Need to correlate things like e.g. pilot submissions, downtimes, failures, transfers, ..., with e.g. activated and running jobs.
 - Many attempts made in the past, still no satisfying answer.
- Slightly different approach this time
 - General idea: start from something simple and then, bit-by-bit, add more information and correlations. _
 - **Keep it lightweight:** only add feature if significant benefit for operational monitoring.
 - in smart and easy-to-digest way.

Eric Schanet | LMU | 12.08.2019

BOINC_MCORE

In principle all the information is already available (somewhere), only need to combine and correlate it, but also display

Reproducing Panglia at CERN

- Existing services are not ideal in this case
 - **Panglia:** low-latency but limited functionality -

Need more features in the data structure.

MONIT: complex data structure but aggregated job states and limited flexibility (for good reason)

Need low latency and more flexibility when adding data features.

Build lightweight and low-latency service using Grafana and fully controlled by ADC.

• First step

- Reproduce Panglia at CERN. -
- Panglia plots: jobs in a queue by job state (low-latency). -

Eric Schanet | LMU | 12.08.2019

Typical Panglia plots

LRZ-LMU_UCORE jobs - day 1.6 k LRZ-LMU_UCORE 1.5 k 1.4 k 1.3 k 1.2 k 1.1 4 1.0 0.9 k 0.8 0.7 k 0.6 k 0.5 k 0.4 1 0.3 k 🗖 assigned 🔳 activated 🛛 🔲 sent starting defined running holding finished [failed cancelled Thu Apr 11 19:20 2019 to Fri Apr 12 19:20 2019

Technical setup

- Main database: InfluxDB, 300GB size, hosted through DBoD
 - Filled through Panda Client, every 10min. _
 - Only queue-level data, no job-level data (low latency!).
 - Information from <u>AGIS</u> and <u>WLCG REBUS</u>, and <u>ES Chicago</u>.
 - Downsampling (handled offline): _
 - 10min granularity for 7 days,
 - 1h granularity for 2 months,
 - 1d granularity for 1 year.
 - Derived quantities mostly computed offline (e.g. moving average).
 - Prevents need for expensive on-the-fly computation.

Second database: MySQL, 300GB size, hosted through DBoD

- Used for non time-series plots or tables. -
- Contains latest snapshots of InfluxDB data.
- Keeps some more load off InfluxDB.

Eric Schanet LMU 12.08.2019

ATLAS Belle II Computing Meeting

Data structure in InfluxDB

• From Panda:

- Number of jobs per Panda queue (no job-level information!)
- For each Panda queue: One data point per job state and per resource type (SCORE, MCORE, etc.). -

• From AGIS:

instance, harvester workflow, frontier, FTS server, container mode.

• From REBUS

- For each Panda queue: Federation, pledge and pledge type of federation.

• From ES Chicago

Benchmark job results (measured HS06) per PQ. —

Eric Schanet LMU 12.08.2019

ATLAS Belle II Computing Meeting

- For each Panda queue: Cloud, Tier, Nucleus, ATLAS site, production type, pilot manager, pilot type, harvester

Jobs: Overview

Queue-based low-latency job monitoring dashboard built with InfluxDB and MONIT grafana.

Eric Schanet LMU 12.08.2019

ATLAS Belle II Computing Meeting

Jobs: Only Panglia?

Interactive version of the Panglia plots

- Freely select time range. -
- Large number of parameters can be selected. -

Granularity	10m 🔻	Cloud A	Tier	All 🕶	Federation	All 🗸	Nucleus	All 🔻	ATLAS site	All 🔻	PanDA q	ueue All -	F	lesource	All 🕶	Job s	tate	All 🕶	Production type	All 👻
Pilot manage	er All -	Pilot versi	on All -	Harveste	r All -	Workflow	All 🔻	Frontier	All 🕶	FTS server	All 🔻	Container	All	Ple	edge type	All 🔻	+			

• Typical Panglia-style plots are possible, all in low latency and high granularity.

Jobs: More than Panglia!

Lots of possibilities

- One plot per parameter (jobs grouped by that parameter). _
- Grafana: user can select multiple values per parameter \rightarrow huge number of selections can be visualised. -

Granularity	10m 🔻	Cloud All -	Tier	All -	ederation	All 🔻	Nucleus	All 🕶	ATLAS site	All 🔻	PanDA queu	e All -	Resourc	e All -	Job state	All 🔻	Production type	All 🗸
Pilot manage	er All -	Pilot version	All 🔻	Harvester	All 🕶	Workflow	All 🔻	Frontier	All 🔻	FTS server	All -	Container	All 🔻	Pledge type	All 🗸	+		

Running jobs on CERN-PROD site grouped by Panda queue Running jobs in T0+T1 grouped by Harvester instance

Eric Schanet | LMU | 12.08.2019

Slots: Overview

Also plots showing actual slots of jobs (including number of cores a job runs on)

- Same low-latency and high-granularity as for jobs. -
- Also grouped by different parameters in different plots.
- -

Examples:

Eric Schanet LMU 12.08.2019

Number of slots is calculated using number of cores per queue published on AGIS (respecting the resource type).

ATLAS site CERN-PROD -

HS06: Do we get what we were promised?

- Corepower exists already in AGIS
 - However, often not very exact, sometimes even off by an order of magnitude -
- Use results from benchmark jobs that randomly run on each PQ
 - Stored in ES Chicago.
- Compare with pledges reported in WLCG REBUS per federation.

Tier 2	Germany	ATLAS Feder	ation, Munich	
		i	Measured HS06 [b	ench
		250 K		
		200 K		
		150 K		
		100 к 🖊 🕌	11-4 A	
		50 K	ffer and the second sec	
		0		
		8/6	8/7 8/	/8
		- MPPMU		
		LRZ-LMU		

Eric Schanet | LMU | 12.08.2019

ATLAS Belle II Computing Meeting

Detecting sudden changes

Low-latency perfect for detecting sudden changes, empty queues, etc.

- Suspicious sites dashboard compares ratios between, e.g.: —
 - Moving 1h average of running slots (other averaging periods possible). —
 - Moving 7d average of running slots (other averaging periods possible). —
 - (Many more panels ...) —
- Example on the right:
 - Top table: showing ratios between running jobs of 1h and 7d. -----
 - CERN-P1 shows relatively low ratio (only 25% of running jobs currently compared to last 7d).
 - Click on CERN-P1: job monitoring page for site is opened. ____
- Selections are possible, e.g. looking only at T0+T1 sites.

Group by	atlas.	_site ·	•	Cloud	All 🗸	Production ty	ype	All 🔻		Resource	All 🔻		Pano
ATLAS site	All	•	Tier	T0 + ⁻	T1 🔻	Average over	7d	•	Ave	erage at least	10 -	,	Ra
Ratio more	than	0.0	•										

i		Run	ning Jobs		
	ATLAS Site	1h average runn	ing jobs	7d average running jobs	Ra
	CERN-P1	3755		15598.67	0.24
	ifae	673.99		1461.67	0.4
	ARNES	708.67		1485.78	0.4
	IFIC-LCG2	626.99		1137.53	0.5
	BU_ATLAS_Tier2	1767.5		2341.24	0.7
	TRIUMF-LCG2	4328.84		5188.05	0.8
	RRC-KI-T1	1378.17		1640.22	0.84
	INFN-T1	1765.51		2020.26	0.8
	TOKYO-LCG2	1117.51		1244.49	0.9
		1000 00		1000.00	0.04

Summary and outlook

- - Interactive Panglia with lots of additional data features.
 - Based on queue-level data from Panda (through Panda Client Interface). —
 - Integrates information from AGIS, REBUS and ES Chicago.
- First attempt of creating something more automatic: suspicious sites dashboard
 - Using simple metrics like e.g. ratios of average numbers of jobs in order to detect sudden changes. -
- Dashboard are already available in the development area of MONIT grafana.
 - Production versions will become available soon. —

Eric Schanet | LMU | 12.08.2019

Queue-based monitoring using MONIT Grafana and an InfluxDB hosted at CERN: job monitoring dashboard

General details

• Git repository for InfluxDB code

All the code related to the data uploaded to the InfluxDB instance is being tracked in this repository.

• Tracking of general progress Trying to track the progress of the qualitask in a Google Doc.

Grafana dashboards

Dashboards are being built with Grafana, available through central monit-grafana. Jobs monitoring: <u>https://monit-grafana.cern.ch/d/IGWcOe8iz/jobs-monitoring-eschanet-dev?orgId=17</u> Suspicious sites: https://monit-grafana.cern.ch/d/nEL8aDumk/suspicious-sites-eschanet-dev?orgId=17 DAOD distribution: https://monit-grafana.cern.ch/d/HAN2MQeiz/daod-distribution-eschanet-dev?orgId=17

• Bi-weekly meetings Typically on Fridays, 2 p.m., last one here, they usually pop up in this list

• Supervisors Technical supervisors: Local supervisor:

Ivan Glushkov (primary), Frank Berghaus (secondary) Günter Duckeck

Eric Schanet | LMU | 12.08.2019

ATLAS Belle II Computing Meeting

Side project: DAOD distribution for analysis jobs

• Problem: Are we placing DAODs optimally in the Grid?

- Are there sites with a lot of available analysis slots but not enough DAODs? —
- Are there sites with a lot of DAODs but no available analysis slots?

Dashboard attempting to analyse and visualise this: <u>DAOD distribution dashboard</u>

- Showing size and number of files (only DAODs) on datadisks. -
- Summing up all running slots (averaged over last 24h) that are reading from each datadisk.
- Computing ratio between running slots and size of datadisk (only DAODs) as a metric for how balanced it is.
- Also showing a plot of the distribution of the ratios for all datadisks.

Datadisk
DESY-ZN_DATADISK
GOEGRID_DATADISK
FZK-LCG2_DATADISK
FMPHI-UNIBA_DATADISK
MPPMU_DATADISK
CYFRONET-LCG2_DATADISK

Want a balanced situation!

Running slots (average 24h)	Size (TB)	Files	Running slots / Size 🔺
81.77	372.13	302.99 K	0.22
196.69	854.50	824.87 K	0.23
820.82	3.35 K	2.42 Mil	0.24
110.66	432.54	437.19 K	0.26
162.40	437.16	315.67 K	0.37
115.11	309.02	330.98 K	0.37

	_		
3.04			
		_	

