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• Better results due to exploiting correlations and low level inputs

• New ways of analysing data

• Trying to solve more difficult problems

• Resource efficiency

• Faster decision making and simulation

• Likely no great increase in personell or computing budgets

• End of Moore’s law?

Deep Learning in Particle Physics:

Why are we doing it?
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Deep Learning in Particle Physics:

Why are we doing it?

• “Infinite” amounts of high quality training data

• Interesting structured data at multiple scales

• Detailed understanding of systematic uncertainties

What is the “correct” 
way to represent our 
data for ML 
applications? 

(will be problem specific) 
(would not rely on CS to 
solve it for us)

Jesse Thaler 
BOOST 2018 summary
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Deep Learning in Particle Physics:

We are doing it.

David Shih 
BOOST 2019



Overview
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• Classification & Regression

• Generation

• Anomaly detection

• Robustness

• Fast Inference & Tools

Many thanks to all 
 groups for sending material!!



Classification & Regression
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Going beyond FCN/CNNs: 
• Point Cloud: 

• 1D CNN + Max pooling 
• Similar to CMS flavour tag 
• (DeepSet approaches)
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Capsule Networks
• Particle flow inputs for per-event classification

• Capsule Networks

• Alternative to convolution  
(usual image technique)

• learn instantiation vector

• Interpreteable

• Calibration?  

(1906.11265, with Tilman Plehn)

https://www.youtube.com/watch?v=BJcpajX7EdU&feature=youtu.be
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Heavy Resonance 
 Tagging

Community performance 
comparison (toy dataset public): 

1902.09914

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Graph neural networks
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UHH: Exploring attention 
network for  
same problem

Goettingen



Generation
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Anomaly Detection

!21
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Model independent discovery
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Search for new physics without specifying the model

• Train on pure background sample

• (Mass sidebands in data)

• New physics identified as anomaly

• Tail of the loss function 

• Complement dedicated searches

QCD or What? 
T Heimel, GK, T Plehn, JM Thompson, 
1808.08979
Searching for New Physics with Deep Autoencoders
M Farina, Y Nakai, David Shih, 1808.08992



Model independent bias
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• model independence means different things to different people

• Learning New Physics from a Machine (1806.02350)

• Shape differences - peak or tail - using high level variables

• Trained on MC vs data

• Per-Jet Autoencoders (1808.08979 and 1808.08992)

• Enhance mass peaks using anomalous substructure from low level inputs

• Implicit model bias of Network

• Trained on data

• CWoala Hunting (1902.02634):

• Stronger discrimination by training a classifier between regions in data

• So far only high level variables

• Per-Event Autoencoders (Trigger VAE) (1811.10276)

• Trained on SM event cocktail, high level

• Analyse produced stream
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –



Robustness
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" DEE ; ! " ,
SEE: an

"

Decorrelation

• Build robust classifiers by 
decorrelating output against 
another variable

• Strongest approach: adversarial training 
is difficult to tune and unstable

• Replace with regularizer term:  
distance correlation (DisCo)

Work with David Shih, 
public soon Recast of ATL-PHYS-PUB-2018-014 

ATLAS - W boson tagging
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Standard (Deterministic)  
Neural Net

Bayesian Neural Net

!29

Quantifying  
Uncertainty

• Provide per-prediction 
uncertainty on neural network 
output: Bayesian networks

• Weights replaced by probability 
distributions

• Prediction vis MC sampling



Statistical 
Uncertainty

Classification sigmoid correlates 
mean and standard deviation

BNN captures effect of 
finite training data

!30Next: Application to top mass measurement



Fast Inference and Tools

!31
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Closing
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Conclusions
• Impressive and wide-ranging number of machine learning studies in 

ErUM data pilot project


• Main topic still classification


• Exploration of different architectures


• Useful progress in new directions: simulation, anomalies, robustness, 
…


• Fast inference crucial for future applications (online and offline)


• Many groups also active in educating students in these new methods


• Regular curriculum and special events/schools


• How to benefit from potential synergies?

!38



Bonus Slides
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Approaches
• Obscurity:

• Do not give mass [will be using this as stand-in for any variable we want to decor relate 
agains] as input

• Simple, does not work

• Data planing (1709.10106, 1908.08959):

• Reweight input distributions to be flat

• Simple, limited power

• Designing Decorrelated Taggers - DDT (1603.00027):

• Linearly transform output to be stable for one working point by subtracting for each bin

• Add KL/JS divergence to loss

• Promising idea, but only works for one working point. Binning needed.

• Use complex adversarial ML (1611.01046, 1703.03507)

• Powerful, hard to tune



the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of

19

Comparison

!41
ATL-PHYS-PUB-2018-014 



Problem
• Adversarial training is inherently unstable (hard to set up 

and sensitive to hyper parameter changes)

• Looking for a saddle point 
 
 

• Find a regulariser term that fulfils the same  
goal but allows simple training to convergence  
 

• Use distance correlation!

!42



ParticleNet = Graphs
• Images are a convenient representation, but do not  

capture real structure of our measurements

• Alternative: Graphs

• Vertex: Particle

• Edge: Distance (for example in eta-phi space)

• Active development of graphs on CS side, but already HEP 
applications:

• Particle Net (best performing top tagger in community study, 
based on EdgeConv)

• Calorimeter Clustering (1902.07987)

• Tracking (1810.06111)

!43 1902.08570



Validation

• Train N deterministic networks on 
statistically independent events

• Calculate mean and standard 
deviation of ensemble

Result agrees with  
frequentist expectation

!44



ATLAS implementation

× 3
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Figure 4: Adversarial neural network architecture. The classifier network is tasked with predicting jet labels (y)
based on jet substructure variable inputs (x), outputting a tagger variable (z). The adversary network is tasked
with inferring the value(s) of the variables from which the classifier is to be decorrelated (d; here the jet mass m),
optionally aided by auxiliary features (a; here log pT), by parametrising a posterior p.d.f. as a Gaussian mixture
model (GMM). The adversarial training is implemented using a gradient reversal layer, the trade-o� between Lclf
and Ladv controlled by the parameter �.

versa. In this way, using adaptive training weights, uBoost balances classification power and a uniform
selection e�ciency in the mass observable during training.

The BDT classifiers use the substructure variables listed in Table 1, the same used for the neural network
classifiers, as input features. The hyperparameter configuration adopted for AdaBoost is the same as the
one used for the BDT classifier in Ref. [7]. For the remaining uBoost hyperparameters, the default values in
Ref. [54] are used. Similar to the adversarial neural network classifier, the degree of mass-decorrelation for
uBoost is controlled by a hyperparameter ↵, called the uniforming rate. For ↵! 0, the adaptive boosting
only takes classification loss into account, and the standard AdaBoost classifier is retrieved. Conversely,
for larger ↵, the uniform e�ciency boosting becomes gradually more important. For comparison with
other taggers, a value of ↵ = 0.3 is chosen, since it leads to roughly the same level of background rejection
as the ANN for the chosen default value of � and for the chosen BDT configuration.

The AdaBoost and uBoost classification objectives during training are shown in Figure 5.

The AdaBoost classification loss is seen to decrease monotonically and reach a plateau for the testing
dataset after 500 epochs of training. In contrast, the classification objective for uBoost initially decreases
due to improved discriminating power, and then rebounds as the adaptive boosting for uniform e�ciency
takes e�ect. Using a fixed duration of 500 epochs for all BDT-based models yields a collection of
consistently trained jet classifiers with varying degrees of mass-decorrelation. For these, the level of
mass-decorrelation is given by the degree of divergence at the end of the fixed training duration, which in
turn is controlled by rate at which the uniformity boosting takes e�ect, as controlled by ↵.

7 Results

The various mass-decorrelated jet taggers all result in a single discriminant variable which classifies jets
as either W jets or non-resonant multijets while keeping the shape of the background jet mass distribution
unchanged. As a representative example, the distributions of the NN and ANN tagger discriminants are
shown in Figure 6. The NN tagger powerfully separates the two classes of jets. The same is true for ANN

13

• Similar to learning to pivot, uses gradient reversal

• Input: high level substructure variables

!45
ATL-PHYS-PUB-2018-014  
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Tracking

- Big challenge: fast high multiplicity tracking
- Graph representation:

- Hits = Nodes
- Edges = Hits belong to same track

Jean-Roche Vlimant, Hammers&Nails 2019 
1810.06111



!47

Fast Decisions
- Use neural networks in L1 Trigger
- Trained offline using normal tools,  

then translated and optimised for 
running on FPGAs
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Low Level Reconstruction
- Replace traditional algorithms for reconstruction, object ID 

and calibration with deep learning
- Increase physics performance and/or resource usage
- Superficially less attractive, potentially much more useful
- End-to-end learning?

1902.08276

Maurizio Pierini 
Hammers&Nails 2019
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Performance on realistic 
simulation and data in CMS: 

JME-18-002

Heavy Resonance 
 Tagging in CMS



Distance Correlation
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xjk = |Xj �Xk|
yjk = |Yj � Yk|

x̂jk = xjk � xj· � x·k + x··

ŷjk = yjk � yj· � y·k + y··

dCov2 =
1

n

X

j

X

k

x̂jkŷjk

Distances of all examples in batch  
for classifier output

... for variable to decorrelate

Center distributions

And calculate average 
product per batch

Some nice properties:
• Zero iff X, Y are independent; positive otherwise!
• Computationally tractable!
• Doesn’t require binning!

0803.4101, 1010.0297
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Capsules
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Dynamic Routing Between Capsules
S Sabour, N Frosst, GE Hinton
1710.09829
(medium.com)

Motivation

• CNNs learn features, problem of spatial correlation

• Capsules are a new building block for image recognition

• Learn instantiation vector

• Connection by agreement (co-firing)

http://medium.com
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Dynamic Routing Between Capsules
S Sabour, N Frosst, GE Hinton
1710.09829
pechyonkin.me

Squash:Softmax & Routing:

• Vector instead of scalar representation

• Instantiation and relative positioning

• Routing by agreement

vj

http://pechyonkin.me
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Routing by agreement



 56

Dynamic Routing Between Capsules
S Sabour, N Frosst, GE Hinton
1710.09829

Learned 
Instantiation
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• Promised advantages of capsule networks:

• Better interpretability of  
learned capsules

• Better performance than CNN in  
dense environments 
(multiple particles overlapping)

• Extract substructure and global  
information simultaenously

Transfer to Physics

Can reproduce CNN on 
standard top tagging dataset
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CapsNet pool

Improved performance over high-level 
event variables as well as convolution 
based CapsNet

DiTop vs QCD
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Can interpret output capsule distributions
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SciPost Physics Submission

Figure 15: ROC curves for tt̄H with calorimeter information only, physically accessible infor-
mation and with MC truth information.

|m(jb + j1 + j2) �mt|. Because we know that the significance is dominated by the boosted
regime [29], we require the reconstructed hadronic top jet to have pTjt > 200 GeV and
|mjt �mt| < 30 GeV, to avoid producing a large number of events with little sensitivity. Our
results should not depend on this slight simplification.

For illustration, Fig. 13 shows some kinematic properties of the signal and background pro-
cesses. The small di↵erences are di�cult to exploit in a cut-based analysis. A reconstruction
of the Higgs mass peak is at least seriously challenging because of the b-combinatorics [45],
which is the main motivation of a boosted analysis of this process [29, 46]. To fully exploit
these signal features we employ our CapsNet, to show that it can both identify objects and
explore their geometric correlations.

From the previous sections we already know that we can choose a pooling or a convolutional
CapsNet to analyse the event-level information for the complex tt̄H final state. We have seen
that the convolutional CapsNet well-suited for subjet studies, but we also know that the
pooling setup is superior for combining subjet and event-level information. Because the tt̄H

analysis does not involve subjet information and the challenge will be to combine overlaying
images all on the event level the convolutional CapsNet with its minimized loss of information
and resolution turns out the better-suited approach.

We illustrate this CapsNet architecture in Fig. 14. We use it to analyze our usual (180⇥
180)-pixel calorimeter image which pixel-wise encodes the ET . Moreover, we want to include
information from the particle identification, such as the position of identified leptons or b-tags.
This information is included in the form of additional feature maps for each physically distinct
paricle class also shown in Fig. 14 [23]. We also add a feature map with the light jet axes,
which does not include any additional information but can help the network with its sparsely
filled pixels. These feature maps are first combined through a 3-dimensional convolution,
before each of them is independently passing through the CapsNet with its 2-dimensional
convolutions. This combination of 2-dimensional and 3-dimensional convolutions allows the
network to extract information both from the individual feature maps as well as correlations

17

ttH(bb) vs ttbb

Capsules learn reconstruction of 
complex final state on event level 
using multiple input sources



Bayesian Networks
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Bayes theorem

!62

Model given weights
Weights given model

Prior weights

Model evidendence

Now we can sample and predict response for new data points:

SciPost Physics Submission

We can think of the prior p(!) as the distribution of the model parameters before training
on the data set D and are free to choose it, for example, to be a Gaussian, as long as we can
show that the final result does not depend on its form. The model evidence p(C) serves as
a normalization constant for the (posterior) probability distribution p(!|C). The probability
p(!|C) allows us to predict the network output c⇤ for a new test data point,

p(c⇤|C) =

Z
d! p(c⇤|!) p(!|C) (3)

This line of argumentation immediately leads us to the main question behind this paper:
can we define and determine a network output which is not just one number, like a signal
probability, but a signal probability distribution in ! on a jet-by-jet level?

The technical problem with Eq.(3) is that we usually do not know the closed form of
p(!|C), even if it is implicitly encoded in our neural network. On the other hand, we can
approximate it in the sense of a distribution and combine with a test function p(c⇤|!) [21],

Z
d! p(c⇤|!) p(!|C) ⇡

Z
d! p(c⇤|!) q(!) . (4)

The agreement between p(!|C) and such an approximation q(!) is given by the Kullback-
Leibler divergence,

KL[q(!), p(!|C)] =

Z
d! q(!) log

q(!)

p(!|C)
. (5)

It vanishes if the two functions are identical almost everywhere and is positive otherwise. We
can use Bayes’ theorem to re-write it as

KL[q(!), p(!|C)] =

Z
d! q(!) log

q(!)p(C)

p(C|!)p(!)

= KL[q(!), p(!)] + log p(C)

Z
d! q(!)�

Z
d! q(!) log p(C|!) . (6)

The second term only includes the normalization of q(!) and is of no particular interest given
that we have normalized q(!) as a probability distribution. The third term is the usual
expected likelihood, which we can use to work with in a frequentist sense, if we want to avoid
the Bayesian prior altogether. In our framework we minimize the KL-divergence to construct
a q(!) approximating p(!|C) in Eq.(3), so our loss function becomes

L = KL[q(!), p(!)]�
Z

d! q(!) log p(C|!) . (7)

In pushing L to its well-defined lower limit, the first term requires q(!) to be close to an as-
sumed, for instance Gaussian, prior p(!). If we assume that q(!) and p(!) are both Gaussians
described by their respective µ and � and we only consider a single weight, we can simplify
the KL-divergence to

KL[q(!), p(!)] = log
�p
�q

+
�2
q + (µq � µp)2

2�2
p

� 1

2
. (8)

5

c⇤ . . .New datapoint

Usually do not know a closed form of this. Intractable.
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We can think of the prior p(!) as the distribution of the model parameters before training
on the data set D and are free to choose it, for example, to be a Gaussian, as long as we can
show that the final result does not depend on its form. The model evidence p(C) serves as
a normalization constant for the (posterior) probability distribution p(!|C). The probability
p(!|C) allows us to predict the network output c⇤ for a new test data point,

p(c⇤|C) =

Z
d! p(c⇤|!) p(!|C) (3)

This line of argumentation immediately leads us to the main question behind this paper:
can we define and determine a network output which is not just one number, like a signal
probability, but a signal probability distribution in ! on a jet-by-jet level?

The technical problem with Eq.(3) is that we usually do not know the closed form of
p(!|C), even if it is implicitly encoded in our neural network. On the other hand, we can
approximate it in the sense of a distribution and combine with a test function p(c⇤|!) [21],

Z
d! p(c⇤|!) p(!|C) ⇡

Z
d! p(c⇤|!) q(!) . (4)

The agreement between p(!|C) and such an approximation q(!) is given by the Kullback-
Leibler divergence,

KL[q(!), p(!|C)] =

Z
d! q(!) log

q(!)

p(!|C)
. (5)

It vanishes if the two functions are identical almost everywhere and is positive otherwise. We
can use Bayes’ theorem to re-write it as

KL[q(!), p(!|C)] =

Z
d! q(!) log

q(!)p(C)

p(C|!)p(!)

= KL[q(!), p(!)] + log p(C)

Z
d! q(!)�

Z
d! q(!) log p(C|!) . (6)

The second term only includes the normalization of q(!) and is of no particular interest given
that we have normalized q(!) as a probability distribution. The third term is the usual
expected likelihood, which we can use to work with in a frequentist sense, if we want to avoid
the Bayesian prior altogether. In our framework we minimize the KL-divergence to construct
a q(!) approximating p(!|C) in Eq.(3), so our loss function becomes

L = KL[q(!), p(!)]�
Z

d! q(!) log p(C|!) . (7)

In pushing L to its well-defined lower limit, the first term requires q(!) to be close to an as-
sumed, for instance Gaussian, prior p(!). If we assume that q(!) and p(!) are both Gaussians
described by their respective µ and � and we only consider a single weight, we can simplify
the KL-divergence to

KL[q(!), p(!)] = log
�p
�q

+
�2
q + (µq � µp)2

2�2
p

� 1

2
. (8)

5

Approximate with Gaussian:
q(!) . . .Gaussian distributions parametrised by µ and �

SciPost Physics Submission

We can think of the prior p(!) as the distribution of the model parameters before training
on the data set D and are free to choose it, for example, to be a Gaussian, as long as we can
show that the final result does not depend on its form. The model evidence p(C) serves as
a normalization constant for the (posterior) probability distribution p(!|C). The probability
p(!|C) allows us to predict the network output c⇤ for a new test data point,

p(c⇤|C) =

Z
d! p(c⇤|!) p(!|C) (3)

This line of argumentation immediately leads us to the main question behind this paper:
can we define and determine a network output which is not just one number, like a signal
probability, but a signal probability distribution in ! on a jet-by-jet level?

The technical problem with Eq.(3) is that we usually do not know the closed form of
p(!|C), even if it is implicitly encoded in our neural network. On the other hand, we can
approximate it in the sense of a distribution and combine with a test function p(c⇤|!) [21],

Z
d! p(c⇤|!) p(!|C) ⇡

Z
d! p(c⇤|!) q(!) . (4)

The agreement between p(!|C) and such an approximation q(!) is given by the Kullback-
Leibler divergence,

KL[q(!), p(!|C)] =

Z
d! q(!) log

q(!)

p(!|C)
. (5)

It vanishes if the two functions are identical almost everywhere and is positive otherwise. We
can use Bayes’ theorem to re-write it as

KL[q(!), p(!|C)] =

Z
d! q(!) log

q(!)p(C)

p(C|!)p(!)

= KL[q(!), p(!)] + log p(C)

Z
d! q(!)�

Z
d! q(!) log p(C|!) . (6)

The second term only includes the normalization of q(!) and is of no particular interest given
that we have normalized q(!) as a probability distribution. The third term is the usual
expected likelihood, which we can use to work with in a frequentist sense, if we want to avoid
the Bayesian prior altogether. In our framework we minimize the KL-divergence to construct
a q(!) approximating p(!|C) in Eq.(3), so our loss function becomes

L = KL[q(!), p(!)]�
Z

d! q(!) log p(C|!) . (7)

In pushing L to its well-defined lower limit, the first term requires q(!) to be close to an as-
sumed, for instance Gaussian, prior p(!). If we assume that q(!) and p(!) are both Gaussians
described by their respective µ and � and we only consider a single weight, we can simplify
the KL-divergence to

KL[q(!), p(!)] = log
�p
�q

+
�2
q + (µq � µp)2

2�2
p

� 1

2
. (8)

5

Successful if distributions agree: 
(measure by Kullback-Leibler divergence)
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Still more simplification needed to actually calculate:
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Still more simplification needed to actually calculate:

Second term is not relevant:

usual expected likelihood 

for Gaussians:



Training
Approximate via MC sampling:

Prediction+
Uncertainty!
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The last term in Eq.(7) needs to be minimized once we know the likelihood p(C|!) for a given
C and evaluated as a function of !. Technically, this requires a variation of the parameters
which give the functional form of the Gaussian qµ,�. That means that we compute the
derivative of L with respect to µ and �, leading for example to the condition

@

@µ

Z
d! qµ,�(!) log p(C|!) = 0 . (9)

Once we determine the approximate probability distribution qµ,�(!) from Eq.(7), we can use
it to solve Eq.(3) by Monte Carlo integration and find the predictive mean for the test sample,

p(c⇤|C) ⇡
Z

d! p(c⇤|!) qµ,�(!) ⇡
1

N

NX

j

p(c⇤|!j
�
µ,�)

�
⌘ µpred . (10)

To compute this mean we use N sets of weights {!}, e↵ectively corresponding to N networks
with di↵erent weights. Assuming a Gaussian probability distribution we also need the spread
of the N sets of weights, or the predictive standard deviation

�2
pred =

1

N

NX

j

⇥
p(c⇤|!j(µ,�))� µpred

⇤2
. (11)

This way the BNN returns not only a central value µpred for the classifying outcome, but also
an jet-by-jet uncertainty estimate for this classification outcome �pred.

2.2 Probabilities

We can numerically test this behavior with a toy BNN, analyzing jet images with 40 ⇥ 40
pixels. It does not include a convolutional layer and only consists of two fully connected layers
with a ReLu activation function, each with 100 units. It delivers a scalar output. For the BNN
version of this toy network we use the TensorFlow Probability library [22] and its DenseFlipout
Layer [23]. We have convinced ourselves that sampling 100 times from the weight distributions
gives us stable results. Unless specified otherwise, we train our toy model on 100k top and
100k QCD jets. The BNN property means that we are not only interested in the values of
the network output, but in the output distributions, as we will discuss in Sec. 3.2. Our toy
BNN is trained to distinguish a public set of 600k top jet and QCD jet images each [10],
which were generated with Pythia8 [24] for an LHC energy of 14 TeV and without pile-up
or multiple interactions. As a simplified detector simulation we use Delphes [25] with the
default ATLAS detector card. The fat jet is defined through the anti-kT algorithm [26] in
FastJet [27] with R = 0.8, fulfills

pT,j = 550 ... 650 GeV and |⌘j | < 2 . (12)

The top jets are truth-matched to a b-quark and two light quarks within �R = 0.8. The
images include the improved pre-processing taken from Ref. [9].

Whenever we use a neural network on classification tasks with probabilities as outputs we
need to map the unbounded space of network outputs to the closed interval [0, 1], for instance

6
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Statistical 
Uncertainty

Classification sigmoid correlates 
mean and standard deviation

BNN captures effect of 
finite training data
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Validation

• Train N deterministic networks on 
statistically independent events

• Calculate mean and standard 
deviation of ensemble

Result agrees with  
frequentist expectation
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Calibration

!69

• BNN is calibrated

• ie can interpret network output  
as probability

• Nice, but not really important in 
HEP usage
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Determinsitic network with 
regulariser BNN
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Figure 10: E↵ect of a shifted energy scale for the hardest constituent on the mean and
the standard deviation indicated as an error bar. We show the probability output (left),
supplemented with the e↵ect on the predictive uncertainty through the mean (center), and
before the sigmoid transformation (right), all for the BNN LoLa tagger.

Ref. [10] we see that the number of constituents in top jets is around 60, with a sizeable tail
towards significantly larger numbers. On the other hand, we also know that many of them
correspond to soft activity, which according to QCD factorization is universal and essentially
adds noise. This theoretical bias is confirmed by the performances shown in Tab 1, where
the LoLa tagging performance indicates no significant improvement once we increase Nconst

beyond 40.

In Fig. 9 we see the same behavior when we consider the entire ROC curve for top tagging
in the presence of a QCD background. Within uncertainties related to di↵erent trainings
both taggers and their BNN counterparts show essentially the same performance. Note that
this statement only holds true in the absence of pile-up and if we ignore statistical and
systematic uncertainties. Statistical uncertainties include, for instance, the e↵ect of the size
of the training sample, as discussed in Sec. 3.1 and Fig. 4. We do not repeat this exercise for
the actual taggers and instead focus on detector and systematic e↵ects. As a starting point,
we discuss how systematics and detector e↵ects, not accounted for in the training, a↵ect the
predictive mean and standard deviation given by the BNN. Finally, we show how the BNN
works if we use for example a known systematic uncertainty to modify or augment the training
data.

4.2 Systematic uncertainty from energy scale

As part of our program of including uncertainties through BNNs, we can investigate the jet
energy uncertainty as an actual systematic uncertainty [33]. This means that the jet energy
scale has to be calibrated with standard candle processes, and this calibration comes with an
uncertainty from the underlying measurement and from the extrapolation to a given event
topology. We use the data set described in Section 2.2 and focus on a cluster re-scaling of
the constituents of the fat jet. It involves re-clustering the constituents into anti-kT subjets
with R = 0.4 and in the simplest, toy case re-scaling the energy of the leading subjet cluster.
While the actual jet energy scale uncertainty at the LHC is in the range of 1% ... 3%, we
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Toy Uncertainty II
JES Inspired: Define sub-regions and for 
each event rescale measurements in each 
sub-region with an independent scale 
drawn from a Gaussian
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Figure 11: E↵ect of a shifted jet energy scale on the predictive standard deviation output
before sigmoid for the BNN LoLa tagger. We show top jets (left) and QCD jets (right)
separately.

inflate the shift in this section to illustrate its features for our networks limited by GPU time
and number of training jets. This toy model for smearing is not meant to be experimentally
realistic, but it is chosen to identify the non-trivial features which occur in the presence of
unknown systematics.

In a first attempt we test what happens if we train on data which does not account for
a given systematics, but we test the trained network in the presence of a systematic shift, in
this case shifting the energy scale of the leading constituent in top and QCD jets by up to
10%. For this study we use a BNN version of the LoLa tagger, because CNN taggers usually
normalize the pixel entries relative to the total momentum. In contrast, for the LoLa tagger
we can reduce the error bars due to statistics of the training sample to the level where we
can see systematics-induced shift in the discrimination power and the assigned error bars.
In Fig. 10 we see the e↵ect of such an energy rescaling on the network output for one given
jet. For one sign of the energy shift we see the expected behavior, namely a loss in tagging
performance combined with an increased assigned error bar. For the other sign of the shift
we see a pattern which naturally arises whenever the systematics is not fully de-correlated
from the features the network uses to separate the two hypotheses. In our case, we know
for instance that the network will identify jets with a more democratic energy distribution
of the constituents with QCD. This is why a positive shift of the leading constituent leads
the network to more confidently identifying the jet as a top jets, including a small error bar.
This behavior is similar to adversarial examples [34], single-pixel modifications meant to trick
image recognition tools into wrong classification obvious to human vision.

From Sec. 2.2 we know that the network output after the sigmoid transformation strongly
correlates the mean and standard deviation. To understand the e↵ect shown in the left panel
of Fig. 10 we therefore use Eq.(15) to determine the shift in the predictive standard deviation
based on this correlation with the shifted mean. In the center panel we indeed see that
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Posterior
• Bayesian NN give us a measure of uncertainty for a network output


• Double the weights + MC sampling: somewhat slower, but not 
significant


• Matches what we expect from sampling over multiple trainings in a 
frequentist sense


• Other approaches:


• Simple approximation of Bayes via Dropout


• Improvements to BBB in Dustin’s talk last week


• Systematic uncertainties (in the HEP sense) - ie testing domain adaptation 
properties:


• Effect seen, need to study in more detail for practical procedure
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Anomalies
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Architecture I
• Reconstruct energy with calorimeter  

(improve resolution using tracker)
• Cluster energy deposits into jet
• Preprocess: 

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3

Convolutional network

LAuto =
X

Pixels ij

⇣
Xij � eXij

⌘



Does it work?
• Train on QCD only

• Test on top vs QCD

• Cut on loss function as discriminator

• Large loss → autoencoding failure → anomaly

!76

Images



Architecture II

* from: Deep-learning Top Taggers & No End to QCD
A Butter, GK, T Plehn, M Russell
1707.08966

Constituent network*

Can implement autoencoders 
using any architecture!



Does it work?
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Figure 4: Left: ROC curves for the 4-vector-based or LoLa autoencoder identifying anoma-
lous top jets for di↵erent bottleneck sizes. Right: comparison of the ROC curves for the
image-based and the 4-vector-based autoencoders. The widths of the lines show the variation
based on ten independent test samples for fixed training.

second layer. The loss function is

Lauto =
40X

j=1

3X

i=0

⇣
k̃ini,j � k̃autoi,j

⌘2
. (6)

As for the images we use the PReLU activation function, except for the last layer with its
linear activation function, and the Adam optimizer for the learning rate [37].

In the left panel of Fig. 4 we show the ROC curves for the 4-vector-based tagger for di↵erent
choices of the bottleneck size. We now find the best result for a very small bottleneck with
at most 10 units. The stable AUC value is around 0.92 with a loss around 10�5 per pixel.
Such small functional bottlenecks reflect the fact that with the CoLa/LoLa structure we
have encoded a lot of the relevant information in appropriate physics terms [13].

Finally, in the right panel of Fig. 4 we compare the best-performing image-based and
4-momentum-based autoencoders. The widths of the lines are again generated by evaluating
the network on ten independent test samples. The main feature in this plot is that the
LoLa-autoencoder does better than the image-based autoencoder. This is a result of the
smaller possible bottleneck size, because the LoLa architecture is optimized to extract the
leading discriminating features most e�ciently. While this gives an advantage to the pure
autoencoder, we will see the other side of the same medal in the next section.

2.3 De-correlating the mass

Neural networks separating signal and background jets after fully supervised training on
labelled data are, in theory, straightforward to calibrate and understand. The problem at
the LHC is that we hardly ever have enough labelled data to train such networks for relevant
new physics searches. Our autoencoder responds to this problem by limiting the training
to QCD jets only and by only asking if a given data set is described well by QCD or any

7

Different ROC curve as well as bottleneck 
size preferred by different architectures


