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• Proposal from Bonn focuses on using opportunistic resources 
from huge HPC centers

• Most HPC Clusters built for high FLOPS
• ErUM Data workload needs high IOPS

• SSD can deliver high IOPS, however
– usually only used for Metadata if at all (Euro/Tbyte) or as
– “OS“ disk for fast boot of compute nodes

• Aim of the application from Mainz: Opportunistic use of 
resources for our workloads -> run at scale at HPC centers -> 
use opportunistic file systems

From FLOPS to IOPS



• Trivially parallelizable jobs
– typically few calculations on a lot of data
– sometimes problematic access patterns, i.e. random I/O

• Scaling to thousands of jobs makes even sequential I/O look 
like random I/O for the central storage system

• Solutions:
– Build machine with high throughput in mind (does not 

apply to classic HPC centers)
– Copy files to local disk space -> Problem getting the jobs to 

the correct nodes
– Use parallel FS built from compute nodes resources -> Ad-

hoc parallel FS

Workload



• Building FS using compute nodes resources, e.g. local SSDs, 
leverages these resources for trivially parallelizable work loads

• Remove load from central long-term storage
• Scaling properties of Ad-hoc FS better because of (potentially) 

large number of storage targets  with huge aggregated  IOPS 
performance

Benefits of the Ad-hoc FS using compute nodes



Ad-hoc File Systems
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• GekkoFS and BeeGFS weakly scaled (100K files per process)
• More than 819 million files in total on 512 nodes

Metadata Performance



Sequential I/O throughput (file per process)
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Test at BSC: Variability
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Test at BSC: Worst-case performance
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• Additions from Mainz proposal:
– Extend schedulers to stage in useful data, while job is 

already accumulating priority via wait time
– Make the Ad-hoc FS less ad-hoc, i.e. keep the user 

generated PFS alive over several jobs 

Ad-hoc file systems and Opportunistic Resources



Thank you for your attention


