

ErUM Data –
Application from Mainz

Prof. Dr.-Ing. André Brinkmann
Dr. Dalibor Djukanovic
Prof. Dr. Frank Maas

• Proposal from Bonn focuses on using opportunistic resources
from huge HPC centers

• Most HPC Clusters built for high FLOPS
• ErUM Data workload needs high IOPS

• SSD can deliver high IOPS, however
– usually only used for Metadata if at all (Euro/Tbyte) or as
– “OS“ disk for fast boot of compute nodes

• Aim of the application from Mainz: Opportunistic use of
resources for our workloads -> run at scale at HPC centers ->
use opportunistic file systems

From FLOPS to IOPS

• Trivially parallelizable jobs
– typically few calculations on a lot of data
– sometimes problematic access patterns, i.e. random I/O

• Scaling to thousands of jobs makes even sequential I/O look
like random I/O for the central storage system

• Solutions:
– Build machine with high throughput in mind (does not

apply to classic HPC centers)
– Copy files to local disk space -> Problem getting the jobs to

the correct nodes
– Use parallel FS built from compute nodes resources -> Ad-

hoc parallel FS

Workload

• Building FS using compute nodes resources, e.g. local SSDs,
leverages these resources for trivially parallelizable work loads

• Remove load from central long-term storage
• Scaling properties of Ad-hoc FS better because of (potentially)

large number of storage targets with huge aggregated IOPS
performance

Benefits of the Ad-hoc FS using compute nodes

Ad-hoc File Systems

App1

Node 1 Node 2 Node 3

Parallel File System

App2

Node 4 Node 5 Node 6

Ad-hoc file system 1 Ad-hoc file system 2

• GekkoFS and BeeGFS weakly scaled (100K files per process)
• More than 819 million files in total on 512 nodes

Metadata Performance

Sequential I/O throughput (file per process)

Seq. write

Seq. read

Test at BSC: Variability

Read Write

1 2 4 8 16 32 1 2 4 8 16 32
102

103

104

Number of nodes (24 processes / node)

M
iB

 /
se

co
nd

GPFS
GekkoFS

Test at BSC: Worst-case performance

Read Write

1 2 4 8 16 1 2 4 8 16
0

1000

2000

3000

4000

Number of nodes (24 processes / node)

M
iB

 /
se

co
nd

GPFS
GekkoFS

• Additions from Mainz proposal:
– Extend schedulers to stage in useful data, while job is

already accumulating priority via wait time
– Make the Ad-hoc FS less ad-hoc, i.e. keep the user

generated PFS alive over several jobs

Ad-hoc file systems and Opportunistic Resources

Thank you for your attention

