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Topics

•  Deep learning at ECAP
–  Regular informal seminars 

•  Presentations by different groups (both neutrino and gamma rays)
•  Exchange of ideas and discussion of technical problems

–  Master level lectures and practical exercises on machine learning 
(including deep learning)

•  Neutrinos
–  EXO-200
–  IceCube
–  KM3NeT

•  Gamma rays
–  Fermi 
–  H.E.S.S.



Deep learning at ECAP

•  Current research topics at ECAP
–  Classification

•  Background vs signal
•  Different types of astro sources

–  Regression
•  Reconstruction of energy, direction of astro particls

–  Monte Carlo (with GANs)

•  Can DL algorithms do as well as or better than 
the likelihood methods?

–  Yes, they can and with much less “tuning” by hand.

•  New questions (shift of paradigm?):
–  Before: 

•  What are important features of the measurement?
•  How does one use them to measure physical quantities?

–  Now:
•  What is the optimal architecture of the networks to measure the 

physical quantities?



EXO-200 experiment

•  Neutrinoless double beta decay 
•  Tobias Ziegler, Thilo Michel, Gisela Anton 
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EXO-200: Energy measurement

•  Energy resolution with deep learning 
is better than standard methods 

–  At the moment the comparison 
is made for ionization only 

–  Future: add scintillation 
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EXO-200: background rejection

•  One of the most sensitive searches for 0νββ with the full EXO-200 dataset 
for 136Xe and the first search directly using a DNN discriminator   
(arXiv: 1906.02723, submitted to PRL). 

•  Architecture inspired by Inception  
proposed by Google (kernels of different size 
at the same level) 

•  DNN discriminator outperforms BDT  
discriminator (Phys.Rev.Lett. 120 (2018)) 

6	Main	background	–	gamma	rays	

Anton	et	al,	arxiv:1906.02723	



EXO-200: MC simulations with GANs

•  Federico Bontempo, Thilo Michel, Gisela Anton 
•  MC simulations can be easily distinguished  

from real data images by a discriminator NN 
–  Can one use Generative Adversarial  

Networks (GANs) to improve MC generator? 
•  Use Wasserstein distance in training the generator 

to have only minimal changes necessary to make  
MC images realistic. 

–  Loss function for discriminator training (with gradient penalty): 

–  Generator + discriminator  
training is converging 

•  Work in progress: 
–  Comparison with physical 

parameters of events (x, y, z, E) 

preliminary	

preliminary	



IceCube experiment

•  Gerrit Wrede, Thorsten Glüsenkamp, Gisela Anton 
•  Neutrino converts to charged particles, e.g., muons 
•  Need to measure the direction and  

energy of the muons 
•  Data – light deposited in PMTs in 

the ice as a function of time 
•  Use Recurrent Neural Network (RNN) with  

Long short-term memory (LSTM) layers 
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IceCube: Position Reconstruction

•  Input: Light detected in PMTs 
binned in time (30ns bins) 

•  3 1D-Convolutional layers  
–  along z-axis 

•  1 forward LSTM layers 
•  1 reverse LSTM layers 
•  2 residual LSTM layers 
•  Predict position of muon in  

each time step 
•  Loss function: 


•  For the final track reconstruction 

use the linear fit through the  
DL position estimates at each 
time step 



IceCube: Energy Reconstruction

•  Reconstruct stochastic energy losses of muons 
•  RNN with similar architecture 

•  Next steps: 
–  Background rejection with RNNs 

preliminary	

preliminary	



KM3NeT

•  ARCA: Astroparticle Research with Cosmics in the Abyss 
–  TeV-PeV neutrino astronomy 

•  ORCA: Oscillation Research with Cosmics in the Abyss 
–  neutrino mass ordering with few-GeV atmospheric neutrinos  
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KM3NeT Deep Neural Networks

Michael Moser, Steffen Hallmann, Stefan Reck, 
Thomas Eberl, Gisela Anton 
Classification 

–  Background suppression 
–  Event topology identification  

(flavor proxy) 
 

Regression 
–  Neutrino direction and energy  

reconstruction 
–  Uncertainty estimate 

Add a neuron per  
reconstructed regression  
variable to predict absolute  
residual of the mean error. 
Loss function:  

x,	y,	z,	t,	E,	θ,	ϕ	σx,	σy,	σz,	σt,	σE,	σθ,	σϕ	

KM3NeT	collab.	PoS(ICRC2019)904	



KM3NeT: Energy and Direction

•  Energy and direction for track events 
–  Energy error is much smaller for DL than the standard methods 
–  Direction reconstruction is comparable for DL and the standard methods 

•  Next steps: 
–  Regression and classification with CNNs for ARCA and ANTARES 
–  Use of autoencoders to train directly on data  

•  master thesis of Stefan Reck 

Michael	Moser	et	al.	TAUP	2019	poster		



Fermi LAT: point source classification

•  Aakash Bhat, Dmitry Malyshev
•  There are unidentified sources in the "

Fermi LAT catalogs
•  Propose classification of unidentified "

sources into active galactic nuclei (AGNs)"
and pulsars based on their properties:

–  Features: position, spectral index, "
cutoff, variability

•  Use ML algorithms:
–  Random forests
–  Boosted decision trees
–  Neural networks
–  Logistic regression
–  Support vector machines
–  …

•  Future directions:
–  Classification based on raw"

photon data

Acero	et	al.	ApJS	218	(2015)	



Fermi LAT: PS classification

•  Accuracy of classification "
as a function of the complexity, "
e.g., depth of the trees in RF, "
number of layers in NN

•  Examples of domains for"
a pair of parameters

•  Result of the classification"
for unidentified sources in 3FGL "
catalog (4 years of data)

•  Goals: 
–  Compare with the new"

4FGL catalog (8 years of data)
–  Make predictions for the "

unidentified sources in 4FGL
–  Extend classification for"

subclasses
•  Future direction:

–  PS reconstruction with CNNs
–  PS classification using light curve"

with RNN

Algorithm	 Accuracy	 Expected	new	PSRs	

RF	 98.3	 148/1056	

BDT	 96.9	 184/1056	

NN	 98.1	 213/1056	



H.E.S.S. experiment

•  Christina Hillig, Matthias Buchele, "
Stefan Funk

•  IACT – detection of high energy gamma"
rays (E > 50 GeV)

•  Neural Networks
–  Event classification

•  Gamma rays vs nuclei
–  Energy reconstruction

•  Input: images of Cherenkov light"
from atmospheric showers

–  Used the data from the "
four small telescopes in"
this analysis

CT1-4 Combined Image 



H.E.S.S.: Event Classification

Christina	Hillig,	Master	thesis	

•  A reasonable separation (~ 1/200) of gamma rays"
from nuclei was achieved

•  One can also use CNNs to separate light nuclei"
(e.g., Hydrogen or Helium) from heavy ones (e.g.,"
Iron)



H.E.S.S.: Energy Reconstruction

•  Use a similar network to reconstruct the energy
–  Results are reasonable between ~ 30 – 90 TeV

Christina	Hillig,	Master	thesis	



Conclusions

•  DL methods have been used in ECAP in analysis of EXO-200, IceCube, KM3NeT, 
Fermi-LAT, H.E.S.S. data for

–  Background rejection
–  Energy reconstruction 
–  Direction reconstruction

•  The DL methods work similar to or better than the “standard methods” such as 
likelihood analysis or other machine learning technics, e.g., BDT

•  Advantages:
–  Little additional input 

•  in many cases the input is the raw data such as shower images, electrical 
current, PMT responses

•  the DL algorithms learn to determine the most important features “by 
themselves” – no need to guess or construct the features

•  this typically leads to much shorter overall development time, although 
the algorithm training time can be several days

–  Data analysis time is often shorter than for standard methods
•  Challenges:

–  No standard procedure – how does one choses a particular network, can 
another network be better?

–  Sometimes interpretation of results in terms of, e.g., statistical uncertainties or 
confidence is not straightforward


