Poster sessions LMU-CAM workshop on July 18

Poster session A		First Name	Last Name	Title of the poster
	A1	Pooyeh	Asadiatouei	Single Molecule Analysis
				PREDICTING POLYMORPHISM IN DE NOVO-DESIGNED PROTEIN
	A2	Bhoomika	Basu Mallik	ASSEMBLIES
				Conformational dynamics of chaperone proteins revealed by single
	А3	Ecenaz	Bilgen	molecule FRET
				DNA origami nanostructures for investigating force-dependent
	A4	Arthur	Ermatov	enzymatic activity
				Towards Self-Assembled Hybrid Catalysts: Atomistic Molecular
	A5	Benjamin	Fingerhut	Dynamics Simulations of DNA-Origami Structures
				DNA origami self-assembly with complex curved surfaces defined
(morning)	A6	Julie	Finkel	in 3D space
				Efficient and scaleable de novo protein design using a relaxed
	Α7	Christopher	Frank	sequence space
				Graphene Energy Transfer (GET) and DNA Nanotechnology for
	A8	Izabela	Kaminska	Single-Molecule Biosensing and Biophysics
				Targeting the "undruggable" pathways that allow metastatic
				processes: an experimental suite for advancing breast cancer
	Α9	Gabriele	Loiudice	treatment.
	A10	Rui Yee	Loke	DNA-based robot arm for molecular sensing

	B1	Thomas	Mayer	Toehold-Mediated Strand Displacement in Random Sequence Pools
			,	
	В2	Casey	Platnich	Nanopore-based analysis of DNA:RNA hybrid nanostructures
	В3	Susanne	Reinhardt	Ångström-resolution fluorescence microscopy
	B4	Roger	Rubio Sánchez	Replicating cell-surface machinery with DNA nanostructures
Poster				
session B	B5	Ken	Sachenbacher	Triple-Stranded DNA As a Structural Element in DNA Origami
(afternoon)				Single-cell microscopy to assess the effect of fusogenic liposomes
	В6	Anna	Scheeder	on bacterial envelopes
				Fluorescence-based membrane transporter assays for ABC
	В7	Anna-Katharii	Spring	transport systems
	В8	Jenna	Stanislaw	Designing Peptide-Induced Heterodimeric Biosensors
	В9	Nicolas	Wendler	
	B10	Xin	Yin	DNA Origami Diamond Lattice with Structural Color in UV Range