Xcache status

Nikolai Hartmann

LMU Munich

February 24, 2020

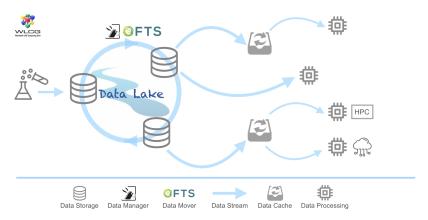
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

What is XCache?

- Disk caching proxy using xrootd (libXrdFileCache.so)
 - → What is xrootd?
 - Remote access protocol software framework
 - ... with many features (proxy, cluster, caching, storage system, third-party-copy, authentication protocols, ...)
 - becoming the standard remote reading protocol at ATLAS/CMS
- Data is cached in blocks
- Simply prepend xcache server url e.g.
 TFile::0pen("root:[xcache-server]:[port]//[xrootd-path]")
- Optionally use rucio DIDs via N2N plugin: https://github.com/wyang007/rucioN2N-for-Xcache
 - \rightarrow allows usage of rucio DIDs instead of xrootd path
 - \rightarrow tracks identical files distributed at different locations (internal symlink .../scope/XX/YY/filename)

What is XCache?

- Disk caching proxy using xrootd (libXrdFileCache.so)
 - \rightarrow What
 - Rem
 - ... w
 - becc

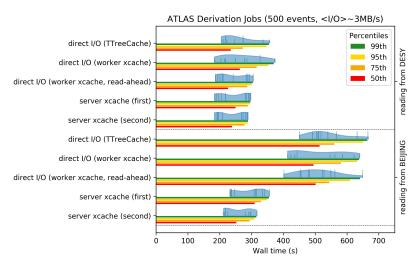


software framework proxy, cluster, caching, storage system, ication protocols, ...) emote reading protocol at ATLAS/CMS

- Data is cached in blocks
- Simply prepend xcache server url e.g.
 TFile::0pen("root:[xcache-server]:[port]//[xrootd-path]")
- Optionally use rucio DIDs via N2N plugin: https://github.com/wyang007/rucioN2N-for-Xcache
 - ightarrow allows usage of rucio DIDs instead of xrootd path
 - → tracks identical files distributed at different locations (internal symlink .../scope/XX/YY/filename)

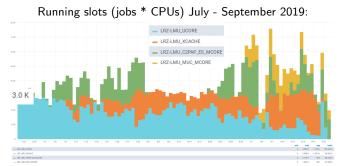
Why?

- There is a push towards a storage model around "data lakes"
 - \rightarrow sites with large storage
- Small storage sites should read remotely from closest data lake
 - ightarrow hoped to reduce both hardware resources and manpower needs
- · Caching might help for 2 things
 - Hide latency
 - ightarrow push the problem of efficient remote reading (e.g. reading in sufficiently large blocks, parallel) to the cache server
 - Reduce WAN traffic
 - ightarrow files that are accessed again might still be in cache


Datalakes, latency hiding and caching - Xavier Espinal (CERN)

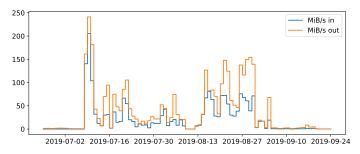
Setup

- Hardware: Old dCache pool node (from 2012):
 - Dell R710, 2x6 core Xeon L5640, 32 GB RAM, 10 Gb Ethernet
 - 60 TB Raid-6 (2x12x3TB HDD) (switched to individual disks instead of RAID6)
- Xrootd version 4.10.0
- Setup w/ singularity SL6 image. Full configuration: https://gitlab.physik.uni-muenchen.de/Nikolai.Hartmann/xcache-singularity-lrz/
- XCache settings:

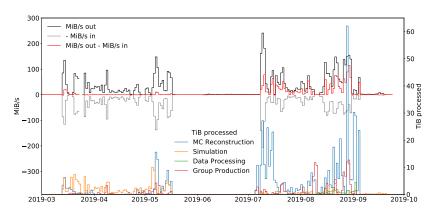

```
pfc.ram 14g
pfc.blocksize 1M
pfc.prefetch 10
```

Initial studies on latency hiding

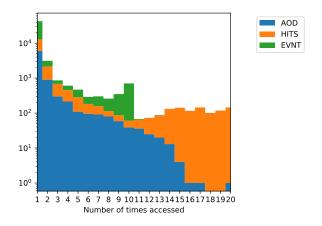
→ caching on server hides latency better than caching on worker nodes


Test XCache in ATLAS production queue

ATLAS production queue in Munich that retrieves all files via XCache

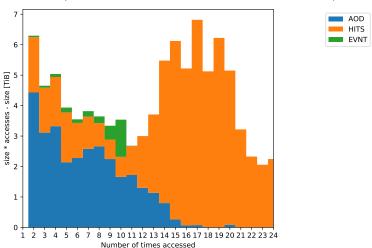

- · Remote destination is nearby MPP Munich storage
- Can take a quite significant fraction of the jobs
- Works surprisingly well, given that all traffic goes through a single server

Caching works


 \rightarrow Output volume already larger than input volume (≈ 1.8)

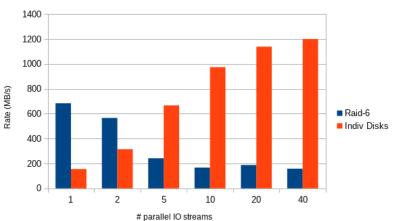
But hit rate depends on type of job

→ largest hit rate for MC Reconstruction (here mainly pileup overlay)


Access statistics from cinfo files

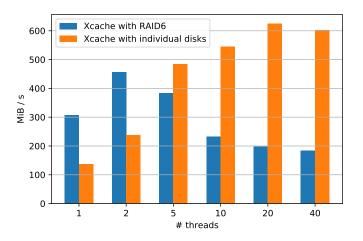
- Most reused files are HITS (pileup)
- EVNT files get reused when one file is processed via multiple jobs
- AOD files get reused for DAOD production (?)

Weighted by size * accesses - size

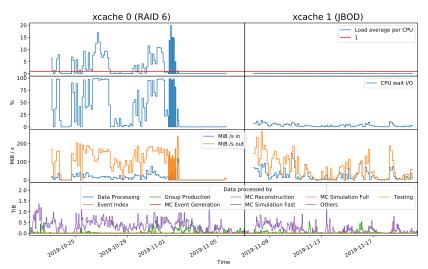

Corresponding reduction in WAN traffic (w.r.t reading everything from remote without cache)

Performance for parallel reads - Raid6 vs single disks

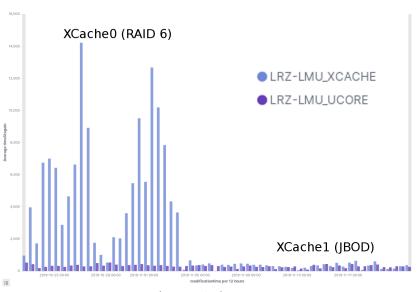
Feedback from xrootd developers: Use multidisk-mode instead of Raid (see slides from Matevž at XRootD workshop)


Raw reading tests at LRZ:

ightarrow multi-disk mode might perform better than Raid for caching system


Performance for parallel reads - Raid6 vs single disks

Now similar test with an actual xcache setup: (read random cached files through xcache, read from server)


ightarrow same conclusion - individual disks outperform RAID for parallel reads

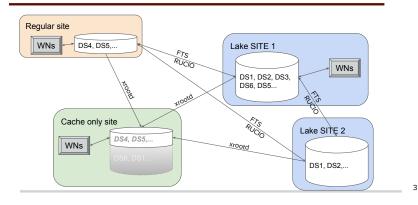
Multidisk XCache in ATLAS production queue

→ load and wait CPU drastically reduced for multidisk mode setup!

Stage-in times

 \rightarrow comparable stage-in times (with JBOD) as for non-xcache queue

Other activities - open questions


- DOMA/ACCESS: Contributing to a document that is supposed to become a white paper with recommendations for HL-LHC
- New analysis formats play a role in the discussion (MiniAOD, NanoAOD)
 - → unclear where caching will play a role
 - ightarrow some believe the smallest formats will be stored on institute disks, some believe in "analysis facilities"
- Probably talking about different things:
 - Analysis facilities, very small formats: Caching in addition to storage for fast access on local computing resources (what Karlsruhe wants to do?)
 - Caching for "diskless" sites (context we studied so far) in grid

Virtual placement - Slide by Ilija Vukotic:

What is it actually?

DSX - primary copy

DSX - virtual copy fully or partially cached data

- → "virtually" place datasets to cache-only sites
- → expected to ensure high hit rates
- → service set up by Ilija, test it in Munich?

Backup