

COBalD/TARDIS - Collaborative and Experiment Overarching Achievements

ErUM Data IDT Collaboration Meeting - 02.04.2020

Manuel Giffels, R. Caspart, M. Fischer, E. Kuehn, M. Schnepf, F. v. Cube, G. Quast

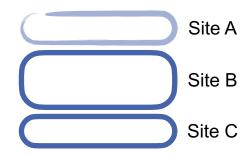
Institute of Particle Physics (ETP) & Steinbuch Centre for Computing (SCC)

INTRODUCTION

Opportunistic Resource

Any resources not permanently dedicated to but temporarily available for a specific task, user or group. → No reliance upon WLCG policies!

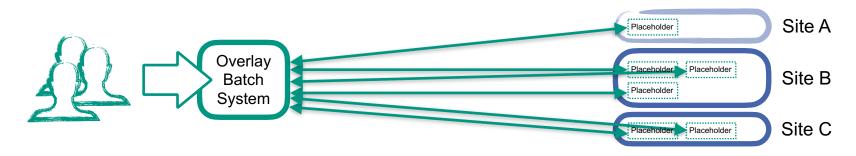
Opportunistic Resource


Any resources not permanently dedicated to but temporarily available for a specific task, user or group. → No reliance upon WLCG policies!

Each opportunistic resource is different (very heterogenous system)

Where to send my jobs?

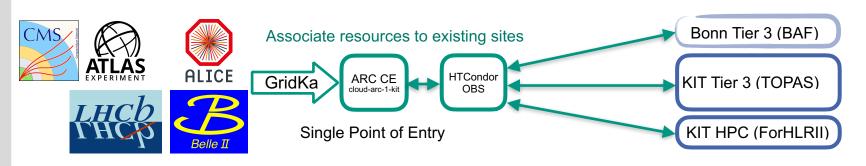
Which resources are available?
Which resources are suitable?



Opportunistic Resource

Any resources not permanently dedicated to but temporarily available for a specific task, user or group. → No reliance upon WLCG policies!

- Each opportunistic resource is different (very heterogenous system)
 - ➡Hide complexity from users and computing operations of experiments


→Dynamic and transparent integration of resources needed

Opportunistic Resource

Any resources not permanently dedicated to but temporarily available for a specific task, user or group. → No reliance upon WLCG policies!

- Each opportunistic resource is different (very heterogenous system)
 - Hide complexity from users and computing operations of experiments

→Dynamic and transparent integration of resources needed

COBaID/TARDIS Resource Manager

Development at KIT:

- Look at what is used, not what is requested
 - Simple logic: more used resources, less unused resources
 - Regular batch system scheduler decides what to use (late binding)
 - COBalD only acquires/releases resources

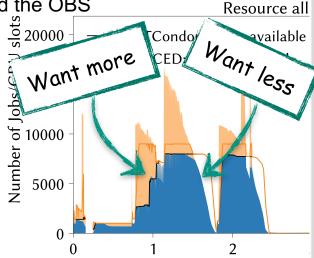
TARDIS provides interfaces to various resource provider and the OBS

Generic design for any resource

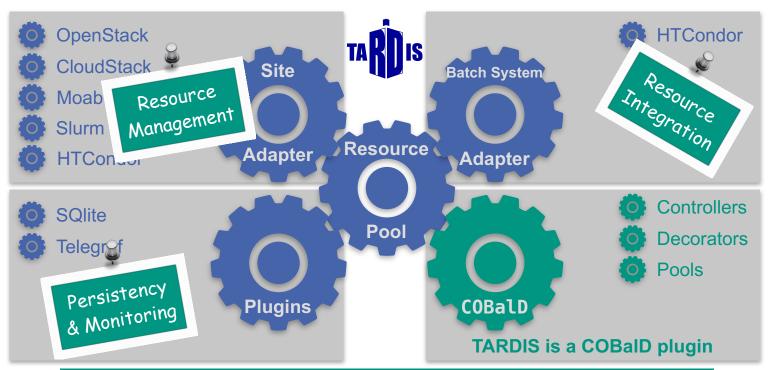
COBalD just knows (un)used resources

CPU, CPU+RAM, GPU, Squids, etc.

- Native composition / concurrency
 - Aggregate same resources to entire pools managed as one
 - Several COBalDs can manage pools for same OBS (multi-agent)


COBalD

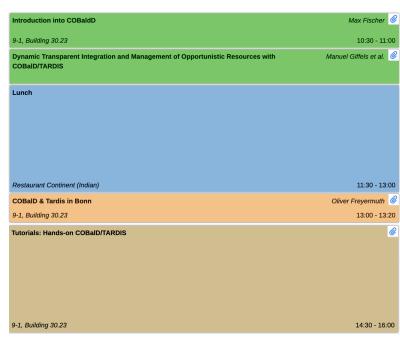
COBalD - the Opportunistic Balancing Daemon


TARDIS - Resourcemanager

Transparent Adaptive Resource Dynamic Integration System

Modular Design of TARDIS

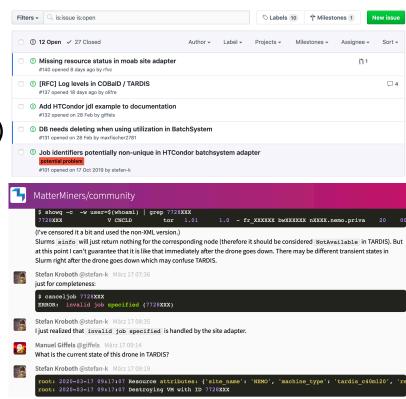
→ Easily extendable by design through its modular structure



INITIATE AND FOSTER COLLABORATION

ErUM Data IDT Cloud Workshops

- June 2019 (Karlsruhe)
 - SLURM overlay batch system adapter (Freiburg)
 - Light-weight integration of TIER 3 resources into the WLCG (Bonn)
- February 2020 (Aachen)
 - Light-weight operation of RWTH TIER 2 resources
 - ... and integration of close-by HPCs



Cloud workshops are extremely helpful to initiate fruitful collaborations!

Collaborative Software Development

- GitHub Issues & Pull Requests
 - Established a review process
 - Test Driven Development
 - Continuous Integration (travis-ci.org)
 - Test Coverage (<u>codecov.io</u>)
- Documentation on <u>readthedocs.io</u>
- DOI on <u>zenodo.org</u>
- Chat on Gitter (gitter.im)
- ... plus email and phone calls

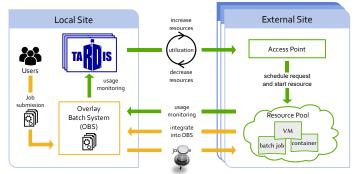
Next Step: Compute Site in a Box

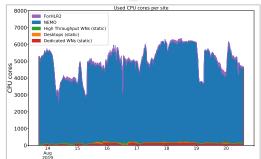
"COMPUTE SITE IN A BOX" IN A NUTSHELL

- Develop and test new approaches to integrate tier 3 resources into a single point of entry provided by large computing centres (e. g. tier 1s)
- Fully automated deployment (provide Puppet modules for all services)
- Spread developed technology and know-how
 - Exploit results from stage 1 and roll out developed strategy on more tier 3 sites
 - foster collaboration between ErUM members and spread knowledge by means of schools and workshops
- Request 1 FTE to do the work

Slide by Peter Wienemann

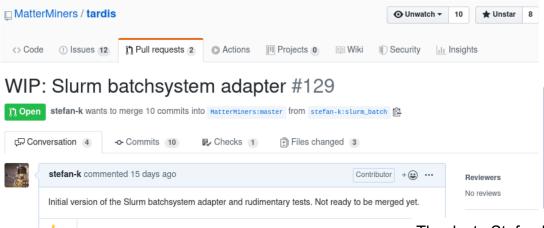
Essential to simplify resource integration and to foster collaboration!

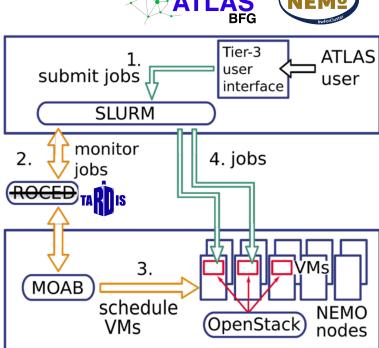



ACHIEVEMENTS

Show case: Opportunistic Compute Center for a Day

- Dynamically shared HPC centre (NEMO) at University of Freiburg (three diverse communities)
- Virtualization/containers are key components to:
 - Allow for dynamic resource integration and partitioning
 - Meet software and OS requirements
- In total around 20000 cores
 - HEP has nominal share of 33%
 - KIT has nominal share of 8%
- Transparently managed and integrated by TARDIS/COBalD at ETP/KIT (TIER 3)

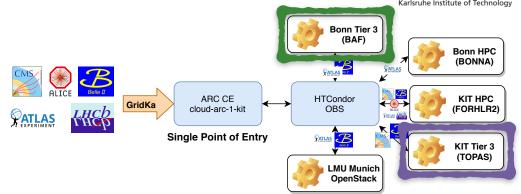

Very good experience, HEP was strongly involved in the project from the early beginning



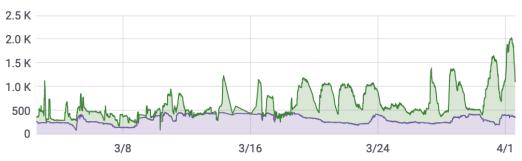
Dynamic Extension of the ATLAS Black Forest Grid

- Integration of HPC resources (NEMO) into ATLAS Black Forest Grid (BFG) at University of Freiburg
- Replaced ROCED with COBalD/TARDIS at BFG
- Implemented a SLURM overlay batch system adapter for TARDIS

Thanks to Stefan Kroboth, Benoit Roland, Benjamin Rottler (U Freiburg)


Use Case: Backfilling of Tier 3 Resources

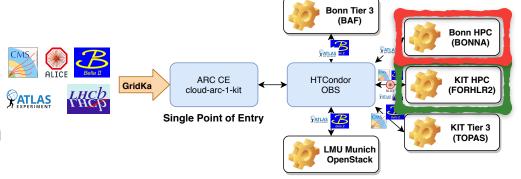
In Germany:


- Local infrastructures at Universities
- Usually no Grid services deployed (lack of person power)
- Significant amount of resources
- Job requirements and fluctuations in utilization lead to unused resources

Pilot Project @ University of Bonn:

- COBalD/TARDIS successfully deployed @ U Bonn
- ATLAS & Belle2 production jobs are running in Bonn (Tier 3)
- Jobs are fed by an ARC-CE located at the GridKa Tier 1
- Completely transparent to the ATLAS and Belle 2 experiment

Used Cores per Site ▼

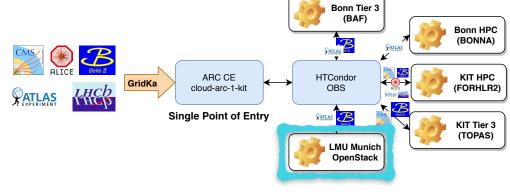


Thanks to Peter Wienemann and Oliver Freyermuth (U Bonn)

Use Case: Integration of HPC Resources

Karlsruhe Institute of Technology

- Rechencluster "Bonna"
 - Fully unprivileged setup
 - Charliecloud container
 - Remote submission via ssh from U BONN
- ForHLR2 Cluster @ KIT
 - Backfilling with HEP jobs
 - Singularity container
 - Remote submission via ssh from GridKa (KIT)


Thanks to Peter Wienemann and Oliver Freyermuth (U Bonn)

Use Case: Commercial and Private Cloud Resources

Pilot project with LMU Munich:

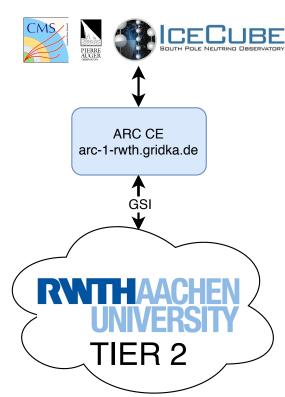
- COBalD/TARDIS running at KIT
- Initially 40 cores assigned at the LMU OpenStack instance
- Accepts Belle2 & ATLAS WLCG jobs
- Jobs are fed by ARC-CE located at the GridKa T1
- Further projects with LMU are planned (<u>C2PAP</u> using "Site in a Box")

Used Cores per Site

Thanks to Michael Holzbock, Günter Duckeck, Rodney Walker, Thomas Kuhr!

Use case: Light-weight Operation of Grid Resources

Pilot Project with RWTH Aachen:

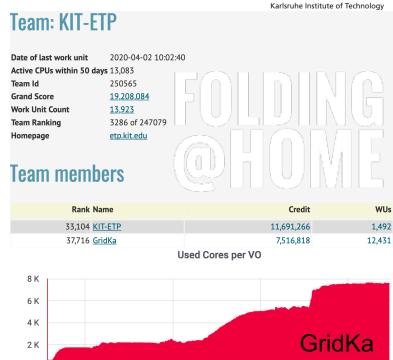

- Remote ARC-CE operated by GridKa managed by puppet (One of many!)
- Submit host for RWTH T2 HTCondor Test Cluster authenticated by GSI
- First test Grid jobs run successfully

Next steps:

16

Register and enable remote ARC-CE for CMS production workflows

Simplifies the operation of "smaller" sites!



Fight against COVID-19 with COBalD/TARDIS

- Use COBalD/TARDIS as job factory ensures constant job pressure
- Support of Folding@Home and Rosetta@Home
- 8 NVidia V100 + T3 backfilling at KIT-ETP
- Up to 7600k cores at GridKa T1
- Nice to see how HEP technology can help

KIT-GridKa		
	Benutzer ID	2127744
	Rosetta@home Mitglied seit	30 Mar 2020
Rosetta@home Protein Folding, Design, and Docking	Land	Germany
	Gesamtguthaben	1,369,127
	aktueller Punktedurchschnitt	123,597.87

4/1 00:00

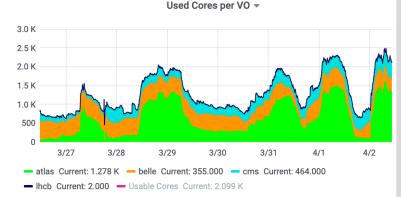
4/1 08:00

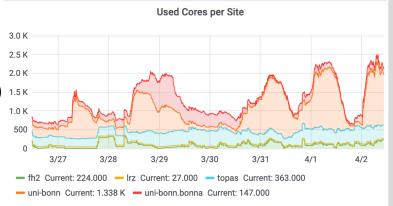
4/1 16:00

Give it a try! Configuration templates @ https://github.com/MatterMiners/FoldingAtHome

3/31 16:00

Conclusions


Karlsruhe Institute of Technology


- C0BalD/TARDIS resource manager developed at KIT + external contributions (Bonn, Freiburg)
- Single point of entry for WLCG jobs@GridKa (dedicated ARC CE), supports multiple VOs
- Enables transparent and dynamic on-demand provisioning of opportunistic resources
- Substantial opportunistic cores provided thanks to collaborative efforts of KIT, Bonn and Munich
- Developed a concept for light-weight operation of Tier 2 compute resources (Pilot: RWTH Aachen) 1.5 K
- Our technology can also help to fight against COVID-19

10.5281/zenodo.3469929

COBalD

