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Last time: CORSIKA 7 [1]

Extensive air shower Monte Carlo simulation framework

Different types of interaction models (EPOS-LHC, QGSJET, 
SIBYLL, ...)

1 TeV Proton 1 TeV Iron 10 TeV Proton 10 TeV Iron
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First Test (CONEX)

CONEX: Hybrid Extenisve Air Shower Simulation

– first: Monte Carlo until energy threshold (3D)

– then: cascade equation solver (1D)

– provides longitudinal profile only

– runtime: seconds – minutes

Configuration:

– E = 1E17 ... 1E19 eV

– Zenith = 0 ... 65 deg

– Azimuth = -180 ... 180 deg

Generated ~ 300k datapoints
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CONEX vs. GAN
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What‘s new

TensorFlow 1                TensorFlow 2

Xmax distribution

New dataset

Implementation of new architecture (ongoing)
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Xmax Distribution (E > 5E18 eV, theta > 35 deg)
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New Dataset

Why?                Bad low energy performance

Oversample low energies: log-uniform

Traning: 1.6 million datapoints (200 showers per label set, ~60 GB)

Test: 2x 500k datapoints (1 + 10 showers per label set, ~ 20 GB)

Needs memory mapping                tf.data API

– tf.data.Dataset.from_generator( ... )

– np.load( ... , mmap_mode=“r“)

– dataset.cache(filepath)

iteration with ~400 MB/s from SSD
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New Architecture
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New Architecture (Plans)

Ensemble of Generators + Discriminators

Old Model

– Mixture of Dense- and (Transpose)Convolution-Layers

DenseNet [2]

– Full Connectiviy

StyleGAN [3]

– Noise injection at different stages

InfoGAN [4]

– Optimize mutual information of noise and generated data
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Summary

Xmax Distribution looks OK (still problems per primary)

Many technical improvements

– New dataset to cope with low energy behaviour

– Memory mapping for large dataset with standardized API

– Full TensorFlow 2 implementation

– Architecture: Masking + Ensemble (ongoing)
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MOTIVATION

Simulation of particle showers in ECL is a computationally expensive and
time consuming process.

The fast simulation is studied using a configuration of 5x5 CsI(Tl) crystals,
as in the Belle II ECL.

Electrons of energies 0.5 GeV, 1 GeV, 1.5 GeV, 2.5 GeV are used for
training and testing.

Electrons of energy 2.0 GeV are used for interpolation.

updates on Fast Simulation of Belle II ECL - Jubna Irakkathil Jabbar 02.04.2020 12/22



PARTICLE SHOWER SIMULATION

e-

Electron
Shower

CsI(Tl)

5 x 5

30 cm x 30 cm x 30 cm

6 cm x 6 cm x 30 cm
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WASSERSTEIN GAN

z

y

E

x

Noise

Generator

Geant4
Sample

Critic Critic
correct?

Critic outputs a score based on how real the input images are.

Generator outputs synthetic image from noise and labels.

Additional Energy and Position constrainer networks are added to the
model.
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RESULTS
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RESULTS

Maximum value of energy deposited in the 5 x 5 crystals
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RESULTS
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RESULTS
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RESULTS
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SUMMARY AND ON GOING WORKS

The WGAN simulated results 0.5, 1.0, 1.5, 2.5 GeV electrons on 5x5
crystals show good agreement with the electrons simulated by Geant4.

The model is able to interpolate 2.0 GeV electrons well.
Next steps:

Belle II MC shower simulation.
Inclusion of additional features.
Fast simulation of pions and muons.
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BACKUP



BACKUP FRAMES

Generator
2 x linear
1 x Transposed Convolution
2 x Convolution
Activation: LeakyReLU

Critic
4 x Convolution
2 x linear
Activation: LeakyReLU

Constrainer Networks
2 x Convolution
1 x linear
Activation: LeakyReLU
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RESULTS BY THORBEN QUAST
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Backup
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Motivation

The time complexity of CORSIKA 7 simulations rises approximately 
linearly with the primary particle energy
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Thinning

Reduces (effective) particle content by particle-aggregation

Preserves shower properties to leading order

Reduces shower-to-shower fluctuations
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(conditional) WGAN

Generator:
– 5x Dense (+3)

– 5x TransposeConvolution + Convolution (+2)

– Activation: tanh

Discriminator:
– 3x Dense (+2)

– 7x Convolution (+3)

– 2x Dense (+1)

– Activation: tanh

Trainable parameters: 79.072.457
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Shower-to-Shower Fluctuations
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Generative Adversarial Neural Network (GAN)
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Discriminator (Part 1)
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Sampling
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Discriminator (Part 2)
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Generator



Institute for Nuclear Physics (IKP), Faculty of Physics
Karlsruhe Institute of Technology (KIT)

21 Marcel Köpke: Update on Simulation of Extensive Air Showers
with Deep Neural Networks

02.04.2020

Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Result
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Result
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Result
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Train discriminator on real (1) and generated (0) data

Train generator to outsmart the discriminator

Training: Result
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Fast Implicit Simulation Heuristic (FISH)

Autoencoder with Adversarial Metric

Simulation Input (SI) can be extended with meta-parameters

Discriminator can be refined with real measurements



Institute for Nuclear Physics (IKP), Faculty of Physics
Karlsruhe Institute of Technology (KIT)

26 Marcel Köpke: Update on Simulation of Extensive Air Showers
with Deep Neural Networks

02.04.2020

vanishing 
gradients

Cross Entropy

with z (true) label and p probability (NN output)

z = 1: 
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vanishing 
gradients

Cross Entropy

with z (true) label and p probability (NN output)

z = 0: 
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Wasserstein Distance [5]

red: total mass pilled up at x

cost to move mass above/below x

total (minimal) cost to move all mass
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Kantorovich-Rubinstein Duality

 

  f = Neural Network

  Lipschitz continous: 

  Gradient is bounded → Gradient penalty
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Gradient Penalty

 

                             and

  But



Institute for Nuclear Physics (IKP), Faculty of Physics
Karlsruhe Institute of Technology (KIT)

31 Marcel Köpke: Update on Simulation of Extensive Air Showers
with Deep Neural Networks

02.04.2020

Cross Entropy Loss

 

                             and

  But
vanishing 
gradients



Institute for Nuclear Physics (IKP), Faculty of Physics
Karlsruhe Institute of Technology (KIT)

32 Marcel Köpke: Update on Simulation of Extensive Air Showers
with Deep Neural Networks

02.04.2020

Learning Rate and Momentum

Ordinary classification:

– Gradient
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Learning Rate and Momentum

Ordinary classification:

– Step
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Learning Rate and Momentum

Ordinary classification:

– Gradient
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Learning Rate and Momentum

Ordinary classification:

– Momentum
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Learning Rate and Momentum

Ordinary classification:

– Step



Institute for Nuclear Physics (IKP), Faculty of Physics
Karlsruhe Institute of Technology (KIT)

37 Marcel Köpke: Update on Simulation of Extensive Air Showers
with Deep Neural Networks

02.04.2020

GAN: Learning Rate and Momentum

Discriminator classification:

– Gradient
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GAN: Learning Rate and Momentum

Discriminator classification:

– Step
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GAN: Learning Rate and Momentum

Discriminator classification:

– Generator training
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GAN: Learning Rate and Momentum

Discriminator classification:

– Gradient
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GAN: Learning Rate and Momentum

Discriminator classification:

– Momentum
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GAN: Learning Rate and Momentum

Discriminator classification:

– Step
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GAN: Learning Rate and Momentum

Discriminator classification:

– Step

Adam:
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Constrainer

Problematic because:

– Constainer network = reconstruction of label

What if label information is not present? (thermalization)

Generator is

– forced to fullfill reconstruction loss

– will put constrainer demands into generated data

– no measure on reconstruction uncertainty
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Adjustable Accuracy [6]

ResNet

Translate to ordinary differential equation (ODE)

Solve with standard ODE solver

Adapt solver accuracy on the fly (training: high, inference: low)
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