

Technologische Entwicklungen zur Nutzung heterogener Ressourcen

Computingstrategie in der HL-LHC-Ära Workshop 2020

Max Fischer

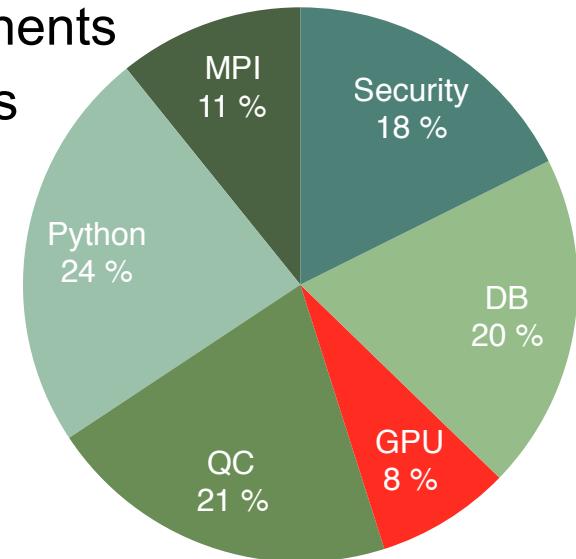
Helmholtz Research Field Matter

What are Heterogeneous Resources?

- Homogeneous Resources == “The Grid”
 - CE, SE, GSI, LHCOne, LHCOPN, ...
 - $N \times 8$ Cores / 24 ± 8 GiB RAM / 80GiB Disk, ...
- **HEP Resources outside the WLCG**
 - Tier 3 Clusters, Desktops, ...
 - Analysis Facilities
- **Third-Party Computing Clusters**
 - High-Performance Computing Cluster
 - Commercial/Scientific Cloud Providers

Motivation for Heterogeneous Resources

- Similar resources to increase resource volume
 - Integrate **dedicated or opportunistic** compute resources
 - Increase volume **permanently or temporarily**
- Different resources to increase resource coverage
 - Access **specialised or novel** compute resources
 - Enable **optimised and prototype** software solutions
- Generally: **augment or replace** existing heterogeneous resources

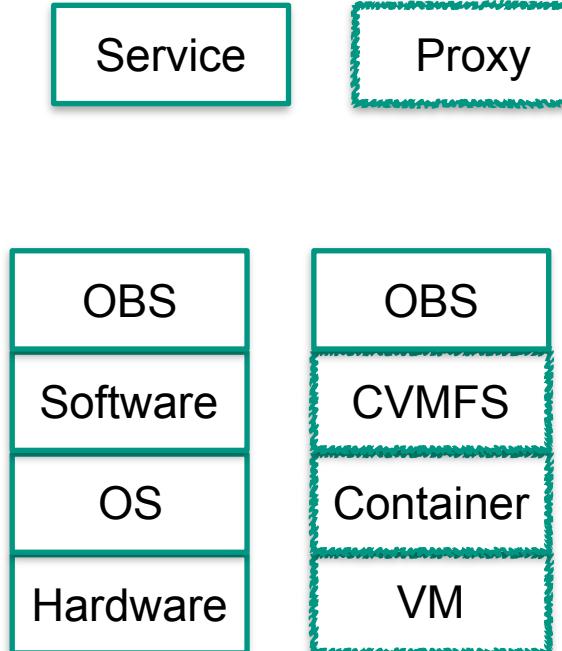

Technical Challenges

- Portability to multiple hardware architectures
 - Different flavour (x86/ARM/POWER/...)
 - Different kind (CPU/GPU/FPGA/...)
 - **General challenges** shared with other communities
- Portability to multiple infrastructure setup
 - Runtime environment (OS/Software/Services/...)
 - Physical environment (CPU/RAM/Disk/Network/...)
 - **Specific challenges** unique per community

Soft Challenges

- Training **how to use** heterogeneous resources
 - Programming (Vectorization, CUDA, ...)
 - Collaborative Development (CI/CD, Testing, ...)
 - Packaging/Distribution of specialised components
- Policies **what to do** with heterogeneous resources
 - Specialised versus portable tasks
 - Resource weighting (shares/weights/cost/...)
 - Existing policies do not apply anymore

GridKa School 2018
 [registered participants]



Integration of Resources

- De-Facto Standard: **Overlay Batch System (OBS)**
 - Wrap resource as dynamic worker node
 - Decouple acquisition and usage
 - Works with HPC, Cloud, ...
- Various flavours: HTCondor, DIRAC, ...
 - Range of **WMS, Pilot, raw WNs**
 - Trend: Generic provisioning + HTCondor
- Upcoming: Token Authentication for services
 - Expendable low-privilege passwords
 - **Safe integration by resource owners**

Runtime Environment

- Encapsulate local software stack
 - Layered VM, container, CVMFS as needed
 - Many available high-quality implementations
- Emulate external environment
 - Modular SQUID, SE Proxy/Cache, ...
 - Technology exists, policy is work in progress
 - Hindered by VO frameworks (WPAD, ...)
- Delegate Grid services
 - Grid Site as gatekeeper / service provider
 - Resources with as little “Grid” as possible

Provisioning: Backfilling / Donation

- Resource owner provides access
 - ...via individual OBS worker node
 - Independent of user demand
 - **Truly opportunistic / volatile**
- Active donation (BOINC, HTCondor, ...)
 - Provider enables/disables access
 - **Often automatised via other means**
- Passive backfilling (VAC, HPC schedulers, ...)
 - Publish unused/fragmented resources
 - **Improves utilisation for resource owner**

Provisioning: Request / Scheduled

- Resource broker requests access
 - ...as OBS owner/contributor
 - Estimation of user demand
 - **Success is opportunistic**
- Usage Prediction (CloudScheduler, ROCED, ...)
 - Compute resource need from user requests
 - **Predicts OBS resource broker decision**
- Usage Feedback (Kubernetes, COBalD/TARDIS, ...)
 - Predict resource need from observed usage
 - **Observes OBS resource broker decision**

Data Access: Network / Caching

- Generally inferior network capacities
 - Less/no outgoing network at HPC
 - Pay-per-use network at Clouds
 - Classical approach: Simulation only
- Actively cache data close to resource
 - Used in WLCG, prototypes for non-WLCG
 - Technology exists, policy is work in progress
- Passively **schedule network by correlation**
 - Limit worst-case network congestion
 - R&D for feedback based provisioning

Summary

- Heterogeneous resources are different kind of challenge
 - Need both HowTo skills and WhatTo policies
 - Mixture of training, research and development
 - Current goal is to emulate WLCG-like behaviour
- Dynamic integration via Overlay Batch System is standard
 - Backend for grid workflows, notebooks, ...
 - Challenge to co-locate auxiliary services
- Major R&D: Provisioning and data access
 - Estimate resource demand by feedback vs. prediction
 - Cache data close to jobs or filter for data-access