

## Helmholtz Computing Activities for ErUM-Data and HL-LHC

DESY: Volker GÜLZOW

GSI: Thorsten Kolleger

KIT: Andreas Petzold, Achim Streit

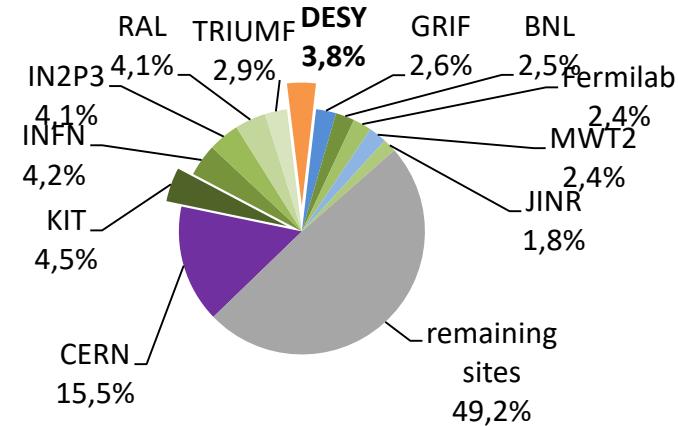


# The DESY Tier 2 Centre:

an integral Part of the existing and next WLCG Computing Model



- **Tier 2 status:**


- Among the largest Compute Centres within WLCG
- Dedicated Cluster for user analyses

- **LHC Run III**

- Increased Pile-Up
- Existing model sufficient

- **LHC Run IV**

- High Luminosity LHC



Share Worldwide LHC Computing Grid Sites (WLCG) (2019)

HL-LHC data rates forces revision of existing Computing Models

- Commitment: Tier 2 will be an integral part of the new WLCG model
- Provide resources for development of new model
- **continuing strong support for MU**




# Strong commitment to High Energy Physics

## Increasing support of computing for HEP

### ▪ Strong Contributor in Storage Development

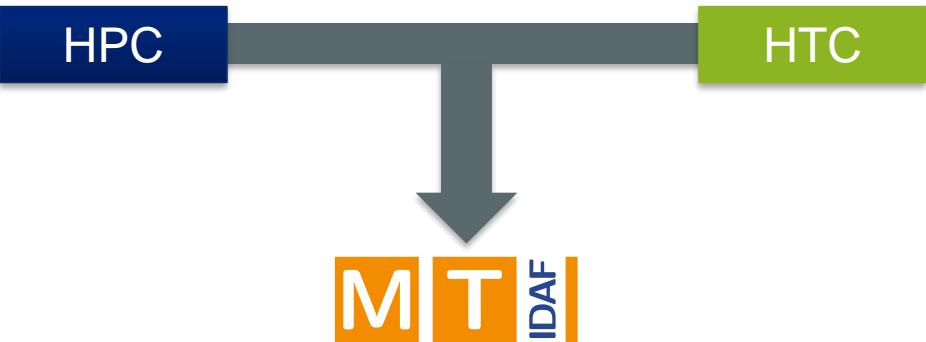
- Size and access to data are a major challenge for HL-LHC
- Leading Laboratory in [dCache](#) development
- Many Tier-1 sites use [dCache](#)
- Important Part in the WLCG Data Lake



### ▪ Major Commitment to Belle II

- Provide Services and Tools for the Belle II Collaboration
- Provide Service for Belle II Membership Management
- From 2021 providing Belle II as a Raw Data Centre one half of the German tape pledge




### ▪ Use Synergies with other Communities on Site

- Share knowledge gained in HEP computing with other communities
- Profit from shared knowledge with other communities (e.g. image based ML)
- Share resources for development of new analysis frameworks



# From Tier 2 to the Interdisciplinary Analysis Facility (IDAF)

## Merging HPC and HTC Resources



- **Support all three computing use cases:**
  - Grid large scale HEP production (HTC)
  - Individual user analysis (HTC)
  - Support simulations
  - HPC computing for Accelerator and Detector R&D, Photon Science data analysis, Machine Learning

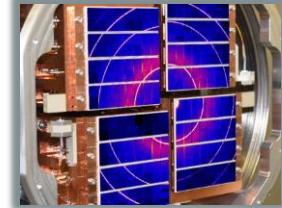
- **CPU Resources (2019)**

- HPC cluster: 31000 Cores
- Tier-2 Centre (Grid): 22500 Cores
- Tier-2 Centre (User): 11500 Cores

- **Storage (2019)**

- Mass Storage: 25 PB
- Cluster Storage: 2.6 PB
- Tape Archive: 10 PB

Combining all use cases into a common IDAF makes it “win-win”


# IDAF and Communities Beyond High Energy Physics

## Beyond HEP – Emergence of additional Communities



### ▪ Photon sources produce 10's of PB's per year

- EXFEL: AGIPD detector developed within MT-DTS  
→ ~1PB of data taken within **a few days**
- PETRA III beam-times:
  - Millions of images to be analysed in parallel
  - New detectors: **orders of magnitude increased data rates**



### ▪ Next generation of Astro-Particle Observatories



- Transfer of large amounts of data often from remote locations
- Real Time data analyses to discover transient objects



### ▪ Next generation accelerators

- Simulation → increasing demand for HPC
- Artificial Intelligence for predictive maintenance



# Analysis and Data for Nuclear and Hadron Physics

## Green IT-Cube

Compute Resources at GSI/FAIR



Environmentally friendly (PUE<1.07) and economic data center @ GSI

- 768 racks, 6 floors, 12 MW
- Technology commercialized

## Software & Technology R&D

Enabling excellent science by easy access to cutting-edge technology

**FairRoot**: Framework for Analysis, Simulation and Reconstruction

- Large international user base (FAIR, ALICE/CERN, NICA, ...)

**Vc**: performant and portable data-parallel programming

- Standardized: libstdc++

**Data Management**: high-performance, worldwide access to physics data, long-term availability

# GSI Analysis System

Enabling excellent science by innovative systems

## Online Farms (HTLs)

**CBM, PANDA@FAIR**

*Novel concept:*  
HTLs in common  
data center, fully  
integrated  
▪ Cost-effective

ALICE Upgrade  
O2-EPN@CERN  
~1300 GPUs  
several thousand cores

## Data Processing, Simulation and Analysis



Common System for all use cases

- ~30.000 Cores
- ~600 GPUs (Use cases: LQCD, Accelerator, ML, Theory, HTLs)

## Tier-2 for ALICE

Largest ALICE Tier-2

- Fully integrated into GSI-systems
- Optimized for high-performance data analysis

Recommendation by CERN-RRB: Use GSI Tier-2 as Analysis Facility for Run3+

# GSI Data Storage Systems

Making world-class data available for science

## Storing the Experiment Data at GSI/FAIR for analysis



### Lustre-System

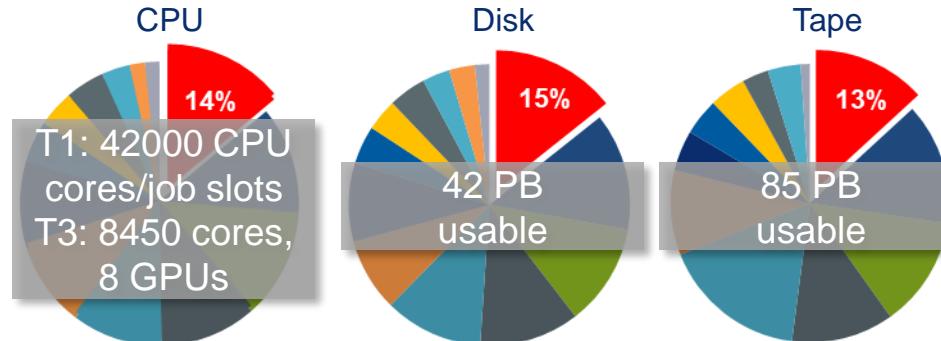
- >200 GB/s throughput
- 40 PB useable capacity
- HSM integration



### Tape-Storage System

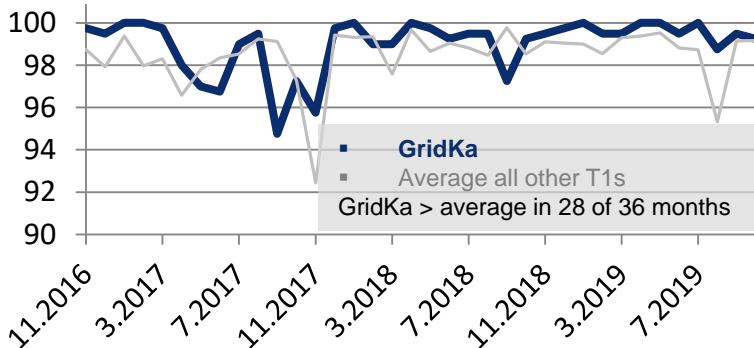
- 2 libraries at 2 locations
- 24 drives
- 10 PB used

## Making the data efficiently available on a world-wide scale


Providing and developing systems to make the data available to regional, national and world-wide partners

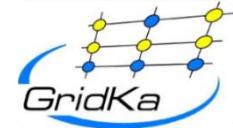


- Data access and distribution methods
- Distributed storage
- Network connections
- Efficient integration with compute resources


## Data and analysis center for particle and astroparticle physics

- One of 13 WLCG Tier-1 centers
- 1/7 of global Tier-1 resources (= cornerstone of WLCG)
- Supporting all 4 LHC experiments, Belle-II, Auger and more (integral part of LHC data processing chain)

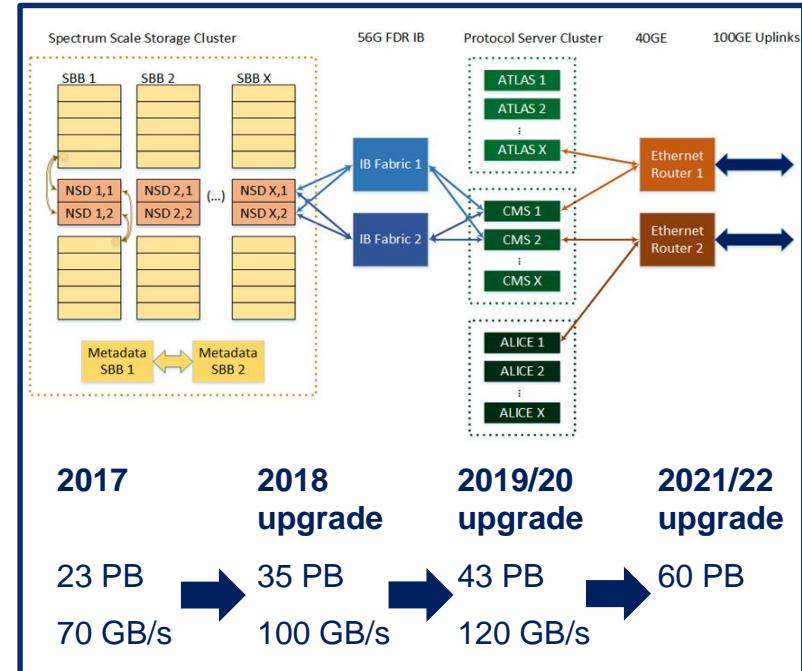



- GridKa
- INFN-CNAF
- RAL
- IN2P3
- FNAL
- BNL
- RU-T1
- SARA-NIKHEF
- TRIUMF
- NDGF
- PIC
- ASGC
- KISTI

### Reliability measured by the LHC experiments

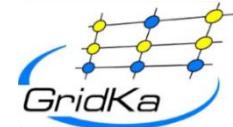


232 M core-hr  
20 M jobs  
57 PB in  
110 PB out  
0 downtime

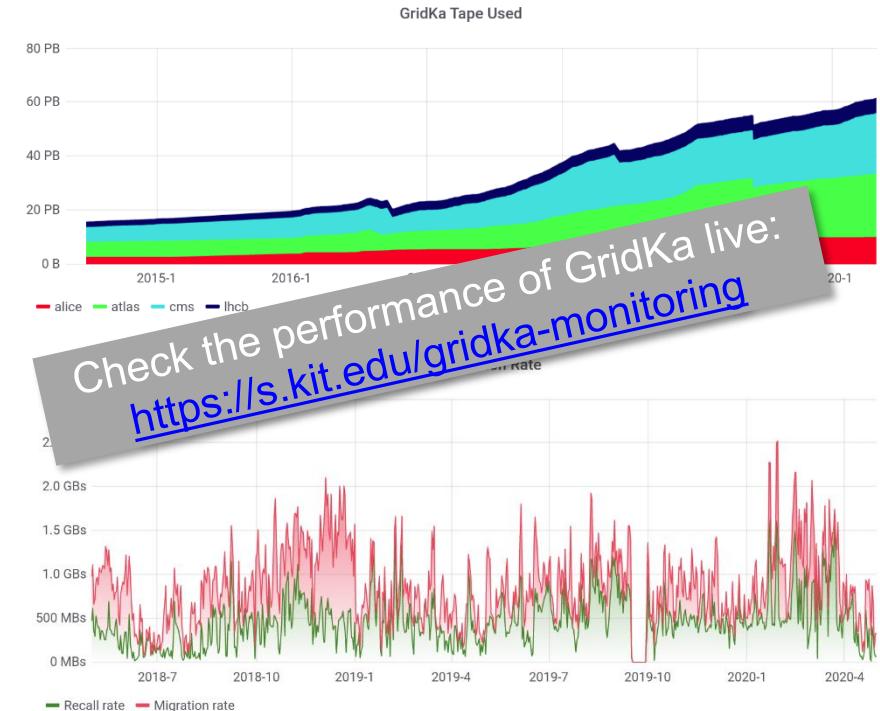

# Addressing Changing Computing Models



Leading-edge technology + in-house research and joint R&D

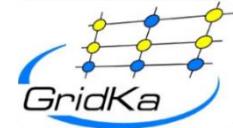

- **GridKa → Island in the Data Lake**
  - Requires massive scalability of storage and networks
- **Software Defined Online Storage**
  - Data access becomes less predictable
  - Increasing data access from remote compute sites
  - Dedicated sites (WLCG)
  - Opportunistically used sites (HPC, cloud)
- **Powerful Networks**
  - Redundant links to CERN (100 + 2x10 Gbit/s) and to DFN (2x100 Gbit/s)

Scalable online storage technology:  
throughput, IOPs, capacity



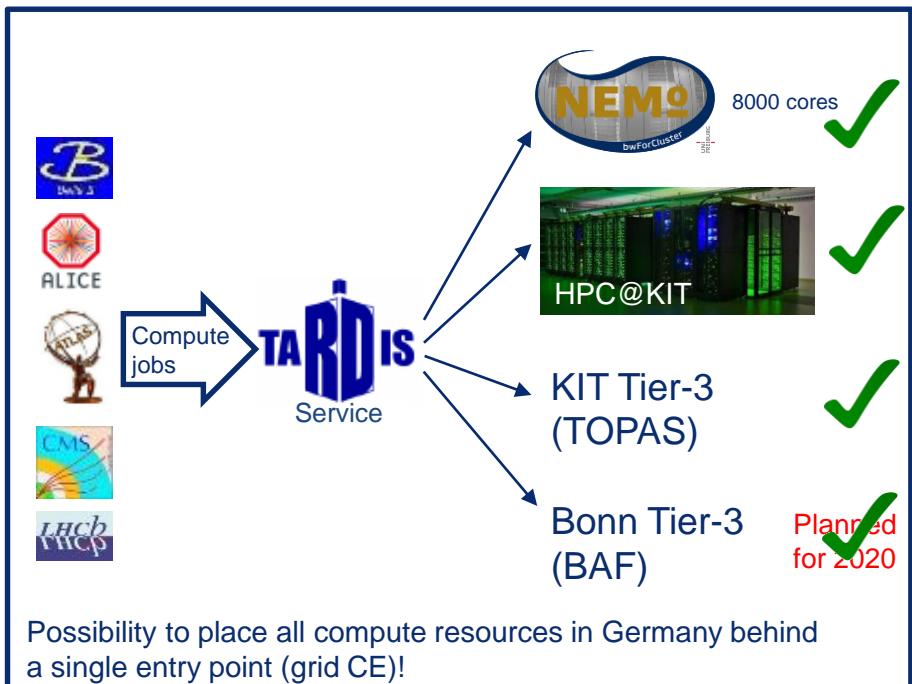

# Addressing Changing Computing Models

Leading-edge technology + in-house research and joint R&D




- **Offline Storage on Tape – Today**
  - GridKa provides long-term archive
  - Focus on RAW data and simulation
- **Offline Storage – Future**
  - Cost of HL-LHC storage requirements and operations drive changes in computing models
  - Online storage as fast buffers and offline storage as permanent storage?
  - Experience gained during Run 1+2 → Performance increase for HL-LHC




# Addressing Changing Computing Models

Leading-edge technology + in-house research and joint R&D



- **Additional Opportunistic Resources**
  - Access to opportunistic (HPC, cloud, ...) and heterogeneous resources (GPUs, ...)
  - Hidden behind a single entry point
- **Optimized Resources and Increased Computing Efficiency**
  - Innovative ideas and improvements to speed-up analysis tasks
  - Optimized configurations of hard- and software
  - Sophisticated data and workload management

## Workload management services



# SUMMARY

- Excellent support for particle physics with leading-edge IT technology
- Scaling-up of computing services, resources and data center infrastructure according to requirements
- Interdisciplinary R&D in data management & analysis between experiments, Tier centers, MT DMA and RF Information
- Integration with federated infrastructures on national and international level (NFDI, EOSC, ...)
- User transparent integration of HPC, cloud and other resources
- Indispensable research infrastructure for more than 10,000 physicists worldwide

- **Less Helmholtz Computing in Germany → Less science with HL-LHC and Belle-II**