

User Analysis for HL-LHC

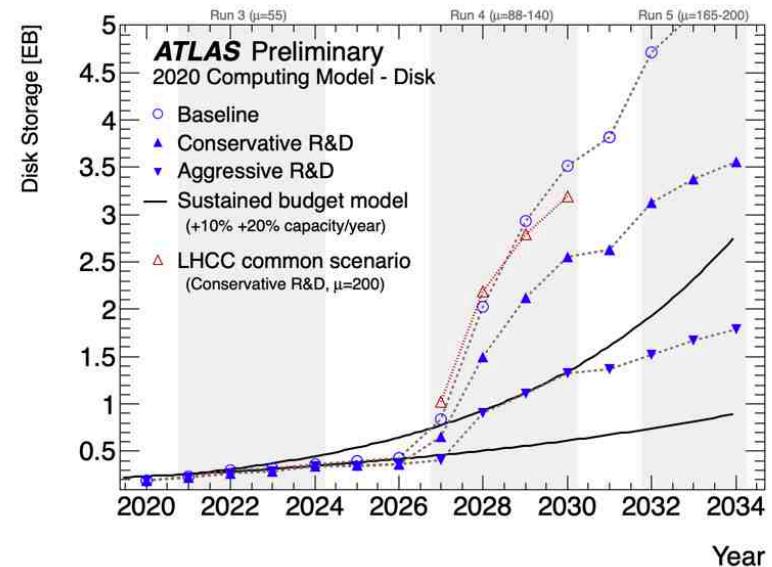
Lukas Heinrich, CERN

Analysis at the HL-LHC scale will be challenging

- firmly in the PB-regime for analysis

Need to ensure that analyzers have the tools and infrastructure in place to:

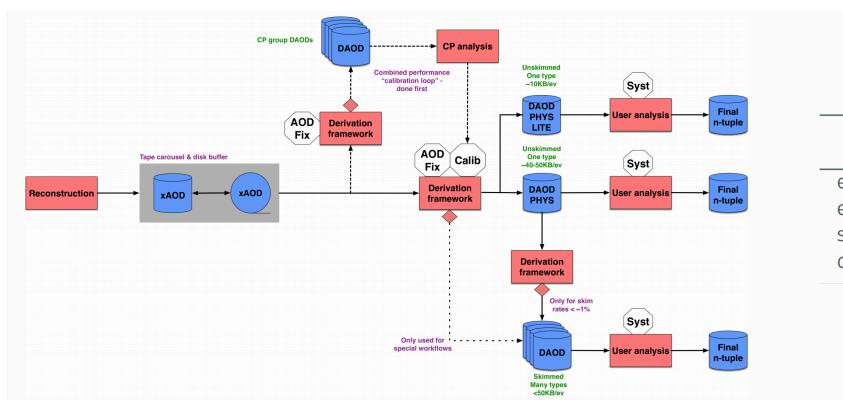
- access data quickly
- deploy and use latest analysis methods
- extract the most physics of the HL-LHC dataset



General Trend:
Infrastructure should become smarter to handle the complexity on behalf of the user.

Data Reduction, do more physics centrally

- reduce tasks for analyzers
- reduce amount of data required for end-user analysis
→ small data formats for HL-LHC $O(10\text{kb/event})$



	MC	AOD	DAOD	DAOD PHYSLITE	Data	AOD	DAOD	DAOD PHYSLITE	Sum
events (25-28)	$6.4 \cdot 10^{11}$				$1.5 \cdot 10^{11}$				
events / year	$2.13 \cdot 10^{11}$		$1.07 \cdot 10^{12}$	$2.13 \cdot 10^{11}$		$5.0 \cdot 10^{10}$	$2.5 \cdot 10^{11}$	$5.0 \cdot 10^{10}$	
size/event [kB]	1000		100	10		700	50	10	
disk [PB/year]	213.3		106.7	2.1		35.0	12.5	0.5	369.6

[\[slides\]](#)

Trends:

- push object preparation / calibration upstream
- push analysis itself upstream
(cf. real time analysis / analysis train efforts by LHC experiments)

Columnar Data Analysis / DataFrame based analysis

Arguably what we've always done, but new set of tools is emerging.

<https://github.com/CoffeaTeam/coffea>

Deep Scientific Ecosystem developed outside of HEP

- pandas, numpy, matplotlib, Dask, HDF5, zarr, scikit-learn

Increasing Effort to develop HEP specific toolkits based on that ecosystem (PyHEP)

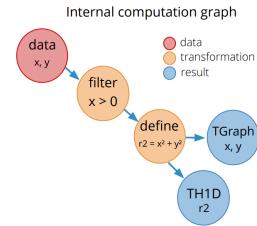
ROOT Ecosystem is evolving as well:

- RNtuple - the new TTree. [\[slides\]](#)
- RDataFrame, PyRDF

```
from ROOT import RDataFrame
df = RDataFrame(dataset);
df2 = df.Filter("x > 0")
           .Define("r2", "x*x + y*y");
rHist = df2.Histo1D("r2");
g = df2.Graph("x", "y")
```


<https://github.com/scikit-hep/uproot>

<https://github.com/scikit-hep/awkward-1.0>



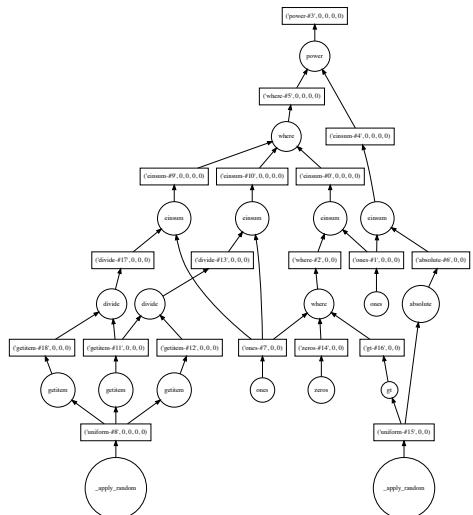
Maps well to analysis model, in which complex details (object calibration, etc..) that tend to be imperative are pushed upstream.

→ fulfilled by small HL-LHC formats

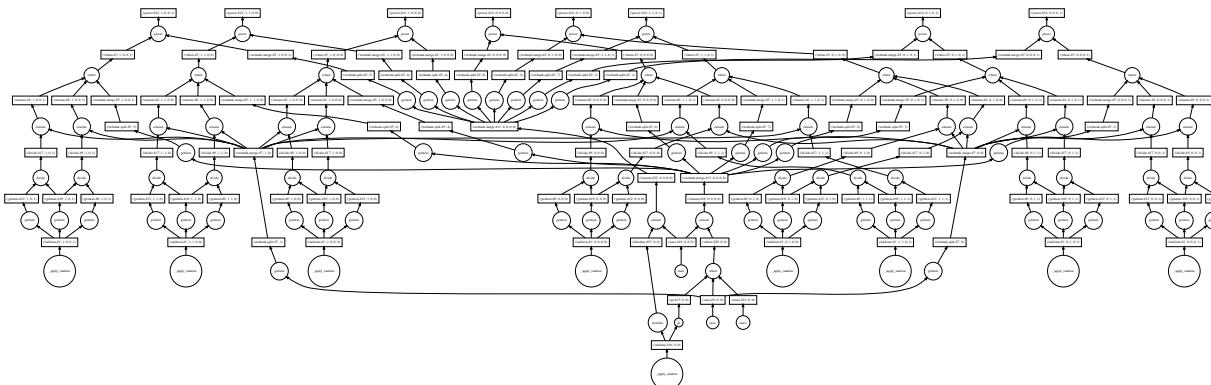
Remaining User analysis can be highly declarative

Scalable Dataframes:

Declarative Analysis: allows backend implementation to optimize, scale as it wishes. Great for distributed analysis.



scale same "logical computation" into two concrete realizations (depending on resources)



Scalable Dataframes:

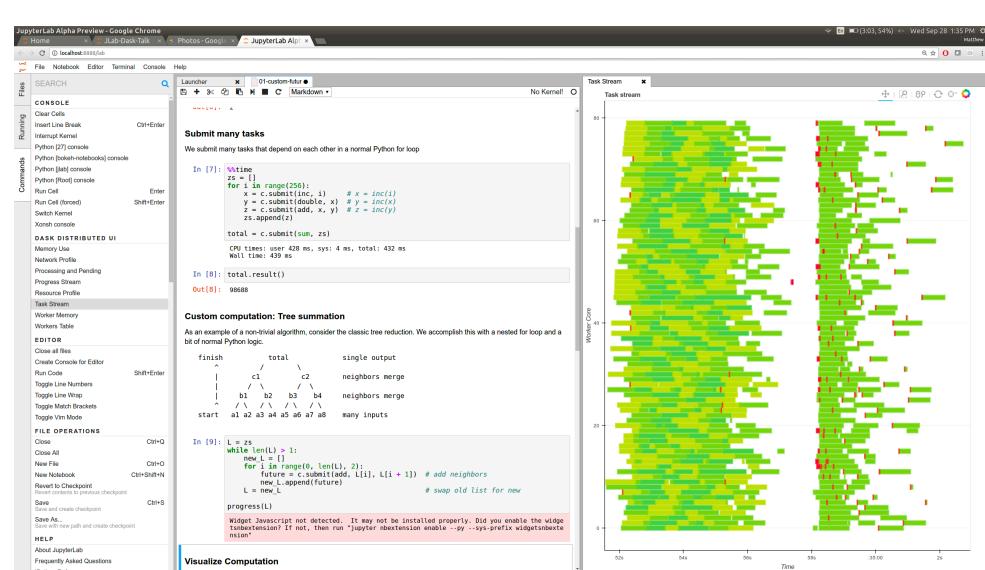
Declarative Analysis: allows backend implementation to optimize, scale as it wishes. Great for distributed analysis.

PyRDF + Spark

E. Tejedor [\[slides\]](#)

Dask

M Rocklin [\[slides\]](#)



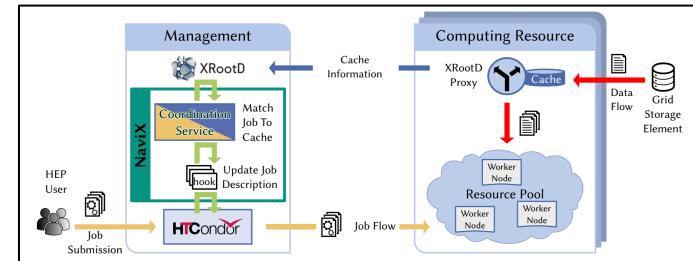
For HL-LHC, need efficient data management and delivery.

Macro-scale: Data-Lakes, optimize data placement on Tape vs Disk, load balancing: Data Carousels, etc.

- Rucio successful in growing a wide community across domains (ATLAS, CMS, BelleII, Dune, ..)
most recent project: Folding@Home

Micro-scale:

- Smart Data Caches within computing resources (NaviX [[slides](#)])
 - Job Placement on batch based on Local Cache Status
- Columnar Data Delivery (ServiceX [[slides](#)])
 - REST API to stream from columnar data into Kafka Topics
 - in-flight transformation C++ from OO EDM to columnar data

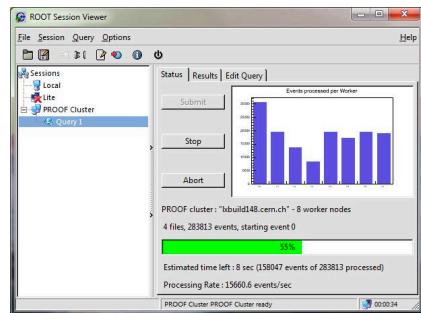


UI Evolution: From Shell + Batch to Jupyter + Scale out Systems

More HEP software integrates nicely w/ notebooks

- PyHEP stack
- ROOT notebooks

Provides widely recognizable, browser-based interactive UI, where in the past custom UIs / local applications were built



```
By default event loop is executed in a supervised subprocess
In [*]: import basf2
path = basf2.Path()
path.add_module("EventInfoSetter", evtNumList=[10000])
path.add_module("EvtGenInput")
basf2.process(path)

Welcome to Jupyter ROOT 6.14/06

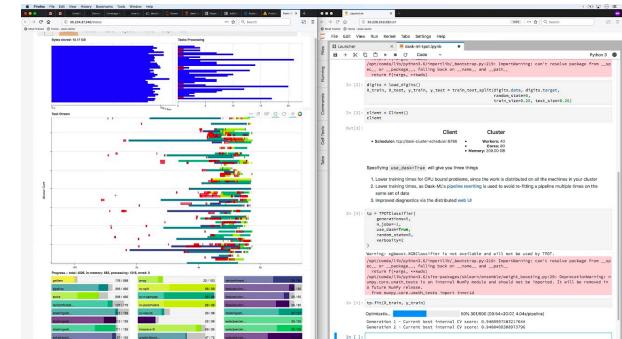
# keep all candidates (C.L. of fit >=0)
vertexRave('B0:jspiks', 0.0, 'B0 -> J/psi -> ^mu+ ^mu-) K_S0')
# build the rest of the event associated to the B0
buildRestOfEvent('B0:jspiks')

# perform MC matching (MC truth association). Always before TagV
matchMCTruth('B0:jspiks')

# calculate the Tag Vertex and Delta t (in ps)
# brec0: type of MC association.
TagV('B0:jspiks', 'brec0')

# save candidates to ntuple
variablesIO_ntuple('B0:jspiks', ['Mc', 'DE', 'Delta'])

35 % Remaining time: 12 seconds
```



Dask in Notebooks

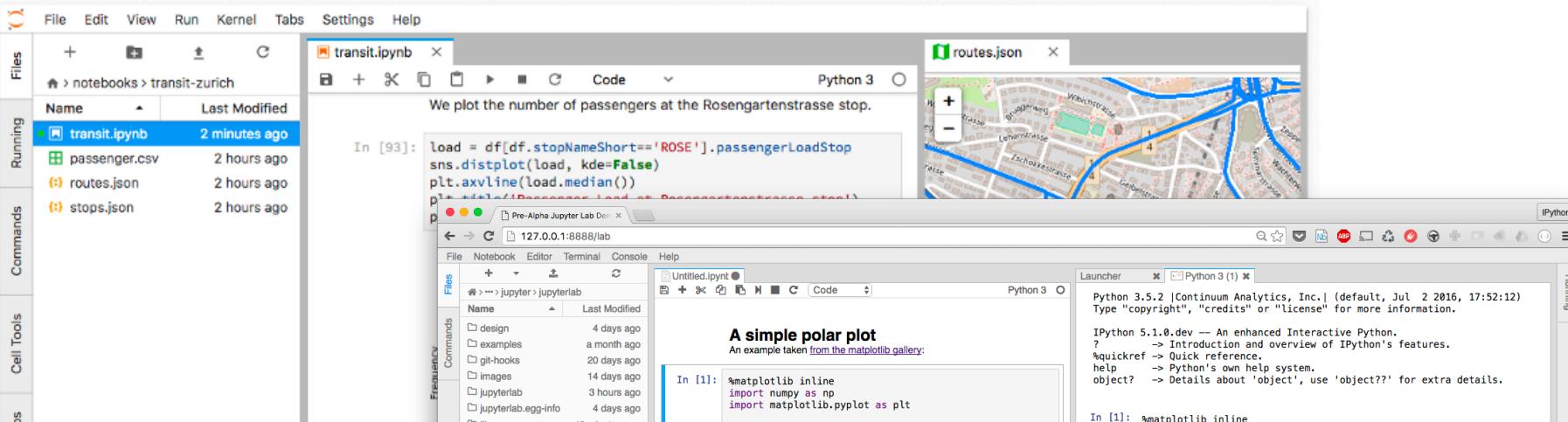
Belle II Jupyter [\[poster\]](#)

It's not about notebooks, many different UIs possible

The image shows a composite screenshot of the Jupyter Lab interface, demonstrating its modular and extensible nature. The interface is divided into several panes:

- Left Sidebar:** A vertical sidebar with tabs for "Files", "Running", "Commands", "Cell Tools", and "Tabs".
- Top Left Notebook:** A notebook titled "transit.ipynb" is open, showing code to plot passenger load at a stop. The code uses pandas, seaborn, and matplotlib. The resulting map visualization shows a network of roads and a highlighted stop.
- Bottom Left Notebook:** A notebook titled "Untitled.ipynb" is open, showing a polar plot generated by a script that uses matplotlib and numpy. The plot is a radial histogram with colored bars.
- Bottom Right Notebook:** A notebook titled "routes.json" is open, showing a histogram of beta-distributed data. The histogram has multiple overlapping colored bars.
- Bottom Terminal:** A terminal window titled "Terminal 1" is open, displaying system monitoring output. It shows CPU usage, memory usage, and a list of running processes (including htop, launchd, syslogd, and UserEventAgent).

It's not about notebooks, many different UIs possible



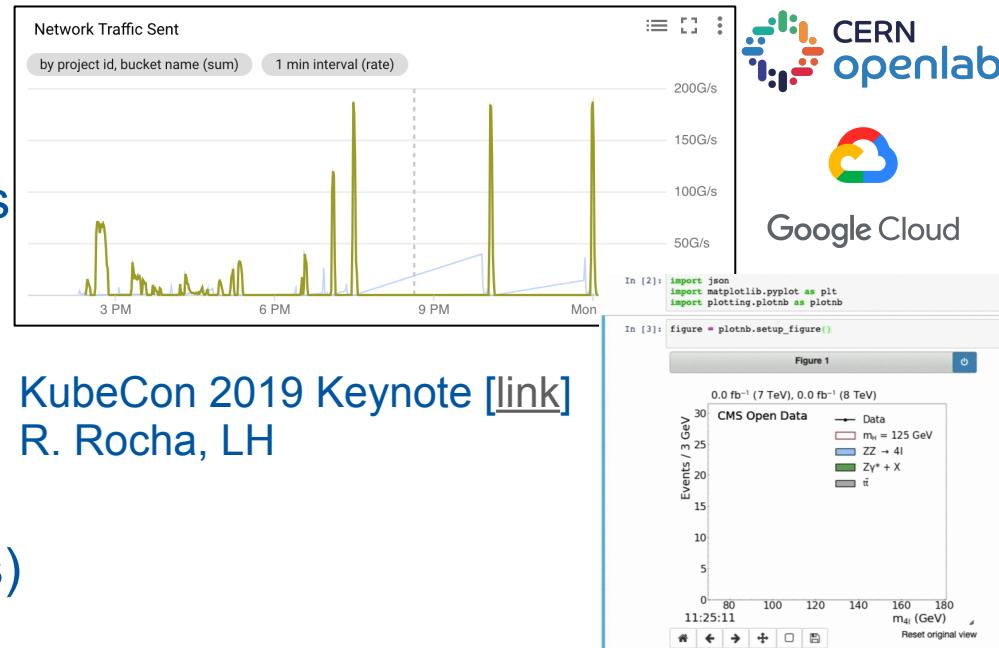
can nicer, more interactive UI be as rock-solid as tried-and-true shell interface?: High Availability, Fault Tolerance, ...

Is interactive Analysis on PB-scale possible It seems like it could be at the HL-LHC timeline

Examples:

Simplified Open Data Higgs Analysis

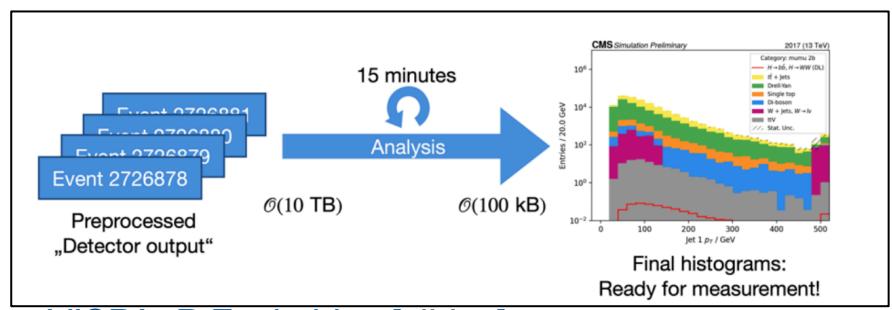
- 70TB in ~4 min
- old software stack (2010), but on new infrastructure (Google)
- demo designed to show scalability of cloud workflows (interactive control of 25k k8s jobs)



KubeCon 2019 Keynote [\[link\]](#)
R. Rocha, LH

Dataframe-based analysis

- more modern stack (coffea + dask)
- can get good throughput with much fewer resources (200 CPU)



VISPA, P Fackeldey [\[slides\]](#)

Analysis Facilities:

Tension:

more complex infrastructure → centralization

- data caches
- interactive scale-out analysis (Notebook services, containers, ...)
- heterogeneous hardware

But community relies on distributed / federated resources

- need to scale out to where resources are

Traditional Grid: solved for non-interactive usecase

- common technology: batch systems + Linux + VO auth

**Can we do something similar for more complex
interactive, distributed analysis @ HL-LHC?**

Analysis Facilities:

Choice of common infrastructure substrate helps add resources on demand and development of common tools across institutions.

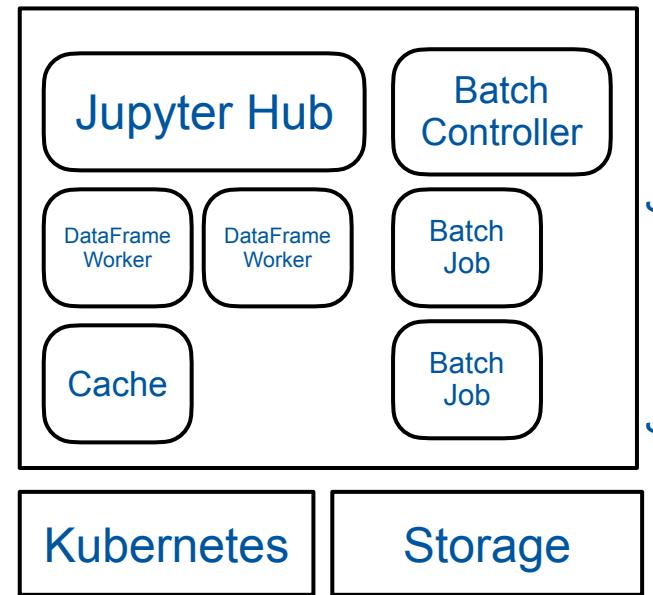
- compose building blocks into analysis facilities
- deploy transparently everywhere

Kubernetes / Cloud-Native stack suitable technology as common "substrate layer?

- native support for both interactive & batch
- notions of load balancing, fault tolerance
- federation built-in.

A lot of applications already target k8s natively

- Rucio (data management) ServiceX
- (UI frontends) JupyterHub, Binder
- out-of-core dataframes: Dask-K8s, Ray, ...
- Distributed ML (Ray, TorchElastic)
- Batch Systems, (Condor, Volcano)



Analysis Facilities:

Choice of common infrastructure substrate helps add resources on demand and development of common tools across institutions.

- compose building blocks into analysis facilities
- deploy transparently everywhere

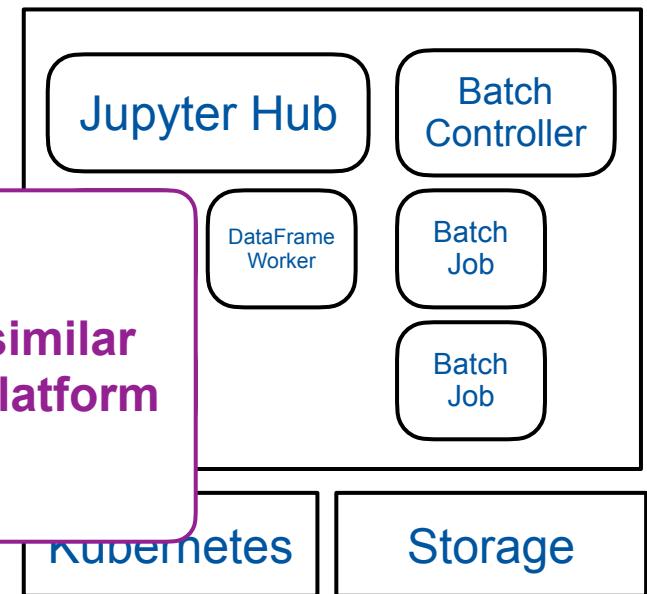
Kubernetes / Cloud-Native stack suitable technology as common "substrate layer?

- native su
- notions o
- federatio

k8s: "distributed linux kernel"
choosing it as common base similar
to choice of using Linux x86 platform
for HEP in the past.

A lot of app

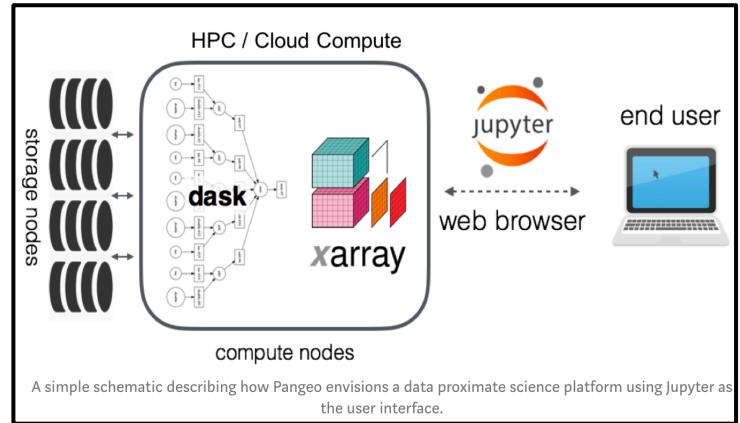
- Rucio (data mangement) ServiceX
- (UI frontends) JupyterHub, Binder
- out-of-core dataframes: Dask-K8s,
- Distributed ML (Ray, TorchElastic)
- Batch Systems, (Condor, Volcano)



Examples from Geo-Science:

Pangeo: curated package of existing components:

- Binder , Jupyter Hub, Dask
- Cloud Storage, xarray DataFrames



Deployable using Kubernetes + Helm anywhere: "a portable facility"

Example from Astro:

LSST Science Platform

- storage
- data catalogue
- Jupyter Notebooks

(I6.1) Why is the LSST Science Platform built on Kubernetes?

Christine Banek,¹ Adam Thornton,¹ Frossie Economou,¹ Angelo Fausti,¹ K. Simon Krughoff,¹ and Jonathan Sick¹

¹AURA/LSST, Tucson, AZ, USA; cbanek@lsst.org

Abstract. LSST has chosen Kubernetes as the platform for deploying and operating the LSST Science Platform. We first present the background reasoning behind this decision, including both instrument-agnostic as well as LSST-specific requirements. We then discuss the basic principles of Kubernetes and Helm, and how they are used as the deployment base for the LSST Science Platform. Furthermore, we provide an example of how an external group may use these publicly available software resources to deploy their own instance of the LSST Science Platform, and customize it to their needs. Finally, we discuss how more astronomy software can follow these patterns to gain similar benefits.

<https://arxiv.org/abs/1911.06404>

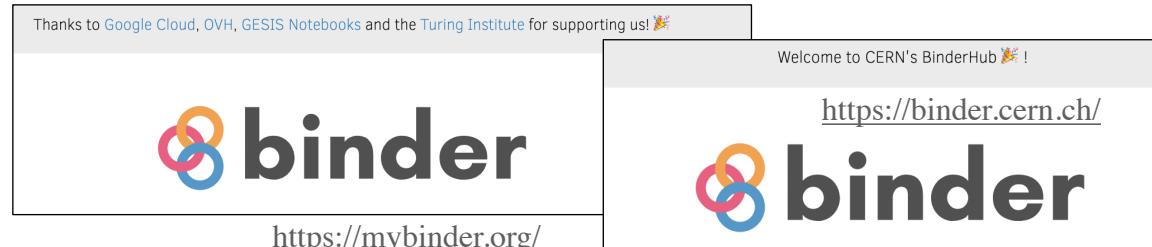
(CERN's EOS/SWAN ScienceBox roughly similar idea, less composition of existing community tools, more internal tooling)

Federation of Facilities:

- crucial component: similar deployments, common authentication (as with batch, user should not care too much where their notebooks run, cold optimize for data locality, etc..)

Local Resource vs Analysis Facility not necessarily a dichotomy.

Example: Binder already federates across mix of commercial and academic resources



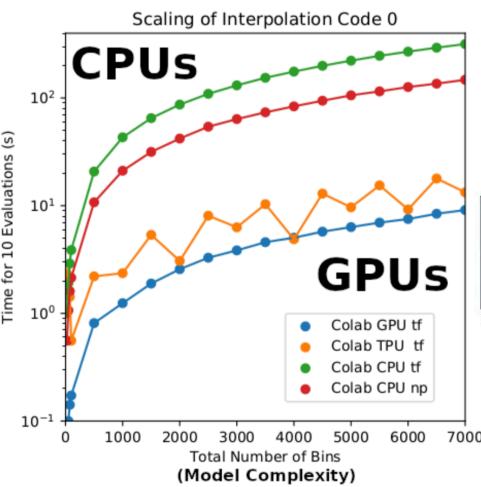
Resources

- common WLCG Kubernetes Working Group wlcg-k8s@cern.ch
- CNCF Research User Group [\[link\]](#)
 - share experience with
 - deployment
 - packaging
 - cluster management

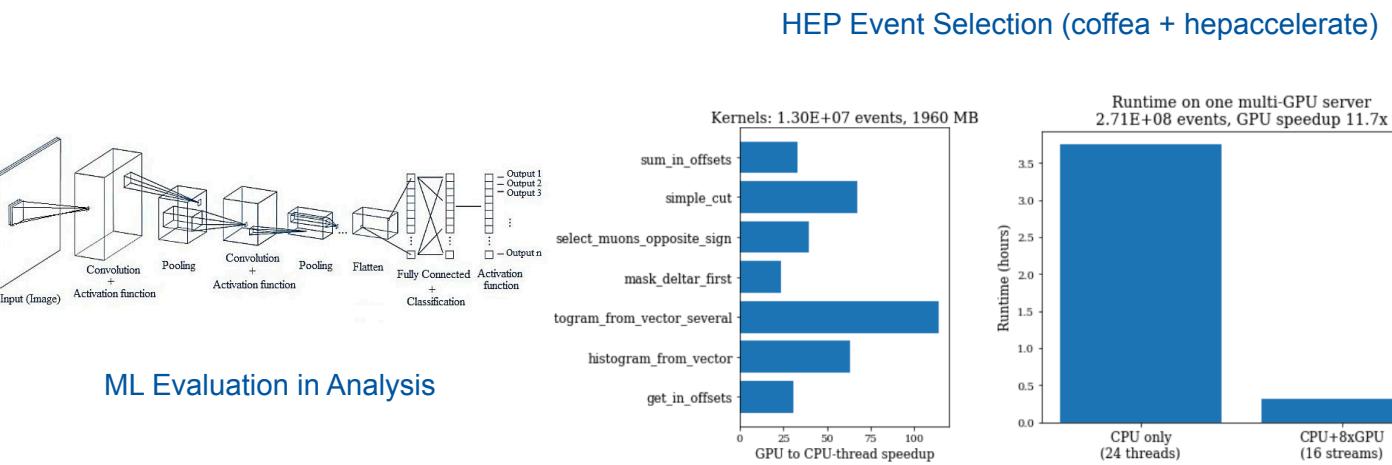
New analysis methods can benefit from GPU

- columnar analysis and vectorized evaluation are a natural combination. Fits well w/ e.g. GPUs
 - true for standard HEP operations
 - truer for ML-based analysis
- But transport cost to and from hardware, requires efficient pipeline, large-batch calculation

HEP Stats (HistFactory)



ML Evaluation in Analysis



<https://github.com/pyhf>

<https://github.com/hepaccelerate/hepaccelerate>

Differentiable Analysis Workflows:

Emerging Paradigm generalizing from Deep Learning:

neural networks → "differentiable programs"

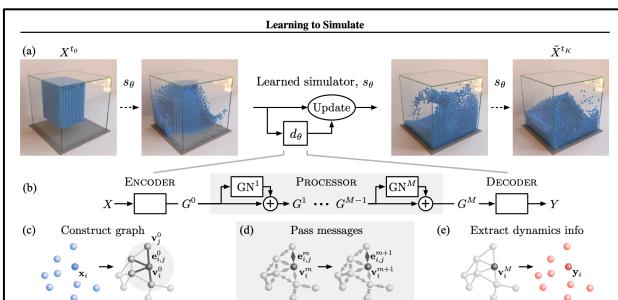
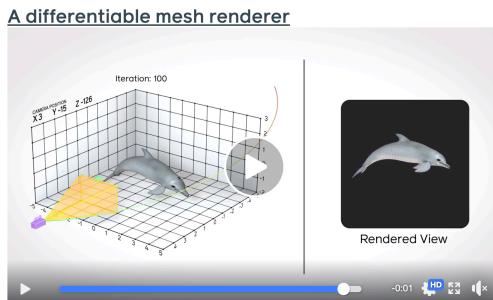
Synthesis of power of neural networks and desire to impose more structure on ML algorithms ("inductive bias")

- systematics awareness
- explainability
- inclusion of domain knowledge

 Yann LeCun
January 5, 2018 ·

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

An increasingly large number of people are defining the networks procedurally in a data-dependent way (with loops and conditionals), allowing them to change dynamically as a function of the input data fed to them. It's really very much like a regular program, except it's parameterized, automatically differentiated, and trainable/optimizable.



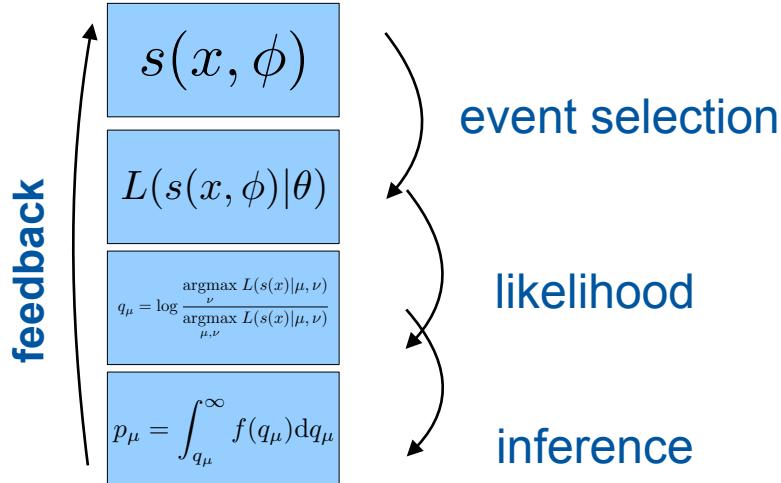
JAX, M.D.
END-TO-END DIFFERENTIABLE, HARDWARE ACCELERATED,
MOLECULAR DYNAMICS IN PURE PYTHON

Samuel S. Schoenholz
Google Brain
schsam@google.com

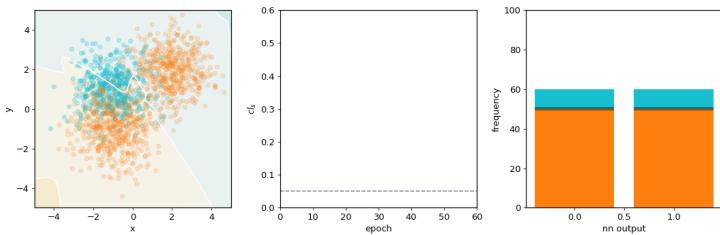
Ekin D. Cubuk
Google Brain
cubuk@google.com

ABSTRACT

Also arriving in HEP, NP



increase s/b AND minimize systematic uncertainties



<https://github.com/pyhf/neos>

INFERNO: Inference-Aware Neural Optimisation

Pablo de Castro
INFN - Sezione di Padova
pablo.de.castro@cern.ch

Tomaso Dorigo
INFN - Sezione di Padova
tomaso.dorigo@cern.ch

Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters

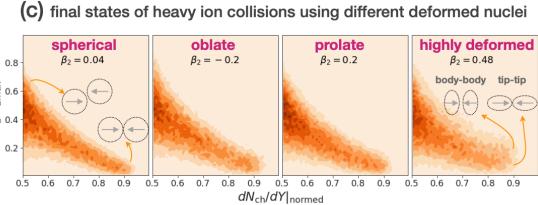
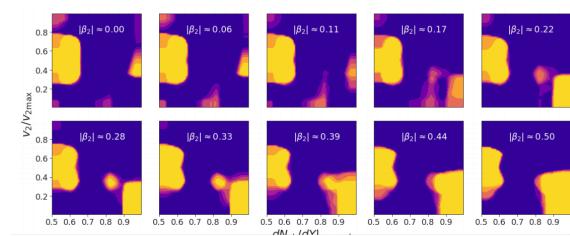
Stefan Wunsch · Simon Jörger · Roger Wolf · Günter Quast

<https://arxiv.org/pdf/1906.06429.pdf>

Interpretable deep learning for nuclear deformation in heavy ion collisions

Long-Gang Pang^{1,2,*}, Kai Z
¹Physics Department, University of
²Nuclear Science Division, Lawrence Berkeley
³Key Laboratory of Quark & Lepton Physics, Central China Normal University
⁴Frankfurt Institute for Advanced Studies, Institute for Theoretical Physics, Goethe University

The structure of heavy nuclei is difficult to characterize. By training a deep convolutional neural network (DCNN) migration of heavy-ion collisions to the nuclear structure regression, we successfully extracted the magnitude and the sign of the nuclear deformation parameters.



Infrastructure Needs:

support execution of large, distributed end-to-end pipelines with intact gradients (e.g. ray, torch elastic)

Software Needs:

easiest: build HEP software on top of popular autodiff platforms (jax, torch, tensorflow,...)

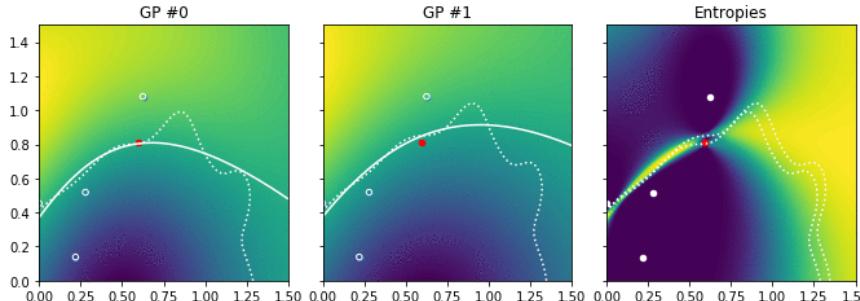
harder, but possible: integrate autodiff into existing software stack (e.g. HEP C++ fwks)

ML not inside the analysis but in the outer loop that manages the overall workflow (jobs to submit, decision-making, ...)

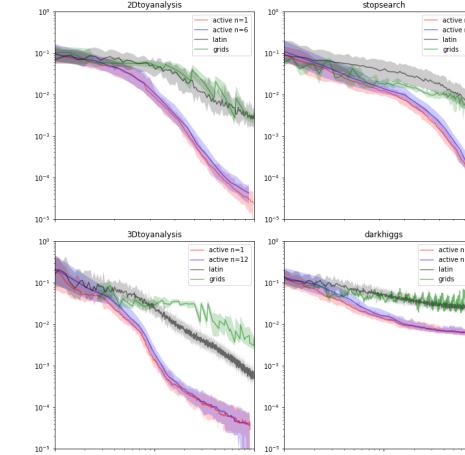
Examples:

Bayesian Optimization w/ Gaussian Processes:

ML-driven decision which Monte Carlo Samples to produces based on analysis results.

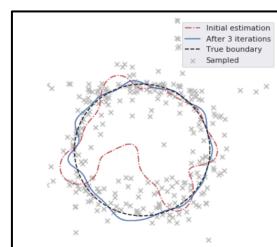
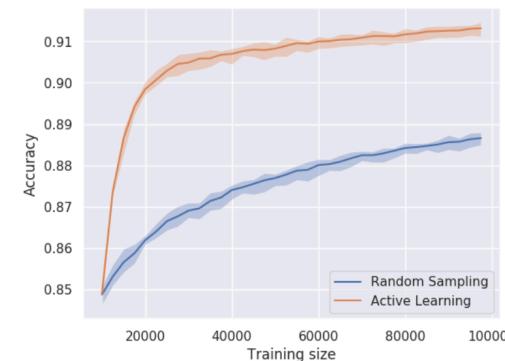


<https://github.com/diana-hep/excursion>



**Active Learning
(Query-By-Committee)**

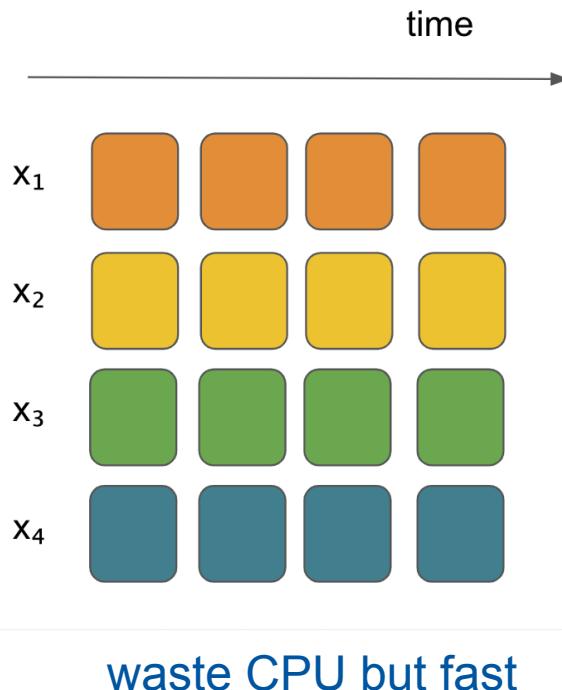
<https://arxiv.org/pdf/1905.08628.pdf>



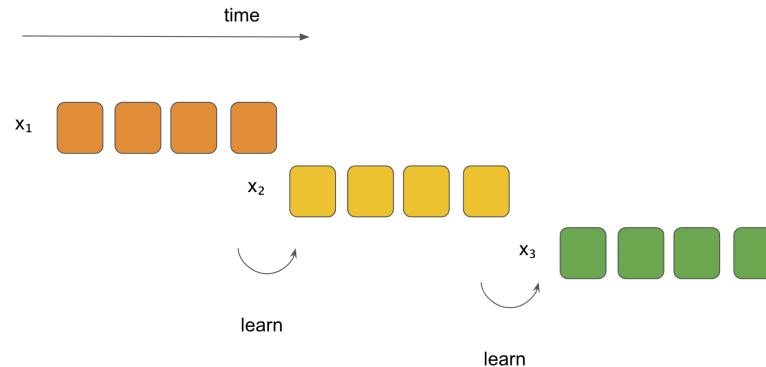
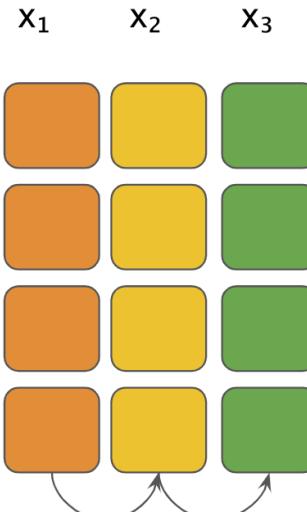
ML not inside the analysis but in the outer loop that manages the overall workflow (jobs to submit, decision-making, ...)

Infrastructure Need:

- dynamic workflow management (ML decision engine)
- high level of parallelism: not attractive if wall-clock time explodes
- need good distributed computing



smart use of CPU, but slow, due to serialization



Declarative Workflows:

exploitation of full HL-LHC dataset physics potential analysis reusability is important. Example Use-case: Reinterpretation.

Idea of declarative workflows that process DAG of jobs important:

- heavily used in bio-informatics, genomics (CWL, nextflow, [Open]WDL)
- use in HEP: yadage, law (luigi-based)

Effort by CERN to provide workflow- as-service component: REANA

- potentially part of analysis facilities.

The figure consists of two parts. The top part is a complex dependency graph for ATLAS software, showing numerous nodes (ranging from 1 to 100+) and their interconnections. Nodes are represented by rectangles (scripts) and ovals (variables). The bottom part is a log-linear plot of the 95% CL upper limit on $\sigma \times B$ [fb] versus χ proper decay length ($c\tau$). The plot includes several data series: a blue shaded band for RECAST results, a red shaded band for experimental data, a green shaded band for MS displaced jets results, and a black line for the observed upper limit. Specific regions are highlighted with dashed lines and labels: $c\tau_{gen}$, $\sigma_{gen} \times B_{gen}$ (100%), and $\sigma_{gen} \times B_{gen}$ (10%). The x-axis is labeled $\chi \rightarrow cbs$ and the y-axis is labeled $95\% \text{ CL Upper Limit on } \sigma \times B \text{ [fb]}$.

A. Morris (ATLAS)
[paper]

reana

Reproducible research data analysis platform

Conclusions

- **Smart Data Handling**
 - preprocess as much as possible for user
 - caches, smart data delivery
- **Enable Declarative Analysis**
 - **DataFrames, Columnar Analysis, Workflow Languages**
- **Federatable Analysis Facilities (avoid silos)**
 - use common technology widely used outside of HEP (Kubernetes, Containers, Jupyter Hub, ...)
 - compose existing tools rather than create new ones
- **Native ML Integration**
 - **Hardware Acceleration**
 - **Differentiable Analysis Workflows**