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Analysis at the HL-LHC scale will be challenging 
• firmly in the PB-regime for analysis  

Need to ensure that 
analyzers have the  
tools and infrastructure  
in place to: 

• access data quickly 
• deploy and use latest  

analysis methods  
• extract the most physics of the HL-LHC dataset 

General Trend:  
Infrastructure should become smarter to handle the  
complexity on behalf of the user.
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Data Reduction, do more physics centrally  

• reduce tasks for analyzers 
• reduce amount of data required for end-user analysis  
→ small data formats for HL-LHC O(10kb/event)  

Trends: 
• push object preparation / calibration upstream 
• push analysis itself upstream  

(cf. real time analysis / analysis train efforts by LHC experiments) 
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[slides]

https://cds.cern.ch/record/2696416/files/ATL-SOFT-SLIDE-2019-810.pdf


Columnar Data Analysis / DataFrame based analysis 

Arguably what we've always done, but new set of tools is emerging. 

Deep Scientific Ecosystem developed outside of HEP 
• pandas, numpy, matplotlib, Dask, HDF5, zarr, scikit-learn . 

Increasing Effort to develop HEP specific 
toolkits based on that ecosystem (PyHEP) 

ROOT Ecosystem is evolving as well: 
• RNtuple - the new TTree. 
• RDataFrame, PyRDF 

Maps well to analysis model, in which complex details (object calibration, 
etc..) that tend to be imperative are are pushed upstream. 
→ fulfilled by small HL-LHC formats  
Remaining User analysis can be highly declarative 
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https://github.com/CoffeaTeam/coffea

https://github.com/scikit-hep/awkward-1.0

[slides]

https://github.com/scikit-hep/uproot

https://github.com/CoffeaTeam/coffea
https://github.com/scikit-hep/awkward-1.0
https://indico.cern.ch/event/773049/contributions/3474746/attachments/1937507/3211341/rntuple-chep19.pdf
https://github.com/scikit-hep/uproot


Scalable Dataframes:  

Declarative Analysis: allows backend implementation to optimize, 
scale as it wishes. Great for distributed analysis. 
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(depending on resources)



Scalable Dataframes:  

Declarative Analysis: allows backend implementation to optimize, 
scale as it wishes. Great for distributed analysis. 
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PyRDF + Spark E. Tejedor [slides] Dask M Rocklin [slides] 

https://indico.cern.ch/event/773049/contributions/3473357/attachments/1939845/3215943/Distributed_data_analysis_with_ROOT_RDataFrame1.pdf
http://matthewrocklin.com/slides/plotcon-2016.html#/2/2


For HL-LHC, need efficient data management and delivery. 

Macro-scale: Data-Lakes, optimize data placement on Tape vs Disk, load 
balancing: Data Carousels, etc. 
• Rucio successful in growing a wide community across 

domains (ATLAS, CMS, BelleII, Dune, ..) 
most recent project: Folding@Home 

Micro-scale: 
• Smart Data Caches within 

computing resources (NaviX [slides])  
• Job Placement on batch based on 

Local Cache Status  

• Columnar Data Delivery (ServiceX [slides] ) 
• REST API to stream from columnar 

data into Kafka Topics  
• in-flight transformation C++ from 

OO EDM to columnar data 
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https://indico.cern.ch/event/708041/papers/3276182/files/9125-acat19-proceedings-cheidecker.pdf
https://indico.cern.ch/event/773049/contributions/3474438/attachments/1935769/3207764/BenGalewskyCHEP2019.pdf


UI Evolution:  From Shell + Batch to  
Jupyter + Scale out Systems 

More HEP software integrates 
nicely w/ notebooks 
• PyHEP stack 
• ROOT notebooks 

Provides widely recognizable, browser-based interactive UI, where in the 
past custom UIs / local applications were built 
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Belle II Jupyter [poster]

Dask in Notebooks

[link]

https://indico.cern.ch/event/708041/contributions/3276179/attachments/1826555/2989521/2019-03-acat.pdf
https://www.nature.com/articles/d41586-018-07196-1


It's not about notebooks, many different UIs possible 
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It's not about notebooks, many different UIs possible 
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can nicer, more interactive UI be as rock-solid as  
tried-and-true shell interface?: High Availability, Fault Tolerance, ..  



Is interactive Analysis on PB-scale possible 
It seems like it could be at the HL-LHC timeline  

Examples: 

Simplified Open Data Higgs Analysis 
• 70TB in ~4 min 
• old software stack (2010), but 

on new infrastructure (Google) 
• demo designed to show 

scalability of cloud workflows 
(interactive control of 25k k8s jobs) 

Dataframe-based analysis 
• more modern stack (coffea + dask) 
• can get good throughput with much 

fewer resources (200 CPU) 
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KubeCon 2019 Keynote [link] 
R. Rocha, LH

VISPA, P Fackeldey [slides]

https://youtu.be/CTfp2woVEkA?t=450
http://www.apple.com/uk


Analysis Facilities: 

Tension:  
more complex infrastructure → centralization 
• data caches 
• interactive scale-out analysis (Notebook services, containers, ...) 
• heterogeneous hardware  

But community relies on distributed / federated resources 
• need to scale out to where resources are 

Traditional Grid: solved for non-interactive usecase 
• common technology: batch systems + Linux + VO auth  

Can we do something similar for more complex  
interactive, distributed analysis @ HL-LHC? 
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Analysis Facilities: 

Choice of common infrastructure substrate helps add resources on demand 
and development of common tools across institutions. 
→ compose building blocks into analysis facilities 
→ deploy transparently everywhere 

Kubernetes / Cloud-Native stack suitable  
technology as common "substrate layer?  

• native support for both interactive & batch  
• notions of load balancing, fault tolerance 

federation built-in. 

A lot of applications already target k8s natively 
• Rucio (data mangement) ServiceX  
• (UI frontends) JupyterHub, Binder 
• out-of-core dataframes: Dask-K8s, Ray, ... 
• Distributed ML (Ray, TorchElastic) 
• Batch Systems, (Condor, Volcano ) 
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Analysis Facilities: 
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k8s: "distributed linux kernel"  
choosing it as common base similar  
to choice of using Linux x86 platform  
for HEP in the past.



Examples from Geo-Science: 

Pangeo: curated package of 
existing components: 
• Binder , Jupyter Hub, Dask 
• Cloud Storage, xarray DataFrames 

Deployable using Kubernetes + Helm anywhere: "a portable facility" 

Example from Astro: 
 
LSST Science Platform 
• storage 
• data catalogue 
• Jupyter Notebooks 

(CERN's EOS/SWAN ScienceBox roughly similar idea, less composition 
of existing community tools, more internal tooling)
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https://arxiv.org/abs/1911.06404

https://arxiv.org/abs/1911.06404


Fedaration of Facilities: 
• crucial component: similar deployments, common authentication 

(as with batch, user should not care too much where their notebooks  
run, cold optimize for data locality, etc..) 

Local Resource vs Analysis Facility not necesarily a dichotomy. 

Example: Binder already fedarates across mix of commercial and  
academic resources 

Resources 

• common WLCG Kubernetes Working Group 
• CNCF Research User Group [link]  

share experience with 
• deployment 
• packaging 
• cluster management 
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wlcg-k8s@cern.ch

https://mybinder.org/

https://binder.cern.ch/

https://github.com/cncf/research-user-group
https://mybinder.org/
https://binder.cern.ch/


New analysis methods can benefit from GPU 

• columnar analysis and vectorized evaluation are 
a natural combination. Fits well w/ e.g. GPUs 
• true for standard HEP operations 
• truer for ML-based analysis 

• But transport cost to and from hardware, requires efficient  
pipeline, large-batch calculation 
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https://github.com/hepaccelerate/hepacceleratehttps://github.com/pyhf

HEP Stats (HistFactory)

HEP Event Selection (coffea + hepaccelerate)

ML Evaluation in Analysis

https://github.com/hepaccelerate/hepaccelerate
https://github.com/pyhf


Differentiable Analysis Workflows: 

Emerging Paradigm generalizing from Deep Learning: 

neural networks → "differentiable programs" 

Synthesis of power of neural networks and desire to impose more 
structure on ML algorithms  ("inductive bias") 

• systematics awareness 
• explainability 
• inclusion of domain knowledge 
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Head of FB AI



Also arriving in HEP, NP
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event selection

likelihood

inference

increase s/b AND minimize  
systematic uncertainties

https://arxiv.org/pdf/1906.06429.pdf

https://github.com/pyhf/neos

Infrastructure Needs: 

support execution  of large, distributed 
end-to-end pipelines with intact gradients 
(e.g. ray, torch elastic)  

Software Needs: 

easiest: build HEP software on top of popular 
autodiff platforms (jax, torch, tensorflow,...) 

harder, but possible: integrate autodiff 
into existing software stack (e.g. HEP C++ fwks)

https://arxiv.org/pdf/1906.06429.pdf
https://github.com/pyhf/neos


Bayesian Optimization w/ Gaussian Processes: 
 
ML-driven decision which Monte Carlo Samples to produces based on analysis results.  

Active Learning 
(Query-By-Committee) 

ML not inside the analysis but in the outer loop that manages the 
overall workflow (jobs to submit, decision-making, ...)
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Examples:

https://github.com/diana-hep/excursion

https://arxiv.org/pdf/1905.08628.pdf

https://github.com/diana-hep/excursion
https://arxiv.org/pdf/1905.08628.pdf


ML not inside the analysis but in the outer loop that manages the 
overall workflow (jobs to submit, decision-making, ...)
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Infrastructure Need: 
• dynamic workflow management (ML decision engine)  
• high level of parallelism: not attractive if wall-clock time explodes 

• need good distributed computing

waste CPU but fast

smart use of CPU, but 
slow, due to serialization

smart use of CPU,  
and shorter wall-clock 
due to parallelism



Declarative Workflows: 

exploitation of full HL-LHC dataset physics potential analysis reusability is 
important.  Example Use-case: Reinterpretation. 

Idea of declarative workflows that process DAG of jobs important: 
• heavily used in bio-informatics, genomics (CWL, nextflow, [Open]WDL) 
• use in HEP: yadage, law (luigi-based) 

Effort by CERN to provide  
workflow- as-service component: 
REANA 
• potentially part of analysis facilities. 
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A. Morris (ATLAS) 
[paper]

M. Rieger (CMS) [slides]

http://www.apple.com/uk
https://indico.cern.ch/event/708041/contributions/3276166/attachments/1811897/2959602/2019-03-14_Rieger_law.pdf#search=Rieger%20AND%20EventID:708041


Conclusions 

• Smart Data Handling 
• preprocess as much as possible for user 
• caches, smart data delivery 

• Enable Declarative Analysis 
• DataFrames, Columnar Analysis, Workflow Languages 

• Federatable Analysis Facilities (avoid silos) 
• use common technology widely used outside of HEP  

(Kubernetes, Containers,Jupyter Hub, ...) 
• compose existing tools rather than create new ones 

• Native ML Integration 
• Hardware Acceleration 
• Differentiable Analysis Workflows
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