
User Analysis for HL-LHC

1

Lukas Heinrich, CERN

Analysis at the HL-LHC scale will be challenging
• firmly in the PB-regime for analysis

Need to ensure that
analyzers have the  
tools and infrastructure  
in place to:

• access data quickly
• deploy and use latest  

analysis methods
• extract the most physics of the HL-LHC dataset

General Trend:  
Infrastructure should become smarter to handle the  
complexity on behalf of the user.

2

Data Reduction, do more physics centrally  

• reduce tasks for analyzers
• reduce amount of data required for end-user analysis  
→ small data formats for HL-LHC O(10kb/event)

Trends:
• push object preparation / calibration upstream
• push analysis itself upstream  

(cf. real time analysis / analysis train efforts by LHC experiments)

3

[slides]

https://cds.cern.ch/record/2696416/files/ATL-SOFT-SLIDE-2019-810.pdf

Columnar Data Analysis / DataFrame based analysis

Arguably what we've always done, but new set of tools is emerging. 

Deep Scientific Ecosystem developed outside of HEP
• pandas, numpy, matplotlib, Dask, HDF5, zarr, scikit-learn .

Increasing Effort to develop HEP specific 
toolkits based on that ecosystem (PyHEP) 

ROOT Ecosystem is evolving as well:
• RNtuple - the new TTree.
• RDataFrame, PyRDF

Maps well to analysis model, in which complex details (object calibration,
etc..) that tend to be imperative are are pushed upstream. 
→ fulfilled by small HL-LHC formats
Remaining User analysis can be highly declarative

4

https://github.com/CoffeaTeam/coffea

https://github.com/scikit-hep/awkward-1.0

[slides]

https://github.com/scikit-hep/uproot

https://github.com/CoffeaTeam/coffea
https://github.com/scikit-hep/awkward-1.0
https://indico.cern.ch/event/773049/contributions/3474746/attachments/1937507/3211341/rntuple-chep19.pdf
https://github.com/scikit-hep/uproot

Scalable Dataframes:

Declarative Analysis: allows backend implementation to optimize,
scale as it wishes. Great for distributed analysis.

5

('getitem-#0', 1, 1, 1)

divide

getitem

('uniform-#1', 1, 1, 0, 1)

getitem getitem

('rechunk-merge-#2', 1, 0, 0, 0)

power

('rechunk-split-#2', 4)

('where-#3', 1, 1, 0, 0)

power

where

('einsum-#4', 1, 1, 0, 0) ('rechunk-merge-#5', 1, 1, 0, 0)('einsum-#6', 1, 1, 0, 0)

('rechunk-split-#7', 0)

('rechunk-merge-#7', 0, 0)

getitem

('ones-#8', 0, 0)

getitem where

('divide-#9', 0, 0, 1)

einsum

divide

('getitem-#0', 0, 0, 1)('getitem-#10', 0, 0, 1)

divide

('einsum-#6', 1, 1, 0, 1)

where

einsum

('divide-#9', 1, 1, 1)('rechunk-merge-#7', 1, 0)

einsum einsumeinsum einsum einsumeinsum einsum

('rechunk-split-#2', 1)

('rechunk-merge-#2', 0, 0, 0, 1)

getitem

('rechunk-merge-#11', 0, 0, 0, 0)

getitemgetitem getitemgetitem getitemgetitem getitem

('getitem-#12', 0, 1, 1)

divide

getitem

('uniform-#1', 0, 1, 0, 1)

getitem getitem

('where-#3', 0, 1, 0, 1)

power

where

('einsum-#4', 0, 1, 0, 1)('einsum-#6', 0, 1, 0, 1)('rechunk-merge-#5', 0, 1, 0, 1)('rechunk-merge-#5', 0, 1, 0, 0)

where

('rechunk-split-#5', 2)('rechunk-split-#5', 0)

('rechunk-merge-#5', 0, 0, 0, 0)

getitem

('rechunk-merge-#13', 0, 0, 0, 0)

getitem getitemgetitemgetitem getitemgetitem getitem

('power-#14', 1, 0, 0, 1)

power

('rechunk-merge-#2', 1, 0, 0, 1)('where-#3', 1, 0, 0, 1)

('gt-#15', 0, 0)

gt

('uniform-#16', 0, 0)

absolute

getitem

('uniform-#1', 0, 0, 0, 1)

getitemgetitem

('where-#3', 0, 0, 0, 1)

power

where

('rechunk-merge-#5', 0, 0, 0, 1) ('einsum-#6', 0, 0, 0, 1)('einsum-#4', 0, 0, 0, 1)

('getitem-#10', 1, 0, 0)

dividedivide

getitem

('uniform-#1', 1, 0, 0, 0)

getitem getitem

('einsum-#18', 0, 0, 0, 0)

ones

('rechunk-merge-#5', 1, 1, 0, 1)

('rechunk-split-#5', 7)

('rechunk-merge-#2', 0, 1, 0, 0)

power

('rechunk-split-#2', 2)

('divide-#9', 0, 1, 0)

einsum

divide

('getitem-#10', 0, 1, 0)

divide

('getitem-#0', 0, 1, 0)

('divide-#17', 1, 1, 1)

divide

('getitem-#10', 1, 1, 1) ('getitem-#12', 1, 1, 1)

('rechunk-merge-#5', 1, 0, 0, 1)

where

('rechunk-split-#5', 5)

einsum

('ones-#19', 0, 0, 0)

einsum

('where-#20', 0, 0)

_apply_random

('divide-#9', 0, 1, 1)

einsum

divide

('getitem-#10', 0, 1, 1)('getitem-#0', 0, 1, 1)

('einsum-#6', 0, 0, 0, 0)

where

einsum

('divide-#9', 0, 0, 0)

einsum einsum einsumeinsum

('rechunk-merge-#2', 1, 1, 0, 1)

power

('rechunk-split-#2', 7)

('einsum-#6', 1, 0, 0, 1)('einsum-#4', 1, 0, 0, 1)

('einsum-#22', 0, 0, 0, 0)

('einsum-#4', 0, 0, 0, 0)

('divide-#17', 0, 0, 0)

('getitem-#10', 0, 0, 0)

divide divide

getitem

('uniform-#1', 0, 0, 0, 0)

getitemgetitem

('zeros-#21', 0, 0)

zeros

('rechunk-split-#2', 5) ('rechunk-split-#2', 3)

('rechunk-merge-#2', 0, 1, 0, 1)('where-#3', 1, 1, 0, 1)

('einsum-#4', 1, 1, 0, 1)

('getitem-#0', 1, 0, 1)

divide

getitem

('uniform-#1', 1, 0, 0, 1)

getitemgetitem

('getitem-#12', 1, 1, 0)

divide

getitem

('uniform-#1', 1, 1, 0, 0)

getitem getitem

('divide-#17', 0, 0, 1)

('getitem-#12', 0, 0, 1)

('rechunk-split-#5', 1)

('uniform-#1', 0, 1, 0, 0)

getitemgetitemgetitem

_apply_random

('divide-#9', 1, 0, 1)

('getitem-#10', 1, 0, 1)

divide

('getitem-#0', 0, 0, 0)

('power-#14', 0, 1, 0, 1)

('where-#3', 0, 1, 0, 0)

('einsum-#4', 0, 1, 0, 0)('einsum-#6', 0, 1, 0, 0)

('rechunk-split-#5', 3)

('divide-#17', 1, 1, 0)

_apply_random

('divide-#9', 1, 1, 0)

('rechunk-split-#7', 1)

('getitem-#12', 0, 1, 0)

('power-#14', 0, 0, 0, 1)

('getitem-#12', 0, 0, 0)

('absolute-#23', 0, 0)

('rechunk-split-#5', 6)

('divide-#17', 0, 1, 1)

divide

('getitem-#0', 1, 1, 0)('getitem-#10', 1, 1, 0)

('divide-#17', 1, 0, 1)

('getitem-#12', 1, 0, 1)

_apply_random _apply_random

('rechunk-merge-#2', 1, 1, 0, 0)

('rechunk-split-#2', 6)

('where-#3', 1, 0, 0, 0)

where

('einsum-#6', 1, 0, 0, 0) ('rechunk-merge-#5', 1, 0, 0, 0)('einsum-#4', 1, 0, 0, 0)

('power-#14', 1, 1, 0, 1)

ones_apply_random

('rechunk-split-#5', 4)

('getitem-#0', 1, 0, 0)

_apply_random

('rechunk-merge-#2', 0, 0, 0, 0)

power

('rechunk-split-#2', 0)

('power-#14', 1, 1, 0, 0) ('power-#14', 0, 0, 0, 0)

('where-#3', 0, 0, 0, 0)

('divide-#17', 0, 1, 0)

('getitem-#12', 1, 0, 0)

('power-#14', 1, 0, 0, 0) ('power-#14', 0, 1, 0, 0)

('divide-#17', 1, 0, 0)

_apply_random

('divide-#9', 1, 0, 0)

_apply_random

('einsum-#0', 0, 0, 0, 0)

where

einsum

('ones-#1', 0, 0, 0)

einsum

('where-#2', 0, 0)

('power-#3', 0, 0, 0, 0)

power

('einsum-#4', 0, 0, 0, 0)

('where-#5', 0, 0, 0, 0)

('absolute-#6', 0, 0)

('ones-#7', 0, 0)

einsum

where

einsum

ones

('uniform-#8', 0, 0, 0, 0)

getitem getitemgetitem

_apply_random

('einsum-#9', 0, 0, 0, 0) ('einsum-#10', 0, 0, 0, 0)

('getitem-#11', 0, 0, 0)

dividedivide

('getitem-#12', 0, 0, 0)

('divide-#13', 0, 0, 0)

('zeros-#14', 0, 0)

zeros

absolute

('uniform-#15', 0, 0)

gt

('gt-#16', 0, 0)

_apply_random

ones

('divide-#17', 0, 0, 0)

('getitem-#18', 0, 0, 0)

scale same "logical computation"  
into two concret realizations 
(depending on resources)

Scalable Dataframes:

Declarative Analysis: allows backend implementation to optimize,
scale as it wishes. Great for distributed analysis.

6

PyRDF + Spark E. Tejedor [slides] Dask M Rocklin [slides]

https://indico.cern.ch/event/773049/contributions/3473357/attachments/1939845/3215943/Distributed_data_analysis_with_ROOT_RDataFrame1.pdf
http://matthewrocklin.com/slides/plotcon-2016.html#/2/2

For HL-LHC, need efficient data management and delivery.

Macro-scale: Data-Lakes, optimize data placement on Tape vs Disk, load
balancing: Data Carousels, etc.
• Rucio successful in growing a wide community across 

domains (ATLAS, CMS, BelleII, Dune, ..) 
most recent project: Folding@Home

Micro-scale:
• Smart Data Caches within 

computing resources (NaviX [slides])
• Job Placement on batch based on 

Local Cache Status  

• Columnar Data Delivery (ServiceX [slides])
• REST API to stream from columnar 

data into Kafka Topics
• in-flight transformation C++ from 

OO EDM to columnar data

7

https://indico.cern.ch/event/708041/papers/3276182/files/9125-acat19-proceedings-cheidecker.pdf
https://indico.cern.ch/event/773049/contributions/3474438/attachments/1935769/3207764/BenGalewskyCHEP2019.pdf

UI Evolution: From Shell + Batch to
Jupyter + Scale out Systems

More HEP software integrates 
nicely w/ notebooks
• PyHEP stack
• ROOT notebooks

Provides widely recognizable, browser-based interactive UI, where in the 
past custom UIs / local applications were built

8

Belle II Jupyter [poster]

Dask in Notebooks

[link]

https://indico.cern.ch/event/708041/contributions/3276179/attachments/1826555/2989521/2019-03-acat.pdf
https://www.nature.com/articles/d41586-018-07196-1

It's not about notebooks, many different UIs possible

9

It's not about notebooks, many different UIs possible

10

can nicer, more interactive UI be as rock-solid as  
tried-and-true shell interface?: High Availability, Fault Tolerance, ..

Is interactive Analysis on PB-scale possible
It seems like it could be at the HL-LHC timeline

Examples:

Simplified Open Data Higgs Analysis
• 70TB in ~4 min
• old software stack (2010), but 

on new infrastructure (Google)
• demo designed to show 

scalability of cloud workflows 
(interactive control of 25k k8s jobs)

Dataframe-based analysis
• more modern stack (coffea + dask)
• can get good throughput with much 

fewer resources (200 CPU)

11

KubeCon 2019 Keynote [link] 
R. Rocha, LH

VISPA, P Fackeldey [slides]

https://youtu.be/CTfp2woVEkA?t=450
http://www.apple.com/uk

Analysis Facilities:

Tension:  
more complex infrastructure → centralization
• data caches
• interactive scale-out analysis (Notebook services, containers, ...)
• heterogeneous hardware

But community relies on distributed / federated resources
• need to scale out to where resources are

Traditional Grid: solved for non-interactive usecase
• common technology: batch systems + Linux + VO auth  

Can we do something similar for more complex  
interactive, distributed analysis @ HL-LHC?

12

Analysis Facilities:

Choice of common infrastructure substrate helps add resources on demand
and development of common tools across institutions. 
→ compose building blocks into analysis facilities
→ deploy transparently everywhere

Kubernetes / Cloud-Native stack suitable  
technology as common "substrate layer?

• native support for both interactive & batch
• notions of load balancing, fault tolerance 

federation built-in. 

A lot of applications already target k8s natively
• Rucio (data mangement) ServiceX
• (UI frontends) JupyterHub, Binder
• out-of-core dataframes: Dask-K8s, Ray, ...
• Distributed ML (Ray, TorchElastic)
• Batch Systems, (Condor, Volcano)

13

Jupyter Hub Batch
Controller

DataFrame  
Worker

DataFrame  
Worker

Cache

Batch
Job

Batch
Job

Kubernetes Storage

A
nalysis Facility

Analysis Facilities:

Choice of common infrastructure substrate helps add resources on demand
and development of common tools across institutions. 
→ compose building blocks into analysis facilities
→ deploy transparently everywhere

Kubernetes / Cloud-Native stack suitable  
technology as common "substrate layer?

• native support for both interactive & batch
• notions of load balancing, fault tolerance 

federation built-in. 

A lot of applications already target k8s natively
• Rucio (data mangement) ServiceX
• (UI frontends) JupyterHub, Binder
• out-of-core dataframes: Dask-K8s,
• Distributed ML (Ray, TorchElastic)
• Batch Systems, (Condor, Volcano)

14

Jupyter Hub Batch
Controller

DataFrame  
Worker

DataFrame  
Worker

Cache

Batch
Job

Batch
Job

Kubernetes Storage

A
nalysis Facility

k8s: "distributed linux kernel"
choosing it as common base similar  
to choice of using Linux x86 platform  
for HEP in the past.

Examples from Geo-Science:

Pangeo: curated package of 
existing components:
• Binder , Jupyter Hub, Dask
• Cloud Storage, xarray DataFrames

Deployable using Kubernetes + Helm anywhere: "a portable facility"

Example from Astro: 
 
LSST Science Platform
• storage
• data catalogue
• Jupyter Notebooks

(CERN's EOS/SWAN ScienceBox roughly similar idea, less composition
of existing community tools, more internal tooling)

15

https://arxiv.org/abs/1911.06404

https://arxiv.org/abs/1911.06404

Fedaration of Facilities:
• crucial component: similar deployments, common authentication 

(as with batch, user should not care too much where their notebooks  
run, cold optimize for data locality, etc..)

Local Resource vs Analysis Facility not necesarily a dichotomy.

Example: Binder already fedarates across mix of commercial and  
academic resources

Resources

• common WLCG Kubernetes Working Group
• CNCF Research User Group [link]

share experience with
• deployment
• packaging
• cluster management

16

wlcg-k8s@cern.ch

https://mybinder.org/

https://binder.cern.ch/

https://github.com/cncf/research-user-group
https://mybinder.org/
https://binder.cern.ch/

New analysis methods can benefit from GPU

• columnar analysis and vectorized evaluation are 
a natural combination. Fits well w/ e.g. GPUs
• true for standard HEP operations
• truer for ML-based analysis

• But transport cost to and from hardware, requires efficient  
pipeline, large-batch calculation

17

https://github.com/hepaccelerate/hepacceleratehttps://github.com/pyhf

HEP Stats (HistFactory)

HEP Event Selection (coffea + hepaccelerate)

ML Evaluation in Analysis

https://github.com/hepaccelerate/hepaccelerate
https://github.com/pyhf

Differentiable Analysis Workflows:

Emerging Paradigm generalizing from Deep Learning:

neural networks → "differentiable programs"

Synthesis of power of neural networks and desire to impose more 
structure on ML algorithms ("inductive bias")

• systematics awareness
• explainability
• inclusion of domain knowledge

18

Head of FB AI

Also arriving in HEP, NP

s(x,�)

<latexit sha1_base64="1Bqn5ze4jlWQkIlzj3K/jqvONmc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpRdqeix6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0oMuP5114yE77RVLbsWdAS0TLyMlyFDvFb+6/YgkgkpDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lEguq/XR28ASdWKWPwkjZkgbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwis/ZTJODJVkvihMODIRmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0nzvOJVKxd31VLtOosjD0dwDGXw4BJqcAt1aAABAc/wCm+Ocl6cd+dj3ppzsplD+APn8wf6fY/h</latexit>

L(s(x,�)|✓)

<latexit sha1_base64="bJETT0VJp6oDxYvE1CzfkXwAu7I=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVoQUoiFV0W3bhwUcE+oAllMp00QycPZm7EEOuvuHGhiFs/xJ1/47TNQlsPXDiccy/33uPGnEkwzW+tsLK6tr5R3Cxtbe/s7un7Bx0ZJYLQNol4JHoulpSzkLaBAae9WFAcuJx23fHV1O/eUyFZFN5BGlMnwKOQeYxgUNJAL99UZfXhxI59Vnu0waeAawO9YtbNGYxlYuWkgnK0BvqXPYxIEtAQCMdS9i0zBifDAhjhdFKyE0ljTMZ4RPuKhjig0slmx0+MY6UMDS8SqkIwZurviQwHUqaBqzoDDL5c9Kbif14/Ae/CyVgYJ0BDMl/kJdyAyJgmYQyZoAR4qggmgqlbDeJjgQmovEoqBGvx5WXSOa1bjfrZbaPSvMzjKKJDdISqyELnqImuUQu1EUEpekav6E170l60d+1j3lrQ8pky+gPt8wdvxJQB</latexit>

qµ = log
argmax

⌫
L(s(x)|µ, ⌫)

argmax
µ,⌫

L(s(x)|µ, ⌫)

<latexit sha1_base64="DXBw34BuDV98Qyfw61YhLUCelHY=">AAACd3icjZBLSwMxFIUz46vWR6suXRgsSgUpM6IoiFB048KFglWhKSWTZtrQJDPmIZZxfqgrl/4Gd6aPhbYuvHDhcO493MsXpZxpEwTvnj83v7C4VFgurqyurZfKG5sPOrGK0AZJeKKeIqwpZ5I2DDOcPqWKYhFx+hj1r4bzxxeqNEvkvRmktCVwV7KYEWyc1S4PnttIWHgBEU+6KFaYZMjKjktQkyFp8wwJbHpKZFh1BX7Nc3R+U9XV14M3lzt0Gwf5z8TY+0+qXa4EtWBUcFaEE1EBk7ptlz9RJyFWUGkIx1o3wyA1LXfBMMJpXkRW0xSTPu7SppMSC6pb2QhRDvec04FxolxLA0fuz0SGhdYDEbnN4ed6ejY0/5o1rYnPWhmTqTVUkvGh2HJoEjjkDTtMUWL4wAlMFHO/QtLDjrNxxP68UnRkwmkOs+LhqBYe107ujiv1ywmjAtgGu6AKQnAK6uAa3IIGIODDW/DWvZL35e/4+351vOp7k8wW+FV++A3fiMKd</latexit>

pµ =

Z 1

qµ

f(qµ)dqµ

<latexit sha1_base64="7LeBaxWVq736BvtAWOg4xJJf+yU=">AAACMnicbVDLSgMxFM34rPVVdekmWIS6KTNS0Y1QdOOygm2FTh0yaaYGk8yY3BHK0B/xO/wAt/oHuhMXbvwIM9MufB0InHPuvdybEyaCG3DdF2dmdm5+YbG0VF5eWV1br2xsdkycasraNBaxvgyJYYIr1gYOgl0mmhEZCtYNb07zeveOacNjdQGjhPUlGSoecUrAWkGlkQS+TPEx9rmCILvN1fjKighGOKoVeg/7ksC1ltlgXBhBperW3QL4L/GmpIqmaAWVD38Q01QyBVQQY3qem0A/Ixo4FWxc9lPDEkJvyJD1LFVEMtPPit+N8a51BjiKtX0KcOF+n8iINGYkQ9uZn2l+13Lzv1ovheion3GVpMAUnSyKUoEhxnlUeMA1oyBGlhCqub0V02uiCQUb6L9byjYZ73cOf0lnv+416gfnjWrzZJpRCW2jHVRDHjpETXSGWqiNKLpHj+gJPTsPzqvz5rxPWmec6cwW+gHn8wt6BKtp</latexit>

fe
ed

ba
ck

19

event selection

likelihood

inference

increase s/b AND minimize  
systematic uncertainties

https://arxiv.org/pdf/1906.06429.pdf

https://github.com/pyhf/neos

Infrastructure Needs:

support execution of large, distributed 
end-to-end pipelines with intact gradients 
(e.g. ray, torch elastic)

Software Needs:

easiest: build HEP software on top of popular 
autodiff platforms (jax, torch, tensorflow,...) 

harder, but possible: integrate autodiff 
into existing software stack (e.g. HEP C++ fwks)

https://arxiv.org/pdf/1906.06429.pdf
https://github.com/pyhf/neos

Bayesian Optimization w/ Gaussian Processes: 
 
ML-driven decision which Monte Carlo Samples to produces based on analysis results.

Active Learning 
(Query-By-Committee)

ML not inside the analysis but in the outer loop that manages the
overall workflow (jobs to submit, decision-making, ...)

20

Examples:

https://github.com/diana-hep/excursion

https://arxiv.org/pdf/1905.08628.pdf

https://github.com/diana-hep/excursion
https://arxiv.org/pdf/1905.08628.pdf

ML not inside the analysis but in the outer loop that manages the
overall workflow (jobs to submit, decision-making, ...)

21

Infrastructure Need:
• dynamic workflow management (ML decision engine)
• high level of parallelism: not attractive if wall-clock time explodes

• need good distributed computing

waste CPU but fast

smart use of CPU, but 
slow, due to serialization

smart use of CPU,  
and shorter wall-clock 
due to parallelism

Declarative Workflows:

exploitation of full HL-LHC dataset physics potential analysis reusability is
important. Example Use-case: Reinterpretation.

Idea of declarative workflows that process DAG of jobs important:
• heavily used in bio-informatics, genomics (CWL, nextflow, [Open]WDL)
• use in HEP: yadage, law (luigi-based)

Effort by CERN to provide  
workflow- as-service component: 
REANA
• potentially part of analysis facilities.

22

A. Morris (ATLAS) 
[paper]

M. Rieger (CMS) [slides]

http://www.apple.com/uk
https://indico.cern.ch/event/708041/contributions/3276166/attachments/1811897/2959602/2019-03-14_Rieger_law.pdf#search=Rieger%20AND%20EventID:708041

Conclusions

• Smart Data Handling
• preprocess as much as possible for user
• caches, smart data delivery 

• Enable Declarative Analysis
• DataFrames, Columnar Analysis, Workflow Languages

• Federatable Analysis Facilities (avoid silos)
• use common technology widely used outside of HEP  

(Kubernetes, Containers,Jupyter Hub, ...)
• compose existing tools rather than create new ones

• Native ML Integration
• Hardware Acceleration
• Differentiable Analysis Workflows

23

