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There are three kinds of lies: lies, damned lies, and statistics.
—Disraeli

Statistical thinking will one day be as necessary for efficient
citizenship as the ability to read and write.
~H. C. Wells
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EMBO Journal Checklist

1.a. How was the sample size chosen to ensure adequate power to detect a pre-specified
effect size?

1.b. For animal studies, include a statement about sample size estimate even if no statistical
methods were used.

2. Describe inclusion/exclusion criteria if samples or animals were excluded from the
analysis. Were the criteria pre-established?

3. Were any steps taken to minimize the effects of subjective bias when allocating animals/
samples to treatment (e.g. randomization procedure)? If yes, please describe.

For animal studies, include a statement about randomization even if no randomization was
used.

4.a. Were any steps taken to minimize the effects of subjective bias during group allocation or/
and when assessing results (e.g. blinding of the investigator)? If yes please describe.

4.b. For animal studies, include a statement about blinding even if no blinding was done

5. For every figure, are statistical tests justified as appropriate?

Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any
methods used to assess it.

Is there an estimate of variation within each group of data?

Is the variance similar between the groups that are being statistically compared?







Statistics is the science of learning from data
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Structure

Descriptive Statistics
Test theory
Common Tests

Experimental Design / Responsible Research
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Software

price high

ease of use medium easy

coverage low high

misusage average made easy

graphs poor/limited good

other NOT a stats app

free

difficult

infinite

average

best/flexible

huge community
de facto standard
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VISUALIZE, MODEL, TRANSFORM, TIDY, AND [MPORT DATA

Hadley Wickham &
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Ratios in linear versus log space
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Fold change

Ratios are not the only
problem here..

AQP1 SLC34A1 ATP1A1 ABCB1 LRP2 f BNC2 NPAS2 TRPS1
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d—f represent three technical replicates on RNA pooled from 6 organoids (biological replicates) per condition. Statistical
analysis for d—f,h,i was determined at a value of P<0.05 as determined by one-way ANOVA with Tukey’s multiple-
comparisons test. *P<0.05, **P<0.01, *™*P<0.001.

https://www.nature.com/articles/s41592-019-0325-y/figures/3



Data, what is it!?

cases
samples
observations

a collection of measurements of similar structure

variables
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Al : fx v
_| | B C D| E F G H
1 Pregnancies:LGlucose Blood Pressure Skin BMI Diabetes Pedigree Function Age Diabetic
2 6 148 72 35 336 0.627 50 Yes
3 1 85 66 29 26.6 0.351 31 No
4 1 85 66 23 28.1 0.167 21 No
5 3 78 50 32 31 0.248 26 Yes
6 2 157 70 45 305 0.158 53 Yes
7 5 166 72 19 258 0.587 51 Yes
8 0 118 ss 4 458 | values 0.551 31 Yes
9 1 103 30 38 433 0.183 33 No
10 3 126 88 41 353 0.704 27 No
11 S 115 80 35 25 0.263 29 Yes
12 1 57 66 15 23.2 0.487 22 No
13 5 105 75 26 36 0.546 60 No
14 3 88 58 11 248 0.267 22 No
15 10 122 78 31 276 0.512 45 No
16 4 103 60 33 24 0.566 33 No
17 S 102 76 37 329 0.665 46 Yes
18 2 S0 68 42 38.2 0.503 27 Yes
19 4 111 72 47 371 139 56 Yes
20 3 180 64 25 34 0.271 26 No
21 7 106 92 18 22.7 0.235 48 No
22 S 171 110 24 454 0.721 54 Yes
23 0 180 66 35 42 1853 25 Yes
24 2 71 70 27 28 0.586 22 No
25 1 103 80 11 154 0451 22 No
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The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: https://www.tandfonline.com/loi/utas20

Taylor & Francis
Taylor & Francis Group

Data Organization in Spreadsheets

Karl W. Broman & Kara H. Woo

To cite this article: Karl W. Broman & Kara H. Woo (2018) Data Organization in Spreadsheets,
The American Statistician, 72:1, 2-10, DOI: 10.1080/00031305.2017.1375989

To link to this article: https://doi.org/10.1080/00031305.2017.1375989
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Best of Data Organisation in Spread Sheets

® Be consistent

® Choose Good Names for Things

® Put Just One Thing in a Cell

® No Empty Cells

® Make it a Rectangle

® No Calculations in the Raw Data Files

® Do Not Use Font Color or Highlighting as Data

|4




the origin of data matters.. a lot

® observational (descriptive) or
experimental (controlled)?

® sampling strategy

® Metadata (what, when, who, how) matters
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Data types

data
numerical data which can hold any value

data
numerical data which can only take certain
values

data
Variables are labels of grouped features
(classifications)

|6




Data Types
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visual representation



cole nussbaumer knaflic

storytelling

with

ata

a data
visualization
guide for
business

p '()ff?‘?'% ianals

WILEY

cole nussbaumer knaflic

storytelling

with data -

PRACTICL!

WILEY




Plotting all data points (continuous data)

Example:
BMI of 532 Pima Indian Females

I I I I I
20 30 40 50 60

BMI

stripchart
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more (too many) data points

expr.value
1616608 a at 9.118380

1622892 s at  8.115987
1622893 at 2.194861
1622894 at 2.194861
1622895 at 8.871565
1622896 at 8.762262
1622897 at 2.194861
1622898 a at  9.422677
1622899 at 3.987549
1622900 at 2.194861
1622901 at 2.194861
1622902 _at 2.195272
1622903 s at  7.679026
1622904 at 2.212932 — |8952
1622905 at 2.203904 n —
1622906 at 2.198816
1622907 at 8.294115
1622908 a at 11.002117
1622909 at 10.899726
1622910 at 2.194861
1622911 at 2.194861
1622912 at 7.421109
1622913 a at  2.194861
1622914 at 2.194861
1622915 at 2.194861
1622916 at 2.274991
1622917 a at  2.194861
1622918 at 2.289296
1622919 at 2.195047
1622920 at 3.757421
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Continuous Variables - Histogram

1616608 a at
1622892 s at
1622893 at
1622894 at
1622895 at
1622896 at
1622897 at
1622898 a at
1622899 at
1622900 at
1622901 at
1622902 at
1622903 s at
1622904 at
1622905 at
1622906 at
1622907 at
1622908 a at
1622909 at
1622910 at
1622911 at
1622912 at
1622913 a at
1622914 at
1622915 at
1622916 at
1622917 a at
1622918 at
1622919 at
1622920 at

=
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expr.value
9.
.115987
.194861
.194861
.871565
.762262
.194861
422677
.987549
.194861
.194861
.195272
.679026
.212932
.203904
.198816
.294115
.002117
.899726
.194861
.194861
.421109
.194861
.194861
.194861
.274991
.194861
.289296
.195047
.757421

118380

Frequency

2000 4000 6000 8000

0

10 15

log2(expression)
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Continuos Variables - Histogram

Frequency

2000 4000 6000 8000

0

|5 |10 5

20
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L ] L _
o o
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o — o -
| | | | | | | | | | |
5 10 15 5 10 15 0 5 10 15
log2(expression) log2(expression) log2(expression)

The size of the bins (= width of the bars)
is a matter of choice and has to be determined sensibly!
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Continuous Variables - Density Plot

Frequency

I
0.4 0.5
I I
I —

Density

2000 4000 6000 8000

I
I

I I I I I I
5 10 15 5 10 15

log2(expression) N =18952 Bandwidth = 0.4517

Data will be smoothed automatically.
This is very suggestive and blurs discontinuities in a distribution

25




non-visual description



Measures of Location and Scatter

Example:
BMI of 332 Pima Indian Females

I I I I I
20 30 40 50 60

BMI
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Measures of Location and Scatter

Mean:
sum of all observations/number of samples

I I I I I
20 30 40 50 60

BMI
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Measures of Location and Scatter

Median:
a number M
such that 50% of all observations
are less than or equal to M,
and 50% are greater than or equal to M

I I I I I
20 30 40 50 60

BMI
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Mean vs. Median

® median should be preferred to the mean
if the value distribution
a) is asymmetric
b) has extreme outliers

® the mean is more precise than the median if
the distribution is approximately normal
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Continuous Variables - Quantiles

Quantile:
The p-quantile is a property value that splits a distribution.
On the left of the p-quantile are 100*p percent of all values.
On the right are 100*(1-p) percent of all values.

50% quantile = MEDIAN

I I I I I
20 30 40 50 60

BMI
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Continuous Variables - Quantiles

Quantile:
The p-quantile is a property value that splits a distribution.
On the left of the p-quantile are 100*p percent of all values.
On the right are 100*(1-p) percent of all values.

25% quantile = |. quartile
50% quantile = 2. quartile = MEDIAN 100% quantile = MAX

0 quantile = MI)‘N x I Ve 75% quantile = 3. quartile \

I I I I I
20 30 40 50 60

BMI
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Continuous Variables - Boxplot

Whisker
maximally |.5%interquartile distance (IQR),
ends at the last data point falling within this
range or min/max

outliers

IQR

20 30 40 50 60

BMI
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Visual continuous data representation

——————————————————————————————————
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Description of Scatter

0 OO IDINO 0D MONMN 00 0 OO0000 O ] O

MMM O 0O

—2 0 2 4

® variance
= mean squared deviation of mean

® standard deviation
= square root of the variance
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categorical variables



Categorical Variables - Table

Value A B AB 0 >
absolute frequency 75 83 10 | 20 | 188
relative frequency 40 | 44 5 11 1100 %

n=|88

38




count

80

60

40

20

AB B

Blood Type

A
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Categorical Variables - Piechart

n=188

40




bad charts

® 3D displays

. 8 %
® pie charts m%&
“the only place for a pice chart is a baker’s convention”)

® 2007 @ 2008 2009 @ 2010 @ 2011 @ 2012

® smoothed curves in
scatterplot, or any other lines ! A
in series, that are neither VSV Ay |
direct data point connectors \\j/ \\b/ \\// o
nor based on an appropriate N
regression procedure L
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Sunny side of pyramid
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Cross Tables - “Kontingenztafel”

no

no

verum

Medication
placebo 0 I

cause

effect
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Cross Tables

n=80
Response
Total
yes no
20 20 40
o Verum - so%.67% 50%,40% 50%
Medication
aceb 10 30 40
P1aceDO | 559 33% 75%,60% 50%
80
Total

37% 63%

100%
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describing quantitative data

Always report the sample size!

numerical

median, Q |, Q3, min, max (5-point summary)
location and scatter (for symmetric distribution
mean, standard deviation)

graphical
Histogram, Boxplot, Density Plots

tables for categorical data

verbal
“mean BMI of Pima Indian females was 33.2 kg/m”2
(n= 332, interquartile range = 28.2-37.2 kgim”2)”

45




GOVIPAYROLLS UP!_GOVE.PAY RULLS STABLE! no sense is better suited for
s | | 1 i parallel processing than the
s visual sense. No sense has
more built-in filters and
processing steps.
But it is the visual sense that
can fooled most easily.

CNN/USA TODAY/GALLUP POLL

Results by party (€ Frevous | werr )

|
|
:
-
l
|
i
U

Agree

63 62 Question 2: Based on whatyou have heard
62 orread aboutthe case, do you agree with
61 the court’s decision to have the feeding tube
60 removed?

59
58
57
56

90 54 54

Democrats Republicans | Independents
RESULTS BY PARTY

SAMPLE: nterviews conducted by telephone March 18-20, 2005, wih | SAMPLING ERROR:: +/f 7% pts
)4 aduits In the Unted States




Percent of respondents

94

100

98

96

92

Is truncating the Y-axis dishonest?
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Inference

What really matters



Sample - Population Relation

population

INDUCTION/INFERENCE

50




Sample - Population Relation

Frequency

sample 1

log(expression)
mean: 5.615

4e+05 8e+05

0e+00

population

log(expression)
mean: 6

sample 2

sample 3

log(expression)
mean: 5.925

log(expression)
mean: 6.301
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Sample - Population Relation

Frequency

log(expression)
mean: 5.665

4e+05 8e+05

0e+00

population

log(expression)
mean: 6

n=10

log(expression)
mean: 5.646

log(expression)
mean: 6.048
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Confidence Intervals

® 95%-confidence interval: An estimated interval which

contains the ,,true value™ of a quantity with a probability

o
of 95%. 000000000000 0000

noofdppoooooggoooooofopooooononoo:

aooon aoaona

® (|I- a)-confidence interval: An estimated interval which
contains the ,,true value™ of a quantity with a probability

of (1-q).
| —-a = confidence level, a = error probability
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proportional data

You use a hemocytometer to determine the

viability of cells stained with trypan blue.You
count 94 unstained cells and 6 stained.

How can the data be represented!?

What is the 95% ClI for the fraction of dead cells?

0.02 - 0.13 (binomial test, http.//statpbages.org/confint.html)

Which assumptions have to made!

tube mixed well and the selection of sample was random

54



http://statpages.org/confint.html

Confidence Intervals

population

8e+05
|

Frequency
4e+05
|

o
o
a'.) —
g T 17 17 171
3 45 6 7 8 9
log(expression)
mean: 6
n= n=10 n=30
oo 0O oo OOEEE O
L T 1 T 1T T T T 1 T T 1 T 1
3 45 6 7 8 9 3 45 6 7 8 9 3 4 5 6 7 8
log(expression) log(expression) log(expression)
mean: 6.385 mean: 5.985 mean: 5.995
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Standard Error of the Mean (SEM) - Standard Error

® The standard error of the mean
(SEM) is the standard deviation of
the sample mean estimate of a

population mean. 5 1 |

SEM = standard deviation/square °

mean: 6

root(n)

® a small SEM indicates that the

sample mean is likely to be quite  ———

333333333333333333333

close to the true population mean = "=

® a large SEM indicates that the
sample mean is likely to be far

from the true population mean 3


http://en.wikipedia.org/wiki/Sample_%28statistics%29
http://en.wikipedia.org/wiki/Statistical_population

Sample - Population

What allows us to conclude from the sample to the population?

The sample has to be representative
(Figures about drug abuse of students cannot be generalised to the
whole population of Germany)

How is representativity achieved?
Large sample numbers

Random recruitment of samples from the population

Randomisation: Random allocation of the samples to the different
experimental groups

57
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Control Ab

p21 Ab

Actin Ab

v

>

Hoescht

Hoechst

GFP-miR296

GFP-miR 296

IWAFI.

p21 WAF1

Actin

$

>
HCT116 p53+/+ HCT116 p53+/+

~

&
~

HCT116 p53+/+

miRNA 296

HT1080

U-20S

60
40
. ' B
0
12h 24h 36h 48h

miR-296 post-transfection period

DAPI

p21WAF1

untreated PmiR-296 AmiR-296

Figure 8. miR-296 downregulates p21 expression. (A) p21VAF! expression (red) in control and pCXbG-miR-296 transfected cells. Secondary
antibody (control Ab) and actin staining were used as negative controls. (B) A variety of cancer cells examined for p2
transfection of miR-296 expression construct (green) showed lack of red staining in green cells demonstrating that miR-296 downregulates p2
expression. (C) Quantitative-PCR for p21WAF! in U2-O S cells treated with PmiR-296 showed time-dependent decrease after treatment with
PmiR-296. (D) Cells treated with PmiR-296 showing decrease and with AmiR-296 showing increase in p21V"F! staining. The data demonstrate
that the miR-296 regulates p2

IWAFL expression after

1WAF1
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Error Bars



Correspondence
Nature 428, 799 (22 April 2004) | doi:10.1038/428799c
Error message
David L.Vauxl|
|. The Walter and Eliza Hall Institute, | G Royal Parade, Parkville,Victoria 3050, Australia
Sir

In the 19 February 2004 issue of Nature, there were ten items (one Brief Communication, one Article and eight Letters to Nature)
containing figures with error bars, but only three had figure legends describing what the error bars were:in one
case, 80% confidence intervals; in another, standard deviations; and in the third, standard error of the mean.The articles with incomplete
legends represented both the biological and physical sciences, across many different disciplines, and clearly should not be considered
isolated examples.

Error bars can be used by the reader to determine how much the data varied, allowing an estimation of whether the experiments gave
reproducible results, whether the results were significantly different from the controls, and sometimes whether the data were obtained
in an unbiased manner.

How did these omissions occur? If authors include error bars on their figures, why do they so often forget to state what they are in the
legends? How can reviewers be confident that the conclusions are correct if they are not told about the errors
in the data? Why don't reviewers request that descriptions of the error bars be included when they review the papers!?

When properly described, error bars can be very revealing. In their analysis of the experiments and methods used by Jacques

Benveniste to study homeopathy, John Maddox and colleagues illustrated how much information can be gained if one knows how to
interpret errors correctly (Nature 334,287-290; 198810.1038/334287a0).

By not ensuring that all papers that have error bars describe what they are, Nature publishes material that cannot be properly assessed
by its readers.

Nature is fortunate in having such attentive readers. Our editors and reviewers expect error bars to be properly defined, and we shall be more
vigilant in ensuring best practice in future — Editor, Nature.



Errors Bars - which and when

show when you are interested in showing the

show the SEM (or confidence interval) when you want to
know how well you know the population mean

some people like to display SEM for another reason:
SEMs are smallest measure of error and thus look nicest

(SEM = SD/SQRT(n)) always report n!

The scatter (however expressed) means different things in
different contexts. Is the author showing the variability
among replicates in a single experiment? Variability among
experiments with genetically identical animals? Variability
among cloned cells, or within patients! etc. etc.
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Figure 3. Enzyme activity for MEFs showing mean + SD from duplicate samples from one of three representative
experiments.Values for wild-type vs. —/— MEFs were significant for enzyme activity at the 3-h timepoint (P <
0.0005).



A Journal’s “Rules”

® the value of n (i.e,, the sample size, or the number of

independently performed experiments) must be stated in the
figure legend.

® error bars and statistics should only be shown for independently
repeated experiments, and never for technical replicates. If a
"representative” experiment is shown, it should not have error
bars or P values, because in such an experiment,n = |

® because experimental biologists are usually trying to compare
experimental results with controls, it is usually appropriate to
show inferential error bars, such as SE or CI, rather than SD.
However, if n is very small (for example n = 3), rather than
showing error bars and statistics, it is better to simply plot the
individual data points.

J Cell Biol. 2007 Apr 9;177(1):7-11
Error bars in experimental biology.
Cumming G, Fidler FVaux DL. 63




the link between error bars and significance

® The link between error bars and statistical significance
is weaker than many wish to believe.

® But:if two SEM error bars overlap you can conclude
that the difference is not statistically significant (p>0.05),
but that the converse is not true.

® Some graphs and tables show the mean with the
standard deviation (SD) rather than the SEM.The SD
quantifies variability, but does not account for sample
size. To assess statistical significance, you must take into
account sample size as well as variability.
Therefore, observing whether SD error bars overlap or not
tells you nothing about whether the difference is, or is not,
statistically significant.
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case study



measurements

An enzyme level is measured in cultured cells.
The experiment is repeated on 3 days. Each day
triplicate measurements (technical replications)
are performed.

Summarize the data and justify your procedure

replicate |

replicate 2

replicate 3

Monday

234

220

229

Tuesday

269

967

275

Wednesday

254

249

246

units/(min*mg)




measurements

replicate | replicate 2 replicate 3 Mean

Monday 234 220 229 227,67
Tuesday 269 96/ 275 272

Wednesday 254 249 246 249,67

Grand Mean 249,78

units/(min*mg)

“The experiment was performed three times in
triplicate. After removing one extreme outlier, the
mean for each experiment was calculated. The

grand mean is 249.8.The 95% Cl ranges from
194.7 to 304.9. (n=3)"



Descriptive Stats - Best of

Publish all raw data
Summarise sensibly
Report N

Inference matters

Don’t trust your eyes
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Imputation



Why Missing Values!?

® MCAR: missing completely at random

® MAR: missing at random
missing-ness can be predicted

® NMAR: not missing at random
correlation with unobservable
characteristic
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Strategies to deal with missing values

® List-wise deletion (>5% dropout)
® Pairwise deletion
® Mean/Median substitution

® Multiple imputation

71




Multiple imputation

Impute
Repeat 3-5 times
Perform desired analysis on each repetition

Average parameter estimates to obtain
single point estimate

Calculate SE based on variation across
datasets
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stats twitter accounts to follow

® @d spiegel
® (Qstatsepi
® (@MaartenvSmeden

® @lakens

® @VPrasadMDMPH
® (@ProfDFrancis
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lTest T heory



non-sheep detector

Training:
Measure the length of all sheep that cross your way

&)

75




non-sheep detector

Determine the distribution of the quantity of interest
(length of sheep).

80 90 100 110 120 130
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non-sheep detector

Test phase:

For any unknown animal, test the hypothesis that it is a sheep.
Measure its length and compare it to the learned length distribution
of the sheep. If its length is ,,out of bounds®, the animal will be called

a non-sheep (rejection of the hypothesis).
Otherwise, we cannot say much (non-rejection).

000M0 s
000000 &4
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I I ”I éf/l[/)I IM I

70 80 90 100 110 120 130
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non-sheep detector

Advantage of the method:
One does not need to know much about sheep.
Disadvantage:
It produces errors...
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Statistic Hypothesis Testing

e State a null hypothesis Ho
(“‘nothing happens, there is no difference...”)

* Choose an appropriate test statistic (the data-derived quantity
that finally leads to the decision)
This implicitly determines the null distribution (the distribution
of the test statistic under the null hypothesis).
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Statistic Hypothesis Testing

e State an alternative hypothesis

(e.g.”the test statistic is higher than expected under the null
hypothesis™)

* Determine a decision boundary. This is equivalent to the choice

of a significance level q,i.e. the fraction of false positive calls
you are willing to accept.

i

0 0oooooooom
a00mMmon

all
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Statistic Hypothesis Testing

* Calculate the actual value of the test statistic in the sample, and

make your decision according to the pre-specified(!) decision
boundary.

100000 00
000mon
1M

Q0000 I00moiniomom ng D OOOOOD
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Good/Bad Test Statistics

[0 MO0M 0nmoooooo0
00000000 DmOoma
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Accept
null hypothesis

null hypothesis
is TRUE

correct
decision

alternative hypothesis
is TRUE

Reject
null hypothesis

correct
decision
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Good/Bad Test Statistics
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Reject
null hypothesis

0
Accept
null hypothesis
null hypothesis correct
is TRUE decision

alternative hypothesis
is TRUE

correct
decision
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Statistical Power

® Probability that the test will reject the null
hypothesis when the alternative hypothesis
is true (i.e. the probability of not
committing a Type |l error).

® As the power increases, the chances of a
Type |l error occurring decrease. The
probability of a Type Il error occurring is
referred to as the false negative rate (3).
Therefore power is equal to |—[3, which is
also known as the sensitivity.
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IMPORTANT!!

® Statistical Power = |-3

® |t is wrong to assume that type | error
(false positives) rates are independent of
the power.
In fact, it has been shown that many (most)
significant results published are false
positives also thanks to low statistical
power of the test applied
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Power analysis

® (Goal is to allow you to decide, while in the process of
designing an experiment,
(a) how large a sample is needed to enable statistical
judgments that are accurate and reliable and
(b) how likely your statistical test will be to detect effects
of a given size in a particular situation.

® Performing power analysis and sample size estimation is an
important aspect of experimental design, because without
these calculations, sample size may be too high or too low.
If sample size is too low, the experiment will lack the
precision to provide reliable answers to the questions it is
Investigating.
If sample size is too large, time and resources will be
wasted, often for minimal gain.
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The p-value

Given a test statistic and its actual in a sample, a
p-value can be calculated:

Each test value t maps to a p-value, the latter is the probability of observing a value
of the test statistic which is at least as extreme as the actual value t (under the
assumption of the null hypothesis).

gooooooot

aooaod
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The p-value

Given a test statistic and its actual in a sample, a
p-value can be calculated:

Each test value t maps to a p-value, the latter is the probability of observing a value
of the test statistic which is at least as extreme as the actual value t (under the
assumption of the null hypothesis).
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Test decisions according to p-value

Decision boundary d < > significance level a
Observed test statistic t < > p-value

t more extreme than d <

> p smaller than a
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p > A does
not!
prove equality



one- and two-sided hypotheses

one-sided alternative
Ho: The value of a quantity of interest in group A is not higher
than in group B.
Hi:The value of a quantity of interest in group A is higher than in
group B

-—
0 000000opimopmog

e
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one- and two-sided hypotheses

two-sided alternative
HO: The quantity of interest has the same value in group A and
group B
Hl:The quantity of interest is different in group A and group B

Generally, two-sided altefnatives are more conservative:
Deviations in both directi®ns are detected.
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- Neuer Impfstoff aktiviert das ImmunsyStém

Erfolg gegen Krebs
| USA: Uberlebensrate der Patienten erhSht

HEIDELBERG — Amerikanischen Wissen-
schaftlern ist es erstmals gelungen, das Immun-
system von Krebspatienten mit einem Impfstoff
direkt zu aktivieren und so die Uberlebensrate

der Erkrankten zu erhiihen. | |

Auf einem Symposium der Deutschen Krebs-
gesellschaft stellten die US-Mediziner Mike
Hanna und William Cassel die aufsehenerregen-
den Ergebnisse ihrer Forschung vor. An den Ver-
suchen nahmen insgesamt 62 Patienten teil, die
alle an Dickdarmkrebs erkrankt waren und be-

- reits Tochtergeschwiilste ausgebildet hatten. 32
der von Professor Hanna operierten Personen
erhielten einen: Monat nach dem Eingriff Impf-
stoff gespritzt, der aus Zellen ihres Tumors und
aus einem Stoff, der das Immunsystem stimu-
liert, besteht. Die Tumorzellen waren vorher mit
Strahlen behandelt worden, um sie unschadlich
zu machen. : ‘

Zum Erstaunen der Arzte zeigten fast alle Pa-
tienten eine Reaktion des Immunsystems. Nach
vier Jahren lebten von den 32 Versuchspersonen
noch 94 Prozent. Bei einer Kontrollgruppe, die
nicht geimpft worden war, waren noch 77 Pro-
zent am Leben. Durch die Injektion traten auch
weniger Zweittumore auf als bei der Kontroll-

gruppe.




Colon carcinoma test

" Neuer Impfstoff aktiviert das Inimunsystém

Eriolg gegen Krebs
USA: Uberlebensrate der Patienten erhSht | 4y Su rVivaI

HEIDELBERG — Amerikanischen Wissen-
schaftlern ist es erstmals gelungen, das Immun-

system von Krebspatienten mit einem Impfstoff
direkt zu aktivieren und so die Uberlebensrate

der Erkrankten zu erhohen. '
yes no

Auf einem Symposium der Deutschen Krebs-
gesellschaft stellten die US-Mediziner Mike

Hanna und William Cassel die aufsehenerregen-
den Ergebnisse ihrer Forschung vor. An den Ver-
suchen nahmen insgesamt 62 Patienten teil, die

alle an Dickdarmkrebs erkrankt waren und be- yes
reits Tochtergeschwiilste ausgebildet hatten. 32

der von Professor Hanna operierten Personen ( — 3 2)

30 2

erhielten einen: Monat nach dem Eingriff Impf-
stoff gespritzt, der aus Zellen ihres Tumors und

gus sinem Sutt der das Inmunsysem st | \fcCination

liert, besteht. Die Tumorzellen waren vorher mit
Strahlen behandelt worden, um sie unschédlich n O

zu machen. 2 3 7

Zum Erstaunen der Arzte zeigten fast alle Pa-
‘tienten eine Reaktion des Immunsystems. Nach (n — 3 O)

vier Jahren lebten von den 32 Versuchspersonen

noch 94 Prozent. Bei einer Kontrollgruppe, die
nicht geimpft worden war, waren noch 77 Pro-
zent am Leben. Durch die Injektion traten auch
weniger Zweittumore auf als bei der Kontroll-

gruppe.

Does vaccination yield any effect?

s the effect “significant™?
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Colon carcinoma test

Null hypothesis Ho:

Vaccination has not (either positive or negative) impact on
the patients. The survival rates in the vaccine and non-
vaccine group in the whole population are the same.

Alternative hypothesis H:

For the whole population, the survival rates in the vaccine
and non vaccine group are different.

Choose the significance level a
(usually: a = 1%; 0.1%; 5%)

Interpretation of the significance level a :
If there is no difference between the groups, one obtains a
false positive result with a probability of a.
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the p-value is the probability to
observe an effect of the measured

size (or larger) by chance (there
was no effect in first place)
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if the p-value is lower than a pre-defined threshold (q,
0.05) the null hypothesis (no-effect) is rejected and the
alternative hypothesis (effect) applies

a also defines the rate of accepting a false positive
rejection of the null hypothesis (i.e. 5% false positives,

type | error)



Colon carcinoma test

choice of test statistic

“Fisher’s Exact Test”
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Colon carcinoma test

Value of the test statistic t after the experiment has been

carried out. This value can be converted into a p-value:
p =0.0766 7.7%

Since we have chosen a significance level a = 5%, and p > q,
we cannot reject the null hypothesis, thus we keep it.

Formulation of the result: At a 5% significance level (and
using Fisher’s Exact Test), no significant effect of vaccination
on survival could be detected.

Consequence:We are not (yet) sufficiently convinced of the
utility of this therapy.

But this does not mean that there is no difference at all!
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Common Tests



Which test?

depends on the question asked

depends on the number of independent
(causes) and dependent (effect) variables

depends on the number of levels of
independent variables

depends on the data type (continuous,
discrete, categorical)

depends on the requirements/assumptions
of the test
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common assumptions for common tests

® sampling has to be independent

® sample has to be representative of the
population
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comparing two groups



the experiment

® independent variable:
treatment (2 levels)

® dependent variable:
a measurement of e.g.

enzyme activity, protein
level, RNA...

® 5 biological replicates and
3 technical replicate
measurements each

value

7,47
7,19
8,06
6,74
7,49
6,41
7,37
7,23
7,56
6,64
6,14
6,11
7,62
7,69
7,11
5,22
5,49
5,79
6,08
6,56
6,47
6,84
6,93
7,58
6,97
6,51
6,28
6,26
6,66
6,98

treatment
control
control
control
control
control
control
control
control
control
control
control
control
control
control
control
drug
drug
drug
drug
drug
drug
drug
drug
drug
drug
drug
drug
drug
drug
drug

bio.replicate

v 00 L A B B W W W N DNMNDNRPR RFPRP PP OOV P~ DD P W W WNDNNNRPR R P

tech.replicate
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the experiment

® first average the technical replicates (e.g.
using EXCEL or a calculator)

value

7,57

6,88

7,39

6,30

7,47

5,50

6,37

7,12

6,59

6,63

treatment

control

control

control

control

control

drug

drug

drug

drug

drug

Prism
Fin sran Indr.  Cap ) heng
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visualise the data

measurement

R:ggplot Prism

B

measurement
o
‘ .

AN
o O
< D>
&
(¢
treatment
treament

SEM error bars
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Two group comparisons

measurement

® does the drug have an effect?

® s there a “significant” difference in

&'L ] the measurements!?
_.} ® null hypothesis:
° there is no difference in group means

AN
o &QQ

. ® alternative hypothesis:
there is a difference in group means

® how likely is such a group means

. , :
treament difference occurring by chance!

| 14




two sample t-test (unpaired, two-tailed)

requirements:

a) roughly equal variances in both groups
b) approx. normally distributed values

c) group sizes can be different

d) samples were obtained independently

| 15




is my data homoscedastic (equal variance)?

® the measurements can be tested for equal
variances (F-test)

® however, the test is very sensitive ...

® and for a small number of n an estimation is
not possible

® pragmatic solution: always use the t-test with
Welch correction which allows for unequal
variances

|16




normal distribution

C.F Gauss (1777-1855):

Roughly speaking, continuous variables that are the
(additive) result of a lot of other random variables follow a
Gaussian distribution. (central limit theorem)

It is often sensible to assume a gaussian distribution for
continuous variables.
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non-normal distribution
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is my data normal?

Look at a histogram if you sampled sufficiently enough
data points (n>>20). Roughly normal is sufficient.

If many data points are sampled a formal statistical test
can be applied to test for normality (e.g. Shapiro test).
However, many data sets that are significantly non-normal
would be perfectly appropriate for a t-test or ANOVA.

The distribution of the population is the important one
(not the one of the sample). One therefore might look at
other data, too.

Try data transformation to achieve normality. Gene
expression and fluorescence intensity measurements are
e.g. known to be normally distributed after log-

transformation.
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Data transformation!



log-normal distribution

Frequency

15000 25000

0 5000
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mean GFP signal log2(mean GFP signal)
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others (rarely to be used)

® Square-root transformation.This consists of taking the
square root of each observation. The back transformation is to
square the number. If you have negative numbers, you can't take the
square root; you should add a constant to each number to make
them all positive.
The square-root transformation is commonly used when the
variable is a count of something, such as bacterial colonies per petri
dish, blood cells going through a capillary per minute, mutations per
generation, etc.

® Arcsine transformation.This consists of taking the arcsine of
the square root of a number. (The result is given in radians, not
degrees, and can range from —TU2 to TV/2.) The numbers to be
arcsine transformed must be in the range —1 to |. This is commonly
used for proportions, which range from 0 to |, such as the
proportion of cells in culture that are infested by a mycoplasm.
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B8 = M - =T.TEST(B2:B6,C2:C6,2,3)
, A : C D E F G
1 control drug
2 1 7.57 5.50
3 2 6.88 6.37
4 3 7.39 7.12
5 4 6.30 6.59
6 5 7.47 6.63
7
S 0.09
9
10
<< » pl Sheetl | + L]
Normal View Ready

# T.TEST function

Returns the probehility trat is ossociated with o Student's @ Test. Use T.TEST Lo determine whether
rwn szmalas are lkely o 2ave coma foom the same nvn underlyling poou'at nrs thar have rhe sama

mean.
Syntax

T.TEST(arraylarray2.tails,type)

~ Argument
arrayl

array?

tails

lypc

Nescriptian

The Airst dawz set.
The second data
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Specifies the
num oer of
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> mat

value treatment bio.replicate

.573993
.879926
.387153
.299270
.468581
.500070
.371208
.118872
.585543
.633153

= O oo JdJo O W DN

(@)
OO 1Oy U1 IO 1oy

> t.test (value~treatment,data=mat)
Welch Two Sample t-test

data: wvalue by treatment
= 7.906,
alternative hypothesis:

95 percent confidence interval:
-1.5031541 0.1431231

t = -1.909, df

control
control
control
control
control
drug
drug
drug
drug
drug

sample estimates:

mean 1n group drug mean 1n group control
7.121785

6

.441769

p-value
true difference in means i1s not equal to 0

O LN Ok wdDd-

0.09311
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Cl of group mean difference

® 95% Cl of the group mean
difference ranges
from -1.5to 0.14

® spans 0, i.e.includes no
difference

drug—control

® provides a measure of the
1 effect size and significance!

® better than p-value!!
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another example

Data was collected to test whether treating cultured cells

with a drug increases the activity of an enzyme. Five

different clones of the cell were tested.With each clone,

control and treated cells were tested side by side.

control treated
24 52
6 | |
|6 28
5 8
2 4

—clone |
—clone 2

—clone 3
—clone 4

—clone 5
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C-test

control | treated
24 52 28
6 | | 5
|6 28 12
5 8 3
2 4 2

p=0.107 (t-test, unpaired, two-tailed)
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graphical representation

60
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enzyme activity
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N
& &

treatment
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the ratio t-test (one sample t-test)

the ratio is much more informative (biologically)
but the ratio is asymmetric: log transformation! (here log|0)

control treated log ratio
1,38 1,72 0,34
0,78 1,04 0,26
1,20 1,45 0,24
0,70 0,90 0,20
0,30 0,60 0,30

p-value = 0.0003 (t-test, mu=0, two-tailed)
mean change: 0.26 (1.86 antilogged)

Cl 95%: 0.20-0.33 (1.61-2.15 antilogged)
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Two group comparisons, paired data

log2(expression)

gene X

is there a “significant”
difference in expression?

tfreatment
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two sample t-test (paired, two-tailed)

requirements:

a) approx. normally distributed values

b) paired data

> t.test (expression.level~treatment, data=df, paired=T)
Paired t-test

data: expression.level by treatment
t = -3.0556, df = 4, p-value = 0.03782

alternative hypothesis: true difference in means is not equal to O

95 percent confidence interval:
-4.6915433 -0.2245871
sample estimates:
mean of the differences
-2.458065

® 00 1 gene_ex1.csv
E] Eﬁ @ E‘ (:jQ' Search in Sheet \l »
A Home Layout Tables Charts » v kv
B8 = fx| =TTEST(B2:B6,C2:C6,2,1) |~
_ A ] B | C D E F
1 wt mutant
2 1 4,76 7.32
3 2 10.21 13.88
4 3 5.63 10.27
5 4 6.70 6.85
6 5 5.37 10.63
7
9
<« » >l 7] gene_exl.csv |+
Normal View Ready /
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Paired tests

® use if:
- you measure a variable in each subject before and after an
Intervention
- you run a laboratory experiment several times, each time
-with a control and treatment preparation handled in
barallel
- whenever the value of one subject in the first group is
expected to be more similar to particular subject in the the
second group than to a random subject in the second group

® The statistical power of a paired test in a paired
experimental layout is much higher than for an unpaired
test in a paired layout.

® the decision about pairing has to be made before collecting
the data! 133




the ratio t-test versus paired test

control treated log ratio
1,38 1,72 0,34
0,78 1,04 0,26
1,20 1,45 0,24
0,70 0,90 0,20
0,30 0,60 0,30

p-value = 0.0003 (t-test, paired, two-tailed)
p-value = 0.0003 (t-test, mu=0, two-tailed)
mean change: 0.26 (1.86 antilogged)
Cl 95%: 0.20-0.33 (1.61-2.15 antilogged)
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one-tailed or two-tailed?

one tailed only if there is absolutely
no possibility for a movement in the
other direction
and
the decision for this test has been
taken before data collection



Summary t-test

® |ncredibly powerful 2-group comparison test

® Very few formal requirements: normality is
most important

® Parameters:
® paired: crucial
® unequal variance can be set by default

® alway 2-sided



Power analysis of two-tailed unpaired T-test

® sample size

o cffect size |
pioneer experiments required to get mean
difference and s!

® (@, significance level (0.05)

® power, |-[3 (the probability of making a type
Il error)
(typically set to 80% or 90%)
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how many samples
to detect 2 fold change with a SD of 0.4?

Two-sample t test power calculation
n = 4.574784
d = 2.5
sig.level = 0.05
power = 0.9
alternative = two.sided

NOTE: n 1s number i1n *each* group
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2-sample t-test unpaired

powaear

t-Test

Eflecl Size
0.

— = <small
03
U4

-~ == mezium
06
07

~ = large
09
.
1
12
13

- 14

- 15
16
17
18
19

<

00
|

N40 050 0E0 070 08B0 090

na
|

120
|

0->

002
|

sample size
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Two group comparisons, non-normal distribution

mitoses

is there a “significant”
difference in number of
mitotic cells?

count

treatment
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Rank Tests (Wilcoxon, Mann-Whitney, U-Test)

0 mooooo
oo goo| oo oo oo OO0
qoom | oofgy boo) oo o0 Ood

0 DOMOMO0mo IEDD]]]]D]D]][[DD]]D]DD]]]]].DD]]]]]]]ED]]]]]]]]EDJ

(LT [ [ (o [  am mo o
0000000 M o0oomm 0000000 M o000
Jooooooooommon Joooooooommon

> wilcox.test (mitoses~treatment, data=df)
Wilcoxon rank sum test
data: mitoses by treatment

W = "7, p-value = 0.3095
alternative hypothesis: true location shift is not equal to O
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Wrong Test - does it matter?

® for large data sets (n>50) a wrong decision does
not matter

® for small data sets the wrong choice matters:
-nonparametric tests have low power

-parametric tests are not robust
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Summary: comparison of 2 groups

0 0000MOUOD bomotbimmoo moood Q00D Womopoooo
000 Diimitmimimobmopoomoo
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10000 0000 10000
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Unpaired binary data

Drosophila embryos are fed with a drug or a control
substance. The hatched adults are tested for eye color
(either “red” or “white”).

100 flies of 185 treated with drug develop red eyes. 75
flies of 185 treated with a control substance develop red

eyes.

Is there a significant effect of the drug?
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Unpaired binary data

no
85

1 10

Red Eyes

yes
100

75

yes
(n=185)

no
(n=185)

Drug
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Unpaired binary data

Evyes
Treatment red white
drug 100 85

ctr 75 110
> fisher.test (FLIES)

Fisher's Exact Test for Count Data

data: FLIES
p-value = 0.01235
alternative hypothesis: true odds ratio i1s not equal to 1
95 percent confidence interval:
1.119345 2.661245
sample estimates:
odds ratio
1.7229477
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Comparison of categorical variables

| J000MDOD0Miooimmmotoobiidmobmotoopoo0
([DO0mopmoimimibmofmi O Imooobmomobmomo oo
JUD0D0Mo0momod

O MO0o0Mooooo
DU I ififi
U0Moomooooo UOMoomooooo
0000 i 0000 0oo
0 00 00 0000 o000 0000 ‘0000000 M Oo0moon
0 0000 000 0 00000 000000000

00000m [x" 000000

147




What if we increase the
number of sample
objects!



Eyes
Treatment red white
drug 10000 8500
ctr 7500 11000
> fisher.test (FLIES)

Fisher's Exact Test for Count Data

data: FLIES
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.655480 1.798476
sample estimates:

odds ratio
1.725494
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Eyes
Treatment red white
drug 10300 9990
ctr 9700 10010
> fisher.test (FLIES)

Fisher's Exact Test for Count Data

data: FLIES
p-value = 0.001999
alternative hypothesis: true odds ratio i1s not equal to 1
95 percent confidence interval:
1.022848 1.106714
sample estimates:

odds ratio
1.063969
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high n increases the
probability to reject Ho



d - - Genome background

gDNA tags
0.03 | Input tags
b 002' [ \
g ' \
(O] - [} \
D /] \
0.01 - y '
! \
0k~ N\

20 40 60 80
G+C composition (%)

genome background (Online Methods and Fig. 1a). Sequencing
reads from the chromatin input and gDNA samples had different
G+C composition distributions (median, 44% and 47%, respec-
tively; Mann-Whitney test, P < 2.2 x 107!%; Fig. 1a), suggesting
that chromatin may affect sequencing coverage.

We compared the ¢DNA read count-normalized coverage



reporting p-values

report the test applied and the test parameters.

avoid the terms “statistically significant” and
variations thereof (“extremely significant”).

avoid categorisation of p-values (p<0.05,
p<0.01..), just report the p-value as computed
with 2 decimal precision.

upon treatment with X we observed an increase
inY (p-value 0.002, Fisher’s exact test, two-

sided).

always report n (biological replicates)
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a p-value is a p-value

® a p-value is not necessarily a proxy for the
robustness of an effect

® many applications produce “technical p-
values” which cannot give any information
on biological robustness.

Examples: Database searches, peptide
identification in mass spectrometry,
ChlPSeq peak calling and other within-
experiment analyses
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Problems of p-values

® p-values are only valid if the assumptions of the
underlying test are met

® most importantly, the samples have to be
independent and representative of the
population
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Problems of p-values

® Performing multiple tests within an experiment
increases the probability to get a false positive
result (a “significant” effect)

® e.g.simultaneous testing of many endpoints
(genes, proteins) in high throughput studies or
simultaneous pairwise comparison of many
groups or sequential testing

® in order to control for the overall type | error
rate the p-values have to be adjusted.
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Multiple Testing

Examples:
: : P
* Simultaneous testing of many y “od
endpoints 1 S

(e.g. genes in a microarray study)

* Simultaneous pairwise comparison of
many (k) groups
(k pairwise tests = k(k-1)/2 tests)

Although each individual test keeps the significance level (say a = 5%), the
probability of obtaining (at least one) false positive increases dramatically

with the number of tests: a, = 1-(1-q)K.
For 6 tests, the probability of a false positive is already >25%!

The expected number of significant results in a series of k independent
hypothesis tests when all null hypotheses are actually true is simply

calculated as: k * a
in a microarray study interrogating 10000 genes the expected number of false positives is 500
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multiple testing correction

One possible solution: p-value correction for multiple
testing, e.g. Bonferroni correction:

Each single test is performed at the level a/m (,,local
significance level a/m™), where m is the number of tests.
The probability of obtaining a (at least one) false positive is
then at most a (,,multiple/global significance level a*)

Ex.m =6
Desired multiple level: a = 5%
— |ocal level: a/m = 5%/6 = 0.83%

Other solutions: Bonferroni-Holm, Benjamini-Hochberg,
Control of False discovery rate (FDR) instead of significance
at the group level (family wise error rate, FWER)
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® Bonferroni correction (control of the FWER):
FWER= probability of getting at least one false positive.
The critical value (alpha) for an individual test is
obtained by dividing the familywise error rate (usually
0.05) by the number of tests.
Thus if you are doing 100 statistical tests, the critical
value for an individual test would be 0.05/100=0.0005,
and you would only consider individual tests with
P<0.0005 to be significant.

® Benjamini-Hochberg (control of FDR):
controls the proportion of significant results being
false positives.
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Repeated Testing to Reach Significance

needs adjustment!

DON'T DO IT

"If you torture your data long enough, they will tell you
whatever you want to hear." (Mills ,1993).
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p-value hacking (fishing)

Simmons JP, Nelson LD, Simonsohn U. 201 I. False-
Positive Psychology: Undisclosed Flexibility
in Data Collection and Analysis Allows
Presenting Anything as Significant.
Psychological Science 22: 1359—1366.

@ sampling bias, the “drawer problem”
e trying different testing procedures
® sequential testing

@ multiple endpoints reporting only the significant ones
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ANOVA

* measure differences in more than 2 groups
(avoiding multiple testing corrections when using
standard t-tests)

* can be used to analyse the contribution of
different sources of variation to a response




example

eXPreSSion I I I I I

A B C D E
genotype

Null hypothesis: means of the measurement variable (expression) are the same for the different
categories of data (genotype)
Alternative hypothesis: the means of expression are not all the same

|64




Assumptions to be met

® observations in each group are normally
distributed

® standard deviations in the groups should be
equal (homoscedastic). this is particularly
important in unbalanced designs (unequal
number of observations)

® independency, random selection
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reporting the result

1

HH

-

]
-

expression

genotype

Error bars

reflect 95% CI
(SE or SD would
be appropriate
to0)

“The means were significantly heterogeneous
(one-way anova, , P=1.3%x10-4)".
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—

A B C D E
genotype

expression
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| |

A B C D E
genotype

expression
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expression

A B C D E
genotype
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expression

A B C D E
genotype
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expression

A B C D E
genotype
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running ANOVA

Analysis of Variance Table

Response: expression

Df Sum Sg Mean Sg F value Pr (>F)
genotype 4 10.1206 2.53152 7.8323 0.0001283 ***
Residuals 35 11.313 0.32322

Signif. codes: 0 ‘Y**x*’ (0,001 ‘x>’ 0.01 ‘*" 0.05 '." 0.1 Y " 1
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Post tests

compare all pairs: Bonferroni, Tukey,
Student-Newman-Keuls, preferred method
depends on number of groups

Dunnett: compares a set of treatments
against a single control mean

all possibilities (contrasts): Scheffe test
(low power)

groups naturally ordered: test for trends
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all pairs: Tukey

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = expression ~ genotype, data = mm) ‘
Sgenotype
diff lwr upr p adj s
B-A 0.2118143 -0.60545281 1.0290815 0.9441907 ¢ |
C-A 0.9824239 0.16515675 1.7996910 0.0118801 i_ ‘ ‘
D-A -0.4203216 -1.23758873 0.3969455 0.5826797
E-A -0.3413169 -1.15858403 0.4759503 0.7509171 I
C-B 0.7706096 -0.04665757 1.5878767 0.0724970 N ‘
D-B -0.6321359 -1.44940305 0.1851312 0.1948625 |
E-B -0.5531312 -1.37039835 0.2641359 0.3131110 A C enipe :
D-C -1.4027455 -2.22001262 -0.5854783 0.0001806
E-C -1.3237408 -2.14100792 -0.5064736 0.0004106
E-D 0.0790047 -0.73826243 0.8962718 0.9986269
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Variations of ANOVA

® non-parametric version of ANOVA: Kruskal
Wallis Test

® matched measurements across groups:
Repeated-Measures ANOVA
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2-way ANOVA

expression

6.0 6.5 7.0 7.5
I

5.5
I

—_—

| | | |
control.male treatment.male control.female treatment.female

First Factor differences of means
Second Factor differences of means

Interaction of Factor | and Factor Il
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7.5

7.0

expression
6.5

6.0

—_—

| | | |
control.male treatment.male control.female treatment.female

Analysis of Variance Table

Response: expression

Df Sum Sg Mean Sg F wvalue Pr (>F)
treatment 1 2.0882 2.08819 7.2159 0.01201 *
gender 1 1.8393 1.83932 6.3560 0.01767 *
treatment:gender 1 0.1873 0.18728 0.6472 0.42791
Residuals 28 8.1028 0.28939

Signif. codes: 0 ‘**x*’ (0.001 ‘**" (0.01 > 0.05 Y./ 0.1 Y ' 1
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Interaction

expression
45 50 55 60 65 70 75

control.male treatment.male control.female treatment.female

Analysis of Variance Table

Response: expression

Df Sum Sg Mean Sg F wvalue Pr (>F)
treatment 1 0.0010 0.0010 0.0037 0.9521800
gender 1 4.8191 4.8191 17.7482 0.0002369 **x*
treatment:gender 1 10.5151 10.5151 38.7257 1.006e-06 ***
Residuals 28 7.6028 0.2715

Signif. codes: O ‘**x*’ (0.001 ‘**’ 0.01 > 0.05 ‘.7 0.1 Y ' 1
178




Bivariate Analysis
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Relation of two Variables
Correlations
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Pearson’s Correlation Coefficient

® Useful for gaussian variables (but not only
for those)

® Measures the degree of linear dependence
® -|=ry<=<|
® r. = |/-1:perfect linear dependence

® r.y = 0:linear independence
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calculation of Pearson

correlation in EXCEL

locus
locus
locus
locus
locus
locus
locus
locus
locus
locus
locus
locus
locus
locus
locus

b

LNV AELWN-

Polll enrichme H3K36me3 enrichment

D

w

Y 170208815

0.94213127
1.06142321
1.01115208
1.09202055
1.73267371
1.36225803

0.8520441
2.06622878
1.43993132

1.0118532
0.73569375
1.24833055
2.53502504
2.25011697

3.25803025]
0.75575996
0.82817066
4.77665275
0.77324634
3.57761961
4.03340982
0.77646888
3.19540767
2.14800894
0.70124963
0.65474271

2.3343162
4.94510104

5.6255728)

=CORREL(B2:B16,C2:C16)
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184




Pearson’s Correlation Coefficient

=1 r=-1
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Pearson’s Correlation Coefficient

80

r=0.99
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Pearson’s Correlation Coefficient
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non-linear relationships

rank(y)

rank(x)

Spearman correlation

r=0.88 rs=0.99

Pearson correlation




non-linear relationships
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Pearson/Spearman Summary

Pearson correlation is a measure for linear dependence

Spearman correlation is a measure for monotone
dependence

The Spearman correlation is less sensitive than the Pearson
correlation to strong outliers that are in the tails of both
samples.

Correlation coefficients do not tell anything about the
(non-)existence of a functional dependence.

Correlation coefficients tell nothing about causal relations
of two variables X and Y (on the contrary, they are
symmetric in X andY)

Correlation coefficients hardly tell anything about the
shape of a scatterplot
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Significance of correlations

Correlation coefficients are a measure for the
strength of a relationship between 2 variables

That does not tell us anything about the
significance of a relationship

The significance of a correlation is expressed in
probability levels (p-values) telling how likely a
given correlation coefficient will occur given no
relationship in the population.

Can be calculated easily in R using “cor.test”
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Explorative data analysis using correlations

gsec vs am gear carb

mpg cyl disp hp drat wt
Mazda RX4 21.0 6 160 110 3.90 2.620 lo6.40
Mazda RX4 Wag 21.0 c 160 110 3.90 2.875 17.02
Datsun 710 22.8 4 108 93 3.85 2.320 18.01
Hornet 4 Drive 21.4 o 258 110 3.08 3.215 19.44
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant 18.1 o 225 105 2.76 3.460 20.22
4 6 8 50 250 2 4 00 06 30 45
1 11 1 1 11111 & “‘Ib 1 1 1 <
mp %o 2% | (% °88 d E E g E 3 o F
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e ° d
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mpg - Miles/(US) gallon

cyl - Number of cylinders

disp - Displacement (cu.in.)

hp - Gross horsepower

drat - Rear axle ratio

wt - Weight (Ib/1000)

gsec - 1/4 mile time

vs - V/S

am - Transmission (0 = automatic, 1 = manual)
gear - Number of forward gears
carb - Number of carburetors
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Confounding - watch out!
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Confounding - watch out!
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Confounding: A variable that ,,explains (part of) the dependence of two others
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responsible research

statistics don’t lie but liars use statistics
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most (90-95%) of the published pre-clinical
research findings are wrong (irreproducible)

® |oannidis JPA. 2005.Why most published research
findings are false. PLoS Med 2: el 24.

® Begley CG, Ellis LM.2012. Drug development: Raise
standards for preclinical cancer research. Nature

483:531-533.

® irreproducibility correlates with:
® inappropriate application of statistical procedures
® |ow statistical power

® inappropriate experimental design
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Estimating reproducibility

same result?

197




Replicability 4—> Reproducibility

Reproduction of the original results using the

same protocol/reagents/tools different reagents/
tools but the same

Reproduction using

Reproduction
just based on

o by a different by a different protocol by a Sty
4 person in the [l person outside f§ different person
person outside the lab

lab the lab

GULATION




How to avoid sampling bias!

® blinding: the person conducting the
experiment should e.g. not be aware of
whether control or treatment is applied

® randomisation: the samples should be
assigned randomly to experimental groups

® exclusion criteria should be defined if
exclusion of data is likely to happen.

® confounding factors have to be identified
and controlled for
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A QPR show case

The Journal of Neuroscience, April 16,2014 - 34(16):5529 —5538 « 5529

Neurobiology of Disease

Cannabis Use Is Quantitatively Associated with Nucleus
Accumbens and Amygdala Abnormalities in Young Adult
Recreational Users

Ehe Washington Post

Morning Mix

Even casually smoking marijuana
can change your brain, study says



Table 1. Participant demographics

confounding

CON (n = 20) MJ (n = 20) p-value
Sex (M/F) IM/MTF IM/MTF N/A
Age 20.7 (1.9) 213 (1.9) 0.30
Years of education 143 (3.4) 12.6 (4.8) 0.20
STAI
State 28.9 (7.94) 27.7 (7.38) 0.65
Trait 29.8 (7.32) 29.5 (5.56) 0.89
HAM-D® 0.80 (1.40) [range: 0—5] 1.10(1.37) [range: 0-5] 0.50
TIPI
Extroversion 10.9 (2.36) 10.7 (2.13) 0.78
Agreeableness 10.8 (2.47) 10.7 (1.81) 0.94
Conscientiousness 11.9 (2.08) 11.7 (2.13) 0.76
Emotional stability 10.5 (2.52) 11.4 (2.64) 0.27
Openness 12.1(1.90) 12.4 (1.61) 0.57
Substance use
Alcohol
No. alcoholic drinks/week 0.10
AUDIT score 0.05
Cigarettes
No. of occasional smokers? 0 7 N/A
No. of daily smokers 0 1 N/A
Marijuana
No. days/week 0 3.83(2.36) N/A
No. joints/week 0 11.2 (9.61) N/A
No. joints/occasion 0 1.80 (0.77) N/A
No. smoking occasions/day 0 1.80 (0.70) N/A
Age of onset (years) — 16.6 (2.13) N/A
Duration of use (years) — 6.21(3.43) N/A

All values are expressed in means and SDs. CON, controls; MJ, marijuana users.
“State Trait Anxiety Inventory Form (Spielberger et al., 1983).

®Hamilton Depression Rating Scale (Hamilton, 1960).

“Ten-Item Personality Inventory (Gosling et al., 2003).

“0ccasional smokers reported from 1 cigarette/week to 1 cigarette every 3 months.



types of research



EXPLORATORY

hypothesis generating

nol/little prior information on effects, frequently
many endpoints measured (multiple testing)

often not complying with elementary rules of
sampling and experimental layout (e.g. sequential
sampling, multiple testing)

statistical testing will yield highly problematic
results (low power, high error rate), potentially
irreproducible



CONFIRMATORY

performed to confirm hypotheses
solid prior knowledge on effects

involves prior power analysis, thoughtful
experimental layout

generates more reliable statistical test results,
potentially reproducible



Experimental Design

If your experiment needs statistics, you ought to have done a better experiment - Ernest Rutherford

If your statistics should be any valid, you have to plan and perform experiments properly - Anonymous



Experimental Design

® Design of experiments, or experimental design, is the
design of all information-gathering exercises where
variation is present, whether under the full control of
the experimenter or not.

® One central aim is to minimize random and
systematic error contribution to the variation, such
that the fluctuations of the dependent variable (the
measurement) are maximally related to the levels of
the independent variable (the treatment)

® Valid inferences on the behaviour of an entire
population should be derived.
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STANLEY E. LAZIC

Experimental Design
for Laboratory
Biologists




experiment flow chart

® formulate a hypothesis before data collection
® design an experiment to tests this hypothesis

® ideally this experiment should be a comparative one (2 states)

® define what you measure (dependent variable), the link between the
(proxy) variable and the biological model.

® make up your mind about the sample size (power analysis) and the
statistics you want to apply

® consider potential sources of error and how you can minimise them

® perform experiment
® analyse your data

® consider to perform a completely different experiment that can confirm
your finding
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a well desighed experiment

HC EE H HE m
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1 8 EE

® randomised block design

® ANOVA with fixed effect (treatment) and random
effect (block)

® Problem: randomisation and statistical testing should

involve an experienced statistician
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the ideal design

friday

wednesday . .

.
. . thursday

tuesday

® randomised block design, only 2 factor levels (control, treatment)

® suited to control for day-to-day fluctuations which are very
common. Ideally one would change reagents, batches of cells etc.
between the blocks as well. Every block a new batch, every block
new reagents.

® paired t-test
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N is (too) small, what can you do?

® |mprove experimental design

® simple comparative studies (2-group) have
higher power than complex studies

® reduce systematic errors by e.g. random block
design

® |Improve the power of statistical test

® paired tests instead of unpaired tests (requires
appropriate experimental design)

® avoid making comparisons that are of no
Interest
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