# Applied Statistics <br> for Life Scientists 

Tobias Straub, Biomedical Center Martinsried tobias.straub@lmu.de

There are three kinds of lies: lies, damned lies, and statistics -Disraeli

Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.

> -H. G. Wells

## EMBO Journal Checklist

[^0]

## Statistics is the science of learning from data



## WikipediA <br> The Frec Encyelopodia

## Main page

Conterits
Featured content
Curren: events
Mandom article
Donate to Wikipedia
Wkimodia Shop

## In:eraction

Help
Abcut Wikipedia
Community portal
Focert changes
Cortao: page

## Tcols

Wha: links here
Felated change3
Upload fle
Spccial pages
Permanent lirk
Page intormation
Wikidata item
Che tris paçe

## Print/cxport

Create a book
Lownioad as PDF
Pritabe version

Article Th
Talk
Read Edit View hislory Search
Create account Log in

## Statistics

From Wispedia, the froc encyoopedia
Statistics is the stucy of the collection, analysis, interpretat on, presentation, and organization of data. ${ }^{[1]}$ In applying statistics to, e.g., a scientific, industrial, or societal problem, it is necessary to begin with a population or process to be studied. Pooulations can be diverse topics such as "all persons living in a country" or "every atom composing a crystal". It ceals with all aspects of data including the planning of da:a collection in terms of the cesign of surveys and experiments. ${ }^{[1]}$

In case census data cennot be collected, statiaticians collect data by developing specific experiment designs and survey samples. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manjpulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation.

Two main statistical methodologies are used in da:a analysis: descriptive statistics, which summarizes data from a sample using incexes such as the mean or standard deviation, and inferential statistics, which draws conclusions from data that are subject 10 rancom variation (e.g., observational errors, sampling variation). ${ }^{[2]}$ Descriptive stetistics are most otten concerned with two sets of properties of a distribution (sample or population): central ternderncy (or locaticn)


Vore probability density is found as ore ge:s closer to the expected (mean) value in a normal distribution. Statistcs used in standarcized testing assesement are shown. The scales include standard dovietions, cuimuluative percantages, percentile equivelents, $Z$-scores, $T$-scores, standard nines, and parcentages in standard rines.


## Structure

- Descriptive Statistics
- Test theory
- Common Tests
- Experimental Design / Responsible Research


## Further reading




Introduction

 wathbilogy sudent hww wochoose the appropriater satustial text for a paricilas eppetinert, then

 of jlass were used $\omega$ nake a nicosope len. Esolopists in very statistor intensive fieds sact as ecolonvepidemblogy aad sptematice nay find this handbook to be a bitsuperfidial fot theit veds just 15 a nicosopist wing the itist tedniquesin 4 -D. 3 -photoncorbval nicrosopy nexds

 $f$ you find : bubler linh ary where on thee rages
Thave providdeda spreacshbect to perferm almest evary utatitial leent Bach comes wih nample




${ }^{1}$ rve


## http://udel.edu/~mcdonald/ statintro.html

## Software



| price | EXCEL | Prism | R |
| :---: | :---: | :---: | :---: |
| ease of use | medium | high | free |
| coverage | low | high | difficult |
| misusage | average | made easy | average |
| poor/limited | good | best/flexible |  |

## Learning R



Hadley Wickham \& Garrett Grolemund

# https://r4ds.had.co.nz 



# Descriptive Statistics 

## Ratios in linear versus log space




## Ratios are not the only problem here..


d-f represent three technical replicates on RNA pooled from 6 organoids (biological replicates) per condition. Statistical analysis for $\mathbf{d - f}, \mathbf{h}$,i was determined at a value of $P<0.05$ as determined by one-way ANOVA with Tukey's multiple-
comparisons test. ${ }^{*} P<0.05,{ }^{* *} P<0.01$, ${ }^{* * *} P<0.001$.

## Data, what is it?


a collection of measurements of similar structure

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: https://www.tandfonline.com/loi/utas20

## Data Organization in Spreadsheets

Karl W. Broman \& Kara H. Woo

To cite this article: Karl W. Broman \& Kara H. Woo (2018) Data Organization in Spreadsheets, The American Statistician, 72:1, 2-10, DOI: 10.1080/00031305.2017.1375989

To link to this article: https://doi.org/10.1080/00031305.2017.1375989

## Best of Data Organisation in Spread Sheets

- Be consistent
- Choose Good Names for Things
- Put Just One Thing in a Cell
- No Empty Cells
- Make it a Rectangle
- No Calculations in the Raw Data Files
- Do Not Use Font Color or Highlighting as Data
- Do_not_use_white_space_but_underscores_for names


## the origin of data matters.. a lot

- observational (descriptive) or experimental (controlled)?
- sampling strategy
- Metadata (what, when, who, how) matters


## Data types

- Continuous data numerical data which can hold any value
- Discrete data numerical data which can only take certain values
- Categorical data

Variables are labels of grouped features (classifications)

## Data Types



## visual representation



## Plotting all data points (continuous data)

Example:<br>BMI of 532 Pima Indian Females


stripchart

## more (too many) data points

|  | expr.value |
| :---: | :---: |
| 1616608 a_at | 9.118380 |
| 1622892 s at | 8.115987 |
| 1622893 at | 2.194861 |
| 1622894 at | 2.194861 |
| 1622895 at | 8.871565 |
| 1622896 at | 8.762262 |
| 1622897 _at | 2.194861 |
| 1622898 _a_at | 9.422677 |
| 1622899_at | 3.987549 |
| 1622900 at | 2.194861 |
| 1622901 _at | 2.194861 |
| 1622902_at | 2.195272 |
| 1622903_s_at | 7.679026 |
| 1622904 _at | 2.212932 |
| 1622905 at | 2.203904 |
| 1622906 at | 2.198816 |
| 1622907 _at | 8.294115 |
| 1622908_a_at | 11.002117 |
| 1622909 _at | 10.899726 |
| 1622910_at | 2.194861 |
| 1622911_at | 2.194861 |
| 1622912 at | 7.421109 |
| 1622913_a_at | 2.194861 |
| 1622914 _at | 2.194861 |
| 1622915 at | 2.194861 |
| 1622916 _at | 2.274991 |
| 1622917 _a_at | 2.194861 |
| 1622918_at | 2.289296 |
| 1622919 _at | 2.195047 |
| 1622920 at | 3.757421 |

$$
n=18952
$$

## Continuous Variables - Histogram

|  | expr.value |
| :---: | :---: |
| 1616608_a_at | 9.118380 |
| 1622892 s at | 8.115987 |
| 1622893_at | 2.194861 |
| 1622894_at | 2.194861 |
| 1622895_at | 8.871565 |
| 1622896 at | 8.762262 |
| 1622897_at | 2.194861 |
| 1622898_a_at | 9.422677 |
| 1622899_at | 3.987549 |
| 1622900-at | 2.194861 |
| 1622901_at | 2.194861 |
| 1622902_at | 2.195272 |
| 1622903_s_at | 7.679026 |
| 1622904_at | 2.212932 |
| 1622905_at | 2.203904 |
| 1622906 at | 2.198816 |
| 1622907_at | 8.294115 |
| 1622908_a_at | 11.002117 |
| 1622909_at | 10.899726 |
| 1622910_at | 2.194861 |
| 1622911_at | 2.194861 |
| 1622912_at | 7.421109 |
| 1622913_a_at | 2.194861 |
| 1622914_at | 2.194861 |
| 1622915_at | 2.194861 |
| 1622916_at | 2.274991 |
| 1622917_a_at | 2.194861 |
| 1622918_at | 2.289296 |
| 1622919_at | 2.195047 |
| 1622920_at | 3.757421 |



## Histogram - Flow Cytometry



## Continuos Variables - Histogram

15


10


## 5



The size of the bins (= width of the bars) is a matter of choice and has to be determined sensibly!

## Continuous Variables - Density Plot




Data will be smoothed automatically.
This is very suggestive and blurs discontinuities in a distribution
non-visual description

## Measures of Location and Scatter

Example:<br>BMI of 332 Pima Indian Females



## Measures of Location and Scatter

## Mean: sum of all observations/number of samples

| I\| || | ||| ||||||||||||||||||||||||| |  | \|||||||||||||||||||||||| | III | 11 | I | I | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 |  |  | 1 |  |
| 20 | 30 | 40 | 50 |  |  | 60 |  |

## Measures of Location and Scatter

Median:<br>a number $M$

such that $50 \%$ of all observations
are less than or equal to M, and $50 \%$ are greater than or equal to $M$


## Mean vs. Median

- median should be preferred to the mean if the value distribution
a) is asymmetric
b) has extreme outliers
- the mean is more precise than the median if the distribution is approximately normal


## Continuous Variables - Quantiles

## Quantile:

The $p$-quantile is a property value that splits a distribution. On the left of the $p$-quantile are $100^{*} p$ percent of all values. On the right are $100^{*}(1-p)$ percent of all values.

## 50\% quantile = MEDIAN



## Continuous Variables - Quantiles

## Quantile:

The $p$-quantile is a property value that splits a distribution. On the left of the $p$-quantile are $100^{*} p$ percent of all values. On the right are $100^{*}(1-p)$ percent of all values.


## Continuous Variables - Boxplot



BMI

## Visual continuous data representation



## Description of Scatter



- variance
= mean squared deviation of mean
- standard deviation
$=$ square root of the variance
- IQR


https://www.autodeskresearch.com/publications/samestats


## categorical variables

## Categorical Variables - Table

| Value | A | B | AB | 0 | $\sum$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| absolute frequency | 75 | 83 | 10 | 20 | 188 |
| relative frequency | 40 | 44 | 5 | 11 | $100 \%$ |
| $n=188$ |  |  |  |  |  |

## Categorical Variables - Barplot



## Categorical Variables - Piechart


$\mathrm{n}=188$

## bad charts

- 3D displays

- pie charts
("the only place for a pice chart is a baker's convention")

- smoothed curves in scatterplot, or any other lines in series, that are neither direct data point connectors nor based on an appropriate regression procedure




## Cross Tables -"Kontingenztafel"


effect
cause

## Cross Tables

## $\mathrm{n}=80$

|  |  | Response |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  | yes | no |  |
| Medication | verum | 20 | 20 | 40 |
|  |  | $50 \%, 67 \%$ | $50 \%, 40 \%$ | $50 \%$ |
|  | placebo | 10 | 30 | 40 |
|  | $25 \%, 33 \%$ | $75 \%, 60 \%$ | $50 \%$ |  |
| Total |  | 30 | 50 | 80 |
| $37 \%$ |  | $63 \%$ | $100 \%$ |  |

## describing quantitative data

- Always report the sample size!
- numerical median, QI, Q3, min, max (5-point summary) location and scatter (for symmetric distribution mean, standard deviation)
- graphical

Histogram, Boxplot, Density Plots

- tables for categorical data
- verbal
"mean BMI of Pima Indian females was $33.2 \mathrm{~kg} / \mathrm{m}^{\wedge} 2$ $\left(n=332\right.$, interquartile range $\left.=28.2-37.2 \mathrm{~kg} / \mathrm{m}^{\wedge} 2\right)$ "

> no sense is better suited for parallel processing than the visual sense. No sense has more built-in filters and processing steps. But it is the visual sense that can fooled most easily.

CNN.com
CNN/USA TODAY/GALLUP POLL


Is truncating the $Y$-axis dishonest?



# Inference 

## What really matters

## Sample - Population Relation



## Sample - Population Relation


sample 1

log(expression) mean: 5.615
sample 2

log(expression) mean: 5.925
sample 3


## Sample - Population Relation



## Confidence Intervals

- 95\%-confidence interval: An estimated interval which contains the „true value" of a quantity with a probability of $95 \%$.





## ாயா m

- (I-a)-confidence interval:An estimated interval which contains the „true value" of a quantity with a probability of ( $1-a$ ).
$\mathrm{I}-\mathrm{a}=$ confidence level, $\mathrm{a}=$ error probability


## proportional data

You use a hemocytometer to determine the viability of cells stained with trypan blue. You count 94 unstained cells and 6 stained.

How can the data be represented?

What is the $95 \% \mathrm{Cl}$ for the fraction of dead cells?
0.02-0.13 (binomial test, http://statpages.org/confint.html)

Which assumptions have to made?
tube mixed well and the selection of sample was random

## Confidence Intervals

population

$\log ($ expression)
mean: 6
$\mathrm{n}=3$

log(expression)
mean: 6.385
$\mathrm{n}=10$

$\log ($ expression $)$ mean: 5.985


## Standard Error of the Mean (SEM) - Standard Error

- The standard error of the mean (SEM) is the standard deviation of the sample mean estimate of a population mean.

SEM = standard deviation/square $\operatorname{root}(\mathrm{n})$

- a small SEM indicates that the sample mean is likely to be quite close to the true population mean

- a large SEM indicates that the sample mean is likely to be far from the true population mean


## Sample - Population

What allows us to conclude from the sample to the population?
The sample has to be representative (Figures about drug abuse of students cannot be generalised to the whole population of Germany)

How is representativity achieved?
Large sample numbers
Random recruitment of samples from the population
Randomisation: Random allocation of the samples to the different experimental groups


Figure 8. miR-296 downregulates p21 expression. (A) p21 ${ }^{\mathrm{WAF} 1}$ expression (red) in control and pCXbG-miR-296 transfected cells. Secondary antibody (control Ab ) and actin staining were used as negative controls. (B) A variety of cancer cells examined for p21 WAF1 expression after transfection of miR-296 expression construct (green) showed lack of red staining in green cells demonstrating that miR-296 downregulates p $21^{\mathrm{WAF}}{ }^{2}$ expression. (C) Quantitative-PCR for $\mathrm{p} 21^{\mathrm{WAF}}$ in U2-O S cells treated with PmiR-296 showed time-dependent decrease after treatment with PmiR-296. (D) Cells treated with PmiR-296 showing decrease and with AmiR-296 showing increase in p21 WAF1 staining. The data demonstrate that the miR-296 regulates p21 WAF1.

## Error Bars

## Correspondence

## Nature 428, 799 (22 April 2004) | doi: $10.1038 / 428799$ c

Error message
David L.VauxI
I.The Walter and Eliza Hall Institute, IG Royal Parade, Parkville,Victoria 3050,Australia

Sir
In the 19 February 2004 issue of Nature, there were ten items (one Brief Communication, one Article and eight Letters to Nature) containing figures with error bars, but only three had figure legends describing what the error bars were: in one case, $80 \%$ confidence intervals; in another, standard deviations; and in the third, standard error of the mean. The articles with incomplete legends represented both the biological and physical sciences, across many different disciplines, and clearly should not be considered isolated examples.

Error bars can be used by the reader to determine how much the data varied, allowing an estimation of whether the experiments gave reproducible results, whether the results were significantly different from the controls, and sometimes whether the data were obtained in an unbiased manner.

How did these omissions occur? If authors include error bars on their figures, why do they so often forget to state what they are in the legends? How can reviewers be confident that the conclusions are correct if they are not told about the errors in the data? Why don't reviewers request that descriptions of the error bars be included when they review the papers?

When properly described, error bars can be very revealing. In their analysis of the experiments and methods used by Jacques Benveniste to study homeopathy, John Maddox and colleagues illustrated how much information can be gained if one knows how to interpret errors correctly (Nature 334, 287-290; 1988।0.1038/334287a0).

By not ensuring that all papers that have error bars describe what they are, Nature publishes material that cannot be properly assessed by its readers.

Nature is fortunate in having such attentive readers. Our editors and reviewers expect error bars to be properly defined, and we shall be more vigilant in ensuring best practice in future - Editor, Nature.

## Errors Bars - which and when

- show SD when you are interested in showing the scatter
- show the SEM (or confidence interval) when you want to know how well you know the population mean
- some people like to display SEM for another reason: SEMs are smallest measure of error and thus look nicest (SEM = SD/SQRT(n)) always report $\mathbf{n}$ !
- The scatter (however expressed) means different things in different contexts. Is the author showing the variability among replicates in a single experiment? Variability among experiments with genetically identical animals? Variability among cloned cells, or within patients? etc. etc.


Figure 3. Enzyme activity for MEFs showing mean + SD from duplicate samples from one of three representative experiments.Values for wild-type vs. -/- MEFs were significant for enzyme activity at the 3-h timepoint ( $\mathrm{P}<$ 0.0005).

## A Journal's "Rules"

- the value of $n$ (i.e., the sample size, or the number of independently performed experiments) must be stated in the figure legend.
- error bars and statistics should only be shown for independently repeated experiments, and never for technical replicates. If a "representative" experiment is shown, it should not have error bars or P values, because in such an experiment, $\mathrm{n}=\mathrm{l}$
- because experimental biologists are usually trying to compare experimental results with controls, it is usually appropriate to show inferential error bars, such as SE or Cl , rather than SD. However, if $n$ is very small (for example $n=3$ ), rather than showing error bars and statistics, it is better to simply plot the individual data points.


## the link between error bars and significance

- The link between error bars and statistical significance is weaker than many wish to believe.
- But: if two SEM error bars overlap you can conclude that the difference is not statistically significant ( $p>0.05$ ), but that the converse is not true.
- Some graphs and tables show the mean with the standard deviation (SD) rather than the SEM.The SD quantifies variability, but does not account for sample size. To assess statistical significance, you must take into account sample size as well as variability.
Therefore, observing whether SD error bars overlap or not tells you nothing about whether the difference is, or is not, statistically significant.


## case study

## measurements

An enzyme level is measured in cultured cells. The experiment is repeated on 3 days. Each day triplicate measurements (technical replications) are performed.
Summarize the data and justify your procedure

|  | replicate I | replicate 2 | replicate 3 |
| :---: | :---: | :---: | :---: |
| Monday | 234 | 220 | 229 |
| Tuesday | 269 | 967 | 275 |
| Wednesday | 254 | 249 | 246 |

units/(min*mg)

## measurements

|  | replicate 1 | replicate 2 | replicate 3 | Mean |
| :---: | :---: | :---: | :---: | :---: |
| Monday | 234 | 220 | 229 | 227,67 |
| Tuesday | 269 | 267 | 275 | 272 |
| Wednesday | 254 | 249 | 246 | 249,67 |
| Grand Mean |  |  |  | 249,78 |

units/(min*mg)
"The experiment was performed three times in triplicate.After removing one extreme outlier, the mean for each experiment was calculated. The grand mean is 249.8 . The $95 \% \mathrm{Cl}$ ranges from I94.7 to 304.9. ( $n=3$ )"

## Descriptive Stats - Best of

- Publish all raw data
- Summarise sensibly
- Report N
- Inference matters
- Don't trust your eyes

Imputation

## Why Missing Values?

- MCAR: missing completely at random
- MAR: missing at random missing-ness can be predicted
- NMAR: not missing at random correlation with unobservable characteristic


## Strategies to deal with missing values

- List-wise deletion (>5\% dropout)
- Pairwise deletion
- Mean/Median substitution
- Multiple imputation


## Multiple imputation

- Impute
- Repeat 3-5 times
- Perform desired analysis on each repetition
- Average parameter estimates to obtain single point estimate
- Calculate SE based on variation across datasets


## stats twitter accounts to follow

- @d_spiegel
- @statsepi
- @MaartenvSmeden
- @lakens
- @VPrasadMDMPH
- @ProfDFrancis


## Test Theory

## non-sheep detector

Training:
Measure the length of all sheep that cross your way


## non-sheep detector

Determine the distribution of the quantity of interest (length of sheep).


## non-sheep detector

## Test phase:

For any unknown animal, test the hypothesis that it is a sheep.
Measure its length and compare it to the learned length distribution of the sheep. If its length is „out of bounds", the animal will be called a non-sheep (rejection of the hypothesis).
Otherwise, we cannot say much (non-rejection).


## non-sheep detector

## Advantage of the method:

One does not need to know much about sheep. Disadvantage: It produces errors...


## Statistic Hypothesis Testing

- State a null hypothesis $\mathrm{H}_{0}$
("nothing happens, there is no difference...")
- Choose an appropriate test statistic (the data-derived quantity that finally leads to the decision)
This implicitly determines the null distribution (the distribution of the test statistic under the null hypothesis).



## Statistic Hypothesis Testing

- State an alternative hypothesis
(e.g."the test statistic is higher than expected under the null hypothesis")
- Determine a decision boundary.This is equivalent to the choice of a significance level a, i.e. the fraction of false positive calls you are willing to accept.



## Statistic Hypothesis Testing

- Calculate the actual value of the test statistic in the sample, and make your decision according to the pre-specified(!) decision boundary.



## Good/Bad Test Statistics



|  | Accept <br> null hypothesis | Reject <br> null hypothesis |
| :---: | :---: | :---: |
| null hypothesis <br> is TRUE | correct <br> decision | Type I Error <br> "False Positive" |
| alternative hypothesis <br> is TRUE | Type II Error <br> "False Negative" | correct <br> decision |

## Good/Bad Test Statistics



|  | Accept <br> null hypothesis | Reject <br> null hypothesis |
| :---: | :---: | :---: |
| null hypothesis <br> is TRUE | correct <br> decision | Type I Error <br> "False Positive" |
| alternative hypothesis <br> is TRUE | Type II Error <br> "False Negative" | correct <br> decision |

## Statistical Power

- Probability that the test will reject the null hypothesis when the alternative hypothesis is true (i.e. the probability of not committing a Type II error).
- As the power increases, the chances of a Type II error occurring decrease. The probability of a Type II error occurring is referred to as the false negative rate ( $\beta$ ). Therefore power is equal to $I-\beta$, which is also known as the sensitivity.


## IMPORTANT!!

- Statistical Power $=I-\beta$
- It is wrong to assume that type I error (false positives) rates are independent of the power.
In fact, it has been shown that many (most) significant results published are false positives also thanks to low statistical power of the test applied


## Power analysis

- Goal is to allow you to decide, while in the process of designing an experiment,
(a) how large a sample is needed to enable statistical judgments that are accurate and reliable and (b) how likely your statistical test will be to detect effects of a given size in a particular situation.
- Performing power analysis and sample size estimation is an important aspect of experimental design, because without these calculations, sample size may be too high or too low. If sample size is too low, the experiment will lack the precision to provide reliable answers to the questions it is investigating.
If sample size is too large, time and resources will be wasted, often for minimal gain.


## The $p$-value

## Given a test statistic and its actual value $t$ in a sample, a $p$-value can be calculated:

Each test value $t$ maps to a $p$-value, the latter is the probability of observing a value of the test statistic which is at least as extreme as the actual value $t$ (under the assumption of the null hypothesis).


## The $p$-value

## Given a test statistic and its actual value $t$ in a sample, a $p$-value can be calculated:

Each test value $t$ maps to a p-value, the latter is the probability of observing a value of the test statistic which is at least as extreme as the actual value $t$ (under the assumption of the null hypothesis).


## Test decisions according to $p$-value

Decision boundary $d \longleftrightarrow$ significance level $a$ Observed test statistic $t \longleftrightarrow p$-value $t$ more extreme than $d \longleftrightarrow p$ smaller than $a$


## $p>a$ does not!

## prove equality

## one- and two-sided hypotheses

## one-sided alternative

$\mathrm{H}_{0}$ :The value of a quantity of interest in group $A$ is not higher than in group $B$.
$H_{l}$ :The value of a quantity of interest in group $A$ is higher than in group B


## one- and two-sided hypotheses

## two-sided alternative

H0:The quantity of interest has the same value in group $A$ and group B
$\mathrm{HI}:$ The quantity of interest is different in group $A$ and group $B$

Generally, two-sided alternatives are more conservative: Deviations in both directions are detected.

## Neuer Impfstoff aktiviert das Immunsystem Eriolg gegen Krebs

USA: Uberlebensrate der Patienten erhöht
HEIDELBERG - Amerikanischen Wissenschaftlern ist es erstmals gelungen, das Immunsystem von Krebspatienten mit einem Impfstoff direkt zu aktivieren und so die Überlebensrate der Erkrankten zu erhöhen.

Auf einem Symposium der Deutschen Krebsgesellschaft stellten die US-Mediziner Mike Hanna und William Cassel die aufsehenerregenden Ergebnisse ihrer Forschung vor. An den Versuchen nahmen insgesamt 62 Patienten teil, die alle an Dickdarmkrebs erkrankt waren und bereits Tochtergeschwülste ausgebildet hatten. 32 der von Professor Hanna operierten Personen erhielten einen Monat nach dem Eingriff Impfstoff gespritzt, der aus Zellen ihres Tumors und aus einem Stoff, der das Immunsystem stimuliert, besteht. Die Tumorzellen waren vorher mit Strahlen behandelt worden, um sie unschädlich zu machen.

Zum Erstaunen der Ärzte zeigten fast alle Patienten eine Reaktion des Immunsystems. Nach vier Jahren lebten von den 32 Versuchspersonen noch 94 Prozent. Bei einer Kontrollgruppe, die nicht geimpft worden war, waren noch 77 Prozent am Leben. Durch die Injektion traten auch weniger Zweittumore auf als bei der Kontrollgruppe.

## Colon carcinoma test

## Neuer Impfstoff aktiviert das Immunsystem Eriolg gegen Krebs

## USA: Uberlebensrate der Patienten erhöht

## HEIDELBERG - Amerikanischen Wissen-

 schaftlern ist es erstmals gelungen, das Immunsystem von Krebspatienten mit einem Impfstoff direkt zu aktivieren und so die ẗberlebensrate der Erkrankten zu erhöhen.Auf einem Symposium der Deutschen Krebsgesellschaft stellten die US-Mediziner Mike Hanna und William Cassel die aufsehenerregenden Ergebnisse ihrer Forschung vor. An den Versuchen nahmen insgesamt 62 Patienten teil, die alle an Dickdarmkrebs erkrankt waren und bereits Tochtergeschwülste ausgebildet hatten. 32 der von Professor Hanna operierten Personen erhielten einen Monat nach dem Eingriff Impistoff gespritzt, der aus Zellen ihres Tumors und aus einem Stoff, der das Immunsystem stimuliert, besteht. Die Tumorzellen waren vorher mit Strahlen behandelt worden, um sie unschädlich zu machen.

Zum Erstaunen der Ärzte zeigten fast alle Patienten eine Reaktion des Immunsystems. Nach vier Jahren lebten von den 32 Versuchspersonen noch 94 Prozent. Bei einer Kontrollgruppe, die nicht geimpft worden war, waren noch 77 Prozent am Leben. Durch die Injektion traten auch weniger Zweittumore auf als bei der Kontrollgruppe.


## Does vaccination yield any effect?

Is the effect "significant"?

## Colon carcinoma test

## Null hypothesis $\mathrm{H}_{0}$ :

Vaccination has not (either positive or negative) impact on the patients. The survival rates in the vaccine and nonvaccine group in the whole population are the same.

## Alternative hypothesis $\mathrm{H}_{\mathrm{I}}$ :

For the whole population, the survival rates in the vaccine and non vaccine group are different.

Choose the significance level $a$ (usually: $\mathrm{a}=\mathrm{I} \% ; 0.1 \% ; 5 \%$ )

Interpretation of the significance level a:
If there is no difference between the groups, one obtains a false positive result with a probability of a.




the $p$-value is the probability to observe an effect of the measured size (or larger) by chance (there was no effect in first place)



if the $p$-value is lower than a pre-defined threshold ( $\alpha$, 0.05 ) the null hypothesis (no-effect) is rejected and the alternative hypothesis (effect) applies
a also defines the rate of accepting a false positive rejection of the null hypothesis (i.e. $5 \%$ false positives, type I error)

# Colon carcinoma test 

choice of test statistic
"Fisher's Exact Test"


## Colon carcinoma test

Value of the test statistic $t$ after the experiment has been carried out. This value can be converted into a $p$-value:

$$
p=0.07667 .7 \%
$$

Since we have chosen a significance level $\alpha=5 \%$, and $p>a$, we cannot reject the null hypothesis, thus we keep it.

Formulation of the result:At a 5\% significance level (and using Fisher's Exact Test), no significant effect of vaccination on survival could be detected.

Consequence:We are not (yet) sufficiently convinced of the utility of this therapy.
But this does not mean that there is no difference at all!

## Common Tests

## Which test?

- depends on the question asked
- depends on the number of independent (causes) and dependent (effect) variables
- depends on the number of levels of independent variables
- depends on the data type (continuous, discrete, categorical)
- depends on the requirements/assumptions of the test


## common assumptions for common tests

- sampling has to be independent
- sample has to be representative of the population


## comparing two groups

## the experiment

- independent variable: treatment (2 levels)
- dependent variable: a measurement of e.g. enzyme activity, protein level, RNA...
- 5 biological replicates and 3 technical replicate measurements each

| value | treatment | bio.replicate | tech.replicate |
| :---: | :---: | :---: | :---: |
| 7,47 | control | 1 | 1 |
| 7,19 | control | 1 | 2 |
| 8,06 | control | 1 | 3 |
| 6,74 | control | 2 | 1 |
| 7,49 | control | 2 | 2 |
| 6,41 | control | 2 | 3 |
| 7,37 | control | 3 | 1 |
| 7,23 | control | 3 | 2 |
| 7,56 | control | 3 | 3 |
| 6,64 | control | 4 | 1 |
| 6,14 | control | 4 | 2 |
| 6,11 | control | 4 | 3 |
| 7,62 | control | 5 | 1 |
| 7,69 | control | 5 | 2 |
| 7,11 | control | 5 | 3 |
| 5,22 | drug | 1 | 1 |
| 5,49 | drug | 1 | 2 |
| 5,79 | drug | 1 | 3 |
| 6,08 | drug | 2 | 1 |
| 6,56 | drug | 2 | 2 |
| 6,47 | drug | 2 | 3 |
| 6,84 | drug | 3 | 1 |
| 6,93 | drug | 3 | 2 |
| 7,58 | drug | 3 | 3 |
| 6,97 | drug | 4 | 1 |
| 6,51 | drug | 4 | 2 |
| 6,28 | drug | 4 | 3 |
| 6,26 | drug | 5 | 1 |
| 6,66 | drug | 5 | 2 |
| 6,98 | drug | 5 | 3 |

## the experiment

- first average the technical replicates (e.g. using EXCEL or a calculator)

Prism


## visualise the data



SEM error bars

## Two group comparisons

- does the drug have an effect?

treament
- is there a "significant" difference in the measurements?
- null hypothesis: there is no difference in group means
- alternative hypothesis: there is a difference in group means
- how likely is such a group means difference occurring by chance?


## two sample t-test (unpaired, two-tailed)

requirements:
a) roughly equal variances in both groups
b) approx. normally distributed values
c) group sizes can be different
d) samples were obtained independently

- the measurements can be tested for equal variances (F-test)
- however, the test is very sensitive ...
- and for a small number of n an estimation is not possible
- pragmatic solution: always use the t-test with Welch correction which allows for unequal variances


## normal distribution

C.F Gauss (I777-I855):

Roughly speaking, continuous variables that are the (additive) result of a lot of other random variables follow a Gaussian distribution. (central limit theorem)


## non-normal distribution



## is my data normal?

- Look at a histogram if you sampled sufficiently enough data points ( $n \gg 20$ ). Roughly normal is sufficient.
- If many data points are sampled a formal statistical test can be applied to test for normality (e.g. Shapiro test). However, many data sets that are significantly non-normal would be perfectly appropriate for a t-test or ANOVA.
- The distribution of the population is the important one (not the one of the sample). One therefore might look at other data, too.
- Try data transformation to achieve normality. Gene expression and fluorescence intensity measurements are e.g. known to be normally distributed after logtransformation.


## Data transformation!

## log-normal distribution




## others (rarely to be used)

- Square-root transformation. This consists of taking the square root of each observation. The back transformation is to square the number. If you have negative numbers, you can't take the square root; you should add a constant to each number to make them all positive.
The square-root transformation is commonly used when the variable is a count of something, such as bacterial colonies per petri dish, blood cells going through a capillary per minute, mutations per generation, etc.
- Arcsine transformation. This consists of taking the arcsine of the square root of a number. (The result is given in radians, not degrees, and can range from $-\pi / 2$ to $\pi / 2$.) The numbers to be arcsine transformed must be in the range $-I$ to $I$.This is commonly used for proportions, which range from 0 to $I$, such as the proportion of cells in culture that are infested by a mycoplasm.


## t-test EXCEL



## T.TEST function

Returns the prohasility that is associated with a Student's t-Test. Use T.TEST to determine whe the two samples are likely to have come foom the same tovo underlying populat ons that have the same mean.
Syntax
T.TEST(array1,array2,tails,type)

| Argurnent | Description | Remarks |
| :---: | :---: | :---: |
| arrayl | The ifrst daia set. | - None. |
| array2 | The second data 5f\%. | - None. |
| tails | 5 suetifies the number of distribution ta 15 | - If tails $=1$, T.TEST ases the one tailed distributiont. If tails -2 , T.TEST uses the two-ta led distibution. <br> * If tails is any value other than 1 or 2 , this function returns the 部UN! erre' value. <br> - If this argument is nonnumeric, this funce on retums the $亠$ IVALUE! crior value. <br> - If this argument contains a decimal value, th is function ignores the numbers to the right side of the decimal poim. |
| type | The kinc of $t$-Test to perform. | - If type ccuals 1, T.TEST jericiris a paired dest. <br> If type ecuals 2 , T.TEST oerforms a two-samp e equal var ance (nomoscedastic) test. <br> If type ratals 3, T.TEST perierms as two-sample unequal variance oheteroscec astic) sest. <br> - If this argument is nonnumeric, this funct on returns the vivalufl error value. <br> - If this argument contains a decimal valur, this furction ignores the numbers to the rigtt side of the decirial pont. |

## t-test Prism

## Analyze Cata

Buit-in astay yeiz:
$\hat{\imath}$

## Which analys 5 ?

Tran:sfarm, Narmalize.
Transfom
Narrnialize:
Prue rows
Farneve temeding ard column math
$T$-ans $9092 X$ and $V$
Fraction of Totol

## XY analyges

- Column analyses
$t$ tes:s (end nonparametric tests)
One-way ANOVA jand nonoar
Column statistioz
Frocuency distribution
FOKC Curve
E and-ítiman method comoa:
Carrelation
Iden:Ify ou:llers
-Grouposd analynes
- Contingency table analyses
-Survival analy:as:
-Parts of whole analyses
- Generate curve
?


## Analyze which cata se:s?

( V Aicontro
(7) Bedrucy


## Experimental design

- Unpaired

Pered


## Asaume Caussian diatribution?

- Yes. Use pararratric test.

No. Use noncarar ervie teg:.

## Choose test

Unpeired : tes. Aysu ne beth populativny lave the sene sD



## t-test R

```
> mat
            value treatment bio.replicate
1 7.573993 control 1
2 6.879926 control 2
37.387153 control 3
46.299270 control 4
5 7.468581 control 5
6 5.500070 drug 1
76.371208 drug 2
8.118872 drug 3
96.585543 drug 4
10 6.633153 drug 5
> t.test(value~treatment,data=mat)
    Welch Two Sample t-test
data: value by treatment
t = -1.909, df = 7.906, p-value = 0.09311
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -1.5031541 0.1431231
sample estimates:
    mean in group drug mean in group control
                        6.441769 7.121785
```


## Cl of group mean difference



- $95 \% \mathrm{Cl}$ of the group mean difference ranges from -I. 5 to 0.14
- spans 0 , i.e. includes no difference
- provides a measure of the effect size and significance!
- better than $p$-value!!


## another example

Data was collected to test whether treating cultured cells with a drug increases the activity of an enzyme. Five different clones of the cell were tested. With each clone, control and treated cells were tested side by side.

| control | treated |
| :---: | :---: |
| 24 | 52 |
| 6 | 11 |
| 16 | 28 |
| 5 | 8 |
| 2 | 4 |

## t-test

| control | treated |  |
| :---: | :---: | :---: |
| 24 | 52 | 28 |
| 6 | 11 | 5 |
| 16 | 28 | 12 |
| 5 | 8 | 3 |
| 2 | 4 | 2 |

$\mathrm{p}=0.107$ (t-test, unpaired, two-tailed)

## graphical representation



## the ratio t-test (one sample t-test)

the ratio is much more informative (biologically) but the ratio is asymmetric: log transformation! (here logl0)

| control | treated | log ratio |
| :---: | :---: | :---: |
| 1,38 | 1,72 | 0,34 |
| 0,78 | 1,04 | 0,26 |
| 1,20 | 1,45 | 0,24 |
| 0,70 | 0,90 | 0,20 |
| 0,30 | 0,60 | 0,30 |

$p$-value $=0.0003$ (t-test, mu=0, two-tailed) mean change: 0.26 ( 1.86 antilogged)
$\mathrm{Cl} 95 \%: 0.20-0.33$ (I.6I-2.15 antilogged)

## Two group comparisons, paired data



> is there a "significant" difference in expression?

## two sample t-test (paired, two-tailed)

## requirements:

a) approx. normally distributed values
b) paired data
> t.test(expression.level~treatment, data=df, paired=T)

```
Paired t-test
```

data: expression.level by treatment
$t=-3.0556, \mathrm{df}=4, \mathrm{p}$-value $=0.03782$
alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:
-4.6915433-0.2245871
sample estimates:
mean of the differences
-2.458065


## Paired tests

- use if:
- you measure a variable in each subject before and after an intervention
- you run a laboratory experiment several times, each time -with a control and treatment preparation handled in parallel
- whenever the value of one subject in the first group is expected to be more similar to particular subject in the the second group than to a random subject in the second group
- The statistical power of a paired test in a paired experimental layout is much higher than for an unpaired test in a paired layout.
- the decision about pairing has to be made before collecting the data!


## the ratio t-test versus paired test

| control | treated | log ratio |
| :---: | :---: | :---: |
| 1,38 | 1,72 | 0,34 |
| 0,78 | 1,04 | 0,26 |
| 1,20 | 1,45 | 0,24 |
| 0,70 | 0,90 | 0,20 |
| 0,30 | 0,60 | 0,30 |

p -value $=0.0003$ (t-test, paired, two-tailed)
$p$-value $=0.0003$ (t-test, mu=0, two-tailed)
mean change: 0.26 ( 1.86 antilogged)
Cl 95\%: 0.20-0.33 (1.6I-2.15 antilogged)

## one-tailed or two-tailed?

one tailed only if there is absolutely no possibility for a movement in the other direction and
the decision for this test has been taken before data collection

## Summary t-test

- Incredibly powerful 2-group comparison test
- Very few formal requirements: normality is most important
- Parameters:
- paired: crucial
- unequal variance can be set by default
- alway 2-sided


## Power analysis of two-tailed unpaired T-test

- sample size
- effect size

$$
d=\frac{\bar{x}_{1}-\bar{x}_{2}}{s} .
$$

pioneer experiments required to get mean difference and s!

- a, significance level (0.05)
- power, I- $\beta$ (the probability of making a type II error)
(typically set to $80 \%$ or $90 \%$ )


# how many samples to detect 2 fold change with a SD of 0.4? 

```
    Two-sample t test power calculation
    n=4.574784
    d=2.5
    sig.level = 0.05
        power = 0.9
alternative = two.sided
NOTE: n is number in *each* group
```


## 2-sample t-test unpaired



## Two group comparisons, non-normal distribution



## is there a "significant" difference in number of mitotic cells?

## Rank Tests (Wilcoxon, Mann-Whitney, U-Test)

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| पाप | प० | - | प | प | प |
| 70.1 | 70 | [10 | 70 | [0 | [1] |



## ำ แ <br> ด

```
> wilcox.test(mitoses~treatment,data=df)
    Wilcoxon rank sum test
data: mitoses by treatment
W = 7, p-value = 0.3095
alternative hypothesis: true location shift is not equal to 0
```


## Wrong Test - does it matter?

- for large data sets ( $\mathrm{n}>50$ ) a wrong decision does not matter
- for small data sets the wrong choice matters:
-nonparametric tests have low power
-parametric tests are not robust


## Summary: comparison of 2 groups

## ㄴำ ำ



## Unpaired binary data

Drosophila embryos are fed with a drug or a control substance. The hatched adults are tested for eye color (either "red" or "white").

100 flies of 185 treated with drug develop red eyes. 75 flies of 185 treated with a control substance develop red eyes.

Is there a significant effect of the drug?


## Unpaired binary data



## Unpaired binary data



Eyes
Treatment red white
drug 10085
ctr 75110
> fisher.test (FLIES)

Fisher's Exact Test for Count Data
data: FLIES
p-value $=0.01235$
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.1193452 .661245
sample estimates:
odds ratio
1.722947

## Comparison of categorical variables

१ ท

## ห



## What if we increase the number of sample objects?

## Unpaired binary data

```
        Eyes
Treatment red white
        drug 10000 8500
        ctr 7500 11000
> fisher.test(FLIES)
    Fisher's Exact Test for Count Data
data: FLIES
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    1.655480 1.798476
sample estimates:
odds ratio
    1.725494
```


## Unpaired binary data

```
        Eyes
Treatment red white
        drug 10300 9990
        ctr 9700 10010
> fisher.test(FLIES)
    Fisher's Exact Test for Count Data
data: FLIES
p-value = 0.001999
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    1.022848 1.106714
sample estimates:
odds ratio
    1.063969
```


## high $n$ increases the probability to reject $\mathrm{H}_{0}$


genome background (Online Methods and Fig. 1a). Sequencing reads from the chromatin input and gDNA samples had different $\mathrm{G}+\mathrm{C}$ composition distributions (median, $44 \%$ and $47 \%$, respectively; Mann-Whitney test, $P<2.2 \times 10^{-16}$; Fig. 1a), suggesting that chromatin may affect sequencing coverage.

We compared the gDNA read count-normalized coverage

## reporting P -values

- report the test applied and the test parameters.
- avoid the terms "statistically significant" and variations thereof ("extremely significant").
- avoid categorisation of $p$-values ( $p<0.05$, $\mathrm{p}<0.01$..), just report the p -value as computed with 2 decimal precision.
- upon treatment with $X$ we observed an increase in $Y$ ( $p$-value 0.002, Fisher's exact test, twosided).
- always report n (biological replicates)
－四



## a $p$-value is a $p$-value

- a p-value is not necessarily a proxy for the robustness of an effect
- many applications produce "technical pvalues" which cannot give any information on biological robustness.
Examples: Database searches, peptide identification in mass spectrometry, ChIPSeq peak calling and other withinexperiment analyses


## Problems of $p$-values

- $p$-values are only valid if the assumptions of the underlying test are met
- most importantly, the samples have to be independent and representative of the population


## Problems of $p$-values

- Performing multiple tests within an experiment increases the probability to get a false positive result (a "significant" effect)
- e.g. simultaneous testing of many endpoints (genes, proteins) in high throughput studies or simultaneous pairwise comparison of many groups or sequential testing
- in order to control for the overall type I error rate the p -values have to be adjusted.


## Multiple Testing

## Examples:

- Simultaneous testing of many endpoints (e.g. genes in a microarray study)
- Simultaneous pairwise comparison of many (k) groups ( k pairwise tests $=\mathrm{k}(\mathrm{k}-\mathrm{I}) / 2$ tests)


Although each individual test keeps the significance level (say $\alpha=5 \%$ ), the probability of obtaining (at least one) false positive increases dramatically with the number of tests: $a_{k}=I-(I-a)^{k}$.
For 6 tests, the probability of a false positive is already $>25 \%$ !
The expected number of significant results in a series of $k$ independent hypothesis tests when all null hypotheses are actually true is simply calculated as: $\mathrm{k} * \mathrm{a}$

## multiple testing correction

One possible solution: p-value correction for multiple testing, e.g. Bonferroni correction:
Each single test is performed at the level $\mathrm{a} / \mathrm{m}$ (,,local significance level $\alpha / \mathrm{m}^{\prime \prime}$ ), where m is the number of tests.
The probability of obtaining a (at least one) false positive is then at most a (,multiple/global significance level a")

Ex.: m = 6
Desired multiple level: $\alpha=5 \%$
$\rightarrow$ local level: $a / m=5 \% / 6=0.83 \%$
Other solutions: Bonferroni-Holm, Benjamini-Hochberg, Control of False discovery rate (FDR) instead of significance at the group level (family wise error rate, FWER)

- Bonferroni correction (control of the FWER):

FWER= probability of getting at least one false positive.
The critical value (alpha) for an individual test is obtained by dividing the familywise error rate (usually 0.05 ) by the number of tests.

Thus if you are doing 100 statistical tests, the critical value for an individual test would be $0.05 / 100=0.0005$, and you would only consider individual tests with $\mathrm{P}<0.0005$ to be significant.

- Benjamini-Hochberg (control of FDR):
controls the proportion of significant results being false positives.


## Repeated Testing to Reach Significance

## needs adjustment!

## DON'T DO IT

"If you torture your data long enough, they will tell you whatever you want to hear." (Mills , 1993).

## p-value hacking (fishing)

# Simmons JP, Nelson LD, Simonsohn U. 20I I. FalsePositive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant. Psychological Science 22: I359-I366. 

- sampling bias, the "drawer problem"
- trying different testing procedures
- sequential testing
- multiple endpoints reporting only the significant ones


# ANOVA 

- measure differences in more than 2 groups (avoiding multiple testing corrections when using standard t-tests)
- can be used to analyse the contribution of different sources of variation to a response


## example



Null hypothesis: means of the measurement variable (expression) are the same for the different categories of data (genotype)
Alternative hypothesis: the means of expression are not all the same

## Assumptions to be met

- observations in each group are normally distributed
- standard deviations in the groups should be equal (homoscedastic). this is particularly important in unbalanced designs (unequal number of observations)
- independency, random selection


## reporting the result



Error bars reflect $95 \% \mathrm{Cl}$ (SE or SD would be appropriate too)
"The means were significantly heterogeneous (one-way anova, $F(4,35)=7.83, \mathrm{P}=\mathrm{I} .3 \times 10-4)$ ).

## Post tests



## running ANOVA

Analysis of Variance Table
Response: expression
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
genotype 410.1262 .531527 .83230 .0001283 ***
Residuals 3511.3130 .32322
Signif. codes: 0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Post tests

- compare all pairs: Bonferroni, Tukey, Student-Newman-Keuls, preferred method depends on number of groups
- Dunnett: compares a set of treatments against a single control mean
- all possibilities (contrasts): Scheffé test (low power)
- groups naturally ordered: test for trends


## all pairs:Tukey

Tukey multiple comparisons of means
95\% family-wise confidence level
Fit: aov(formula = expression $\sim$ genotype, data $=\mathrm{mm}$ )
\$genotype

|  | diff | lwr | upr | p adj |
| :--- | ---: | ---: | ---: | ---: |
| B-A | 0.2118143 | -0.60545281 | 1.0290815 | 0.9441907 |
| C-A | 0.9824239 | 0.16515675 | 1.7996910 | 0.0118801 |
| D-A | -0.4203216 | -1.23758873 | 0.3969455 | 0.5826797 |
| E-A | -0.3413169 | -1.15858403 | 0.4759503 | 0.7509171 |
| C-B | 0.7706096 | -0.04665757 | 1.5878767 | 0.0724970 |
| D-B | -0.6321359 | -1.44940305 | 0.1851312 | 0.1948625 |
| E-B | -0.5531312 | -1.37039835 | 0.2641359 | 0.3131110 |
| D-C | -1.4027455 | -2.22001262 | -0.5854783 | 0.0001806 |
| E-C | -1.3237408 | -2.14100792 | -0.5064736 | 0.0004106 |
| E-D | 0.0790047 | -0.73826243 | 0.8962718 | 0.9986269 |



## Variations of ANOVA

- non-parametric version of ANOVA: Kruskal Wallis Test
- matched measurements across groups: Repeated-Measures ANOVA


## 2-way ANOVA



- First Factor differences of means
- Second Factor differences of means
- Interaction of Factor I and Factor II


Analysis of Variance Table

Response: expression
Df Sum Sq Mean Sq F value Pr $(>F)$
treatment 12.08822 .08819 7.2159 0.01201 *
gender $\quad 11.83931 .839326 .35600 .01767$ *
treatment:gender 10.18730 .187280 .64720 .42791
Residuals
288.10280 .28939


## interaction



```
            Analysis of Variance Table
            Response: expression
            Df Sum Sq Mean Sq F value Pr (>F)
            treatment 1 0.0010 0.0010 0.0037 0.9521800
                gender 1 4.8191 4.8191 17.7482 0.0002369 ***
treatment:gender 1 10.5151 10.5151 38.7257 1.006e-06 ***
                        Residuals 28 7.6028 0.2715
Signif. codes: 0 `***r 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

Bivariate Analysis

$$
\begin{array}{rrr} 
& X & Y \\
{[1,]} & 0.3019900 & -0.6134757 \\
{[2,]} & 0.6567339 & 0.8198604 \\
{[3,]} & -0.3538068 & 0.1979478 \\
{[4,]} & -1.0974897 & 0.1558479 \\
{[5,]} & -0.9836460 & -1.9128283 \\
{[6,]} & 0.2854093 & -0.2189882
\end{array}
$$

## Relation of two Variables Correlations


how to quantify the relation between 2 continuous variables?

## Pearson's Correlation Coefficient

- Useful for gaussian variables (but not only for those)
- Measures the degree of linear dependence
-     - $1 \geq r_{x y} \leq 1$
- $r_{x y}=1 /-I:$ perfect linear dependence
- $r_{x y}=0$ : linear independence


## calculation of Pearson correlation in EXCEL



## Pearson's Correlation Coefficient


$r=1$

$r=-1$

## Pearson's Correlation Coefficient



## Pearson's Correlation Coefficient


$r=0.49$

$r=0.24$

## non-linear relationships



X
Pearson correlation $r=0.88$

rank(x)
Spearman correlation
$r_{s}=0.99$

## non-linear relationships



Pearson correlation $r=0.42$

Spearman correlation $r_{s}=0.15$

## Pearson/Spearman Summary

- Pearson correlation is a measure for linear dependence
- Spearman correlation is a measure for monotone dependence
- The Spearman correlation is less sensitive than the Pearson correlation to strong outliers that are in the tails of both samples.
- Correlation coefficients do not tell anything about the (non-)existence of a functional dependence.
- Correlation coefficients tell nothing about causal relations of two variables $X$ and $Y$ (on the contrary, they are symmetric in X and Y )
- Correlation coefficients hardly tell anything about the shape of a scatterplot


## Significance of correlations

- Correlation coefficients are a measure for the strength of a relationship between 2 variables
- That does not tell us anything about the significance of a relationship
- The significance of a correlation is expressed in probability levels (p-values) telling how likely a given correlation coefficient will occur given no relationship in the population.
- Can be calculated easily in R using "cor.test"


## Explorative data analysis using correlations

|  | mpg cyl | disp | hp | drat | wt | qsec | vs | am gear carb |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mazda RX4 | 21.0 | 6 | 160 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |
| Mazda RX4 Wag | 21.0 | 6 | 160 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |
| Datsun 710 | 22.8 | 4 | 108 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |
| Hornet 4 Drive | 21.4 | 6 | 258 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |
| Hornet Sportabout | 18.7 | 8 | 360 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |
| Valiant | 18.1 | 6 | 225 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |


mpg - Miles/(US) gallon cyl - Number of cylinders disp - Displacement (cu.in.) hp - Gross horsepower drat - Rear axle ratio wt - Weight (lb/1000) qsec $-1 / 4$ mile time
vs - V/S
am - Transmission ( $0=$ automatic, $1=$ manual) gear - Number of forward gears carb - Number of carburetors

## Confounding - watch out!



# Pearson correlation 

 $r=0.42$
## Confounding - watch out!



Confounding:A variable that „explains" (part of) the dependence of two others

## responsible research statistics don't lie but liars use statistics



## most (90-95\%) of the published pre-clinical research findings are wrong (irreproducible)

- loannidis JPA. 2005.Why most published research findings are false. PLoS Med 2: el 24.
- Begley CG, Ellis LM. 20I2. Drug development: Raise standards for preclinical cancer research. Nature 483:531-533.
- irreproducibility correlates with:
- inappropriate application of statistical procedures
- low statistical power
- inappropriate experimental design


## Estimating reproducibility

same result?

## Replicability



## Reproducibility

Reproduction of the original results using the same protocol/reagents/tools
by a different person in the lab
by a different person outside the lab

Reproduction using different reagents/ tools but the same protocol by a different person outside the lab

Reproduction just based on text description

## How to avoid sampling bias?

- blinding: the person conducting the experiment should e.g. not be aware of whether control or treatment is applied
- randomisation: the samples should be assigned randomly to experimental groups
- exclusion criteria should be defined if exclusion of data is likely to happen.
- confounding factors have to be identified and controlled for


## A QPR show case

Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users
©he Washingiton jlost
Morning Mix

## Even casually smoking marijuana can change your brain, study says

## confounding

Table 1. Participant demographics

|  | CON ( $n=20$ ) | MJ ( $n=20$ ) | $p$-value |
| :---: | :---: | :---: | :---: |
| Sex (M/F) | $9 \mathrm{M} / 11 \mathrm{~F}$ | $9 \mathrm{M} / 11 \mathrm{~F}$ | N/A |
| Age | 20.7 (1.9) | 21.3 (1.9) | 0.30 |
| Years of education | 14.3 (3.4) | 12.6 (4.8) | 0.20 |
| STAI ${ }^{\text {a }}$ |  |  |  |
| State | 28.9 (7.94) | 27.7 (7.38) | 0.65 |
| Trait | 29.8 (7.32) | 29.5 (5.56) | 0.89 |
| HAM-D ${ }^{\text {b }}$ | 0.80 (1.40) [range: $0-5]$ | 1.10 (1.37) [range: 0 -5] | 0.50 |
| TIP1 ${ }^{\text {c }}$ |  |  |  |
| Extroversion | 10.9 (2.36) | 10.7 (2.13) | 0.78 |
| Agreeableness | 10.8 (2.47) | 10.7 (1.81) | 0.94 |
| Conscientiousness | 11.9 (2.08) | 11.7 (2.13) | 0.76 |
| Emotional stability | 10.5 (2.52) | 11.4 (2.64) | 0.27 |
| Openness | 12.1 (1.90) | 12.4 (1.61) | 0.57 |
| Substance use |  |  |  |
| Alcohol |  |  |  |
| No. alcoholic drinks/week | 64 (2.38) | 5.09 (4.69) | 0.10 |
| AUDIT score | 3.30 (1.78) | 5.50 (2.21) | 0.05 |
| Cigarettes |  |  |  |
| No. of occasional smokers ${ }^{\text {d }}$ | 0 | 7 | N/A |
| No. of daily smokers | 0 | 1 | N/A |
| Marijuana |  |  |  |
| No. days/week | 0 | 3.83 (2.36) | N/A |
| No. joints/week | 0 | 11.2 (9.61) | N/A |
| No. joints/occasion | 0 | 1.80 (0.77) | N/A |
| No. smoking occasions/day | 0 | 1.80 (0.70) | N/A |
| Age of onset (years) | - | 16.6 (2.13) | N/A |
| Duration of use (years) | - | 6.21 (3.43) | N/A |

## All values are expressed in means and SDs. CON, controls; MJ, marijuana users.

${ }^{\text {a State Trait Anxiety Inventory Form (Spielberger et al., 1983). }}$
${ }^{\text {bHamilton Depression Rating Scale (Hamilton, 1960). }}$
${ }^{\text {CTen-Item Personality Inventory (Gosling et al., 2003). }}$
${ }^{d} 0$ ccasional smokers reported from 1 cigarette/week to 1 cigarette every 3 months.

## types of research

## EXPLORATORY

- hypothesis generating
- no/little prior information on effects, frequently many endpoints measured (multiple testing)
- often not complying with elementary rules of sampling and experimental layout (e.g. sequential sampling, multiple testing)
- statistical testing will yield highly problematic results (low power, high error rate), potentially irreproducible


## CONFIRMATORY

- performed to confirm hypotheses
- solid prior knowledge on effects
- involves prior power analysis, thoughtful experimental layout
- generates more reliable statistical test results, potentially reproducible


## Experimental Design

If your experiment needs statistics, you ought to have done a better experiment - Ernest Rutherford
If your statistics should be any valid, you have to plan and perform experiments properly - Anonymous

## Experimental Design

- Design of experiments, or experimental design, is the design of all information-gathering exercises where variation is present, whether under the full control of the experimenter or not.
- One central aim is to minimize random and systematic error contribution to the variation, such that the fluctuations of the dependent variable (the measurement) are maximally related to the levels of the independent variable (the treatment)
- Valid inferences on the behaviour of an entire population should be derived. Biologists

Maximising Information and Improving Reproducibility

## experiment flow chart

- formulate a hypothesis before data collection
- design an experiment to tests this hypothesis
- ideally this experiment should be a comparative one (2 states)
- define what you measure (dependent variable), the link between the (proxy) variable and the biological model.
- make up your mind about the sample size (power analysis) and the statistics you want to apply
- consider potential sources of error and how you can minimise them
- perform experiment
- analyse your data
- consider to perform a completely different experiment that can confirm your finding


## a well designed experiment



- randomised block design
- ANOVA with fixed effect (treatment) and random effect (block)
- Problem: randomisation and statistical testing should involve an experienced statistician


## the ideal design



- randomised block design, only 2 factor levels (control, treatment)
- suited to control for day-to-day fluctuations which are very common. Ideally one would change reagents, batches of cells etc. between the blocks as well. Every block a new batch, every block new reagents.
- paired t-test


## N is (too) small, what can you do?

- Improve experimental design
- simple comparative studies (2-group) have higher power than complex studies
- reduce systematic errors by e.g. random block design
- Improve the power of statistical test
- paired tests instead of unpaired tests (requires appropriate experimental design)
- avoid making comparisons that are of no interest


[^0]:    1.a. How was the sample size chosen to ensure adequate power to detect a pre-specified effect size?
    1.b. For animal studies, include a statement about sample size estimate even if no statistical methods were used.
    2. Describe inclusion/exclusion criteria if samples or animals were excluded from the analysis. Were the criteria pre-established?
    3. Were any steps taken to minimize the effects of subjective bias when allocating animals/ samples to treatment (e.g. randomization procedure)? If yes, please describe.
    For animal studies, include a statement about randomization even if no randomization was used.
    4.a. Were any steps taken to minimize the effects of subjective bias during group allocation or/ and when assessing results (e.g. blinding of the investigator)? If yes please describe.
    4.b. For animal studies, include a statement about blinding even if no blinding was done
    5. For every figure, are statistical tests justified as appropriate?

    Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any methods used to assess it.
    Is there an estimate of variation within each group of data?
    Is the variance similar between the groups that are being statistically compared?

