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EMBO Journal Checklist

1.a. How was the sample size chosen to ensure adequate power to detect a pre-specified 
effect size?
1.b. For animal studies, include a statement about sample size estimate even if no statistical 
methods were used.
2. Describe inclusion/exclusion criteria if samples or animals were excluded from the 
analysis. Were the criteria pre-established?
3. Were any steps taken to minimize the effects of subjective bias when allocating animals/
samples to treatment (e.g. randomization procedure)? If yes, please describe. 
For animal studies, include a statement about randomization even if no randomization was 
used.
4.a. Were any steps taken to minimize the effects of subjective bias during group allocation or/
and when assessing results (e.g. blinding of the investigator)? If yes please describe.
4.b. For animal studies, include a statement about blinding even if no blinding was done
5. For every figure, are statistical tests justified as appropriate?
Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any 
methods used to assess it.
Is there an estimate of variation within each group of data?
Is the variance similar between the groups that are being statistically compared?
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Statistics is the science of learning from data
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Structure

• Descriptive Statistics

• Test theory

• Common Tests

• Experimental Design / Responsible Research
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Further reading
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http://udel.edu/~mcdonald/
statintro.html



Software
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EXCEL Prism R

price medium high free

ease of use medium easy difficult

coverage low high infinite

misusage average made easy average

graphs poor/limited good best/flexible

other NOT a stats app huge community  
de facto standard



Learning R
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https://r4ds.had.co.nz



Descriptive 
Statistics



Ratios in linear versus log space



Ratios are not the only 
problem here..

https://www.nature.com/articles/s41592-019-0325-y/figures/3

d–f represent three technical replicates on RNA pooled from 6 organoids (biological replicates) per condition. Statistical 
analysis for d–f,h,i was determined at a value of P < 0.05 as determined by one-way ANOVA with Tukey’s multiple-
comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001.



Data, what is it?

a collection of measurements of similar structure

cases 
samples 

observations

variables

values
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Best of Data Organisation in Spread Sheets

• Be consistent

• Choose Good Names for Things

• Put Just One Thing in a Cell

• No Empty Cells

• Make it a Rectangle

• No Calculations in the Raw Data Files

• Do Not Use Font Color or Highlighting as Data 

• Do_not_use_white_space_but_underscores_for 
names
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the origin of data matters.. a lot

• observational (descriptive) or  
experimental (controlled)?

• sampling strategy

• Metadata (what, when, who, how) matters
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Data types

• Continuous data 
numerical data which can hold any value

• Discrete data 
numerical data which can only take certain 
values

• Categorical data 
Variables are labels of grouped features 
(classifications)
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Data Types
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discrete

continuous

categorical



visual representation





Plotting all data points (continuous data)

Example:
BMI of 532 Pima Indian Females
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stripchart



more (too many) data points

             expr.value 
1616608_a_at   9.118380 
1622892_s_at   8.115987 
1622893_at     2.194861 
1622894_at     2.194861 
1622895_at     8.871565 
1622896_at     8.762262 
1622897_at     2.194861 
1622898_a_at   9.422677 
1622899_at     3.987549 
1622900_at     2.194861 
1622901_at     2.194861 
1622902_at     2.195272 
1622903_s_at   7.679026 
1622904_at     2.212932 
1622905_at     2.203904 
1622906_at     2.198816 
1622907_at     8.294115 
1622908_a_at  11.002117 
1622909_at    10.899726 
1622910_at     2.194861 
1622911_at     2.194861 
1622912_at     7.421109 
1622913_a_at   2.194861 
1622914_at     2.194861 
1622915_at     2.194861 
1622916_at     2.274991 
1622917_a_at   2.194861 
1622918_at     2.289296 
1622919_at     2.195047 
1622920_at     3.757421 

… 

n = 18952
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Continuous Variables - Histogram

log2(expression)
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             expr.value 
1616608_a_at   9.118380 
1622892_s_at   8.115987 
1622893_at     2.194861 
1622894_at     2.194861 
1622895_at     8.871565 
1622896_at     8.762262 
1622897_at     2.194861 
1622898_a_at   9.422677 
1622899_at     3.987549 
1622900_at     2.194861 
1622901_at     2.194861 
1622902_at     2.195272 
1622903_s_at   7.679026 
1622904_at     2.212932 
1622905_at     2.203904 
1622906_at     2.198816 
1622907_at     8.294115 
1622908_a_at  11.002117 
1622909_at    10.899726 
1622910_at     2.194861 
1622911_at     2.194861 
1622912_at     7.421109 
1622913_a_at   2.194861 
1622914_at     2.194861 
1622915_at     2.194861 
1622916_at     2.274991 
1622917_a_at   2.194861 
1622918_at     2.289296 
1622919_at     2.195047 
1622920_at     3.757421 

… 
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Histogram - Flow Cytometry
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Continuos Variables - Histogram
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The size of the bins (= width of the bars)  
is a matter of choice and has to be determined sensibly!



Continuous Variables - Density Plot
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Data will  be smoothed automatically.  
This is very suggestive and blurs discontinuities in a distribution



non-visual description



Measures of Location and Scatter

Example:
BMI of 332 Pima Indian Females
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Measures of Location and Scatter

Mean:
sum of all observations/number of samples
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Measures of Location and Scatter

Median:
a number M  

such that 50% of all observations 
 are less than or equal to M,  

and 50% are greater than or equal to M
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Mean vs. Median

• median should be preferred to the mean  
if the value distribution 
a) is asymmetric 
b) has extreme outliers

• the mean is more precise than the median if 
the distribution is approximately normal
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Continuous Variables - Quantiles

Quantile:
The p-quantile is a property value that splits a distribution. 
On the left of the p-quantile are 100*p percent of all values. 

On the right are 100*(1-p) percent of all values.
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50% quantile = MEDIAN
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Continuous Variables - Quantiles

Quantile:
The p-quantile is a property value that splits a distribution. 
On the left of the p-quantile are 100*p percent of all values. 

On the right are 100*(1-p) percent of all values.

20 30 40 50 60

BMI

|| | ||| ||||| || || | |||| |||| || || || || | | | ||| || | ||| ||| || | | ||| || ||| | ||| |||| | | || || | ||| | ||| |||| || |||||| | || | || | || || || |||| || || | | || || || || || |||| | | || | || | | || || | ||| || || ||| | || |||| ||| | || ||| | ||| || ||| ||| || || || | || |||| || |||| ||| ||| | ||| || | || ||||| ||| || ||| ||| || | | || | || | ||| || | || || || || | ||| ||| | || ||| || | ||| || || | || | || ||| || | ||||| || || || || ||| | ||| ||| | | ||| || || || ||| ||| |

0 quantile = MIN

25% quantile = 1. quartile

75% quantile = 3. quartile
100% quantile = MAX50% quantile = 2. quartile = MEDIAN
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Continuous Variables - Boxplot

● ● ●● ●●
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outliers

Whisker 
maximally 1.5*interquartile distance (IQR),
ends at the last data point falling within this 

range or min/max

IQR
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Visual continuous data representation
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Description of Scatter

• variance  
= mean squared deviation of mean

• standard deviation  
= square root of the variance

• IQR
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https://www.autodeskresearch.com/publications/samestats



categorical variables



Categorical Variables - Table

Value A B AB 0 ∑

absolute frequency 75 83 10 20 188

relative frequency 40 44 5 11 100 %
n=188
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Categorical Variables - Barplot
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Categorical Variables - Piechart
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bad charts

• 3D displays

• pie charts  
(“the only place for a pice chart is a baker’s convention”)

• smoothed curves in 
scatterplot, or any other lines 
in series, that are neither 
direct data point connectors 
nor based on an appropriate 
regression procedure 
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Cross Tables - “Kontingenztafel”

Person Medication Response
A verum yes
B pacebo no

Response

yes no

Medication
verum 1 0

placebo 0 1

cause

effect
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Cross Tables

Response
Total

yes no

Medication
verum 20 

50%,67%
20 

50%,40%
40 

50%

placebo 10 
25%,33%

30 
75%,60%

40 
50%

Total 30 
37%

50 
63%

80 
100%

n=80
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describing quantitative data

45

• Always report the sample size!

• numerical 
median, Q1, Q3, min, max (5-point summary) 
location and scatter (for symmetric distribution 
mean, standard deviation)

• graphical 
Histogram, Boxplot, Density Plots

• tables for categorical data

• verbal 
“mean BMI of Pima Indian females was 33.2 kg/m^2 
(n= 332, interquartile range = 28.2-37.2 kg/m^2)”



Terri Schiavo Poll

23

no sense is better suited for 
parallel processing than the 
visual sense. No sense has 
more built-in filters and 

processing steps.  
But it is the visual sense that 

can fooled most easily.





A Non-Representative Sample

• At the time, most estimates of Bush’s approval put
the number just above 30%.

12



Inference
What really matters



Sample - Population Relation
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population

sample
INDUCTION/INFERENCE



Sample - Population Relation
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Sample - Population Relation
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Confidence Intervals

• 95%-confidence interval:  An estimated interval which 
contains the „true value“ of a quantity with a probability 
of 95%.  
 
 
 

• (1– α)-confidence interval: An estimated interval which 
contains the „true value“ of a quantity with a probability 
of (1–α).  
1–α = confidence level, α = error probability
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24,3 
____________________________________ ( ) 

20.5 29,5 

X 

Interval estimate 

Point estimate  
(e.g. % votes for the SPD in the EU elections)  



proportional data

You use a hemocytometer to determine the 
viability of cells stained with trypan blue. You 
count 94 unstained cells and 6 stained. 

What is the 95% CI for the fraction of dead cells?

How can the data be represented?

Which assumptions have to made?

0.02 - 0.13 (binomial test, http://statpages.org/confint.html)

tube mixed well and the selection of sample was random
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http://statpages.org/confint.html


Confidence Intervals
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Standard Error of the Mean (SEM) - Standard Error

• The standard error of the mean 
(SEM) is the standard deviation of 
the sample mean estimate of a 
population mean.  
 
SEM = standard deviation/square 
root(n)

• a small SEM indicates that the 
sample mean is likely to be quite 
close to the true population mean 

• a large SEM indicates that the 
sample mean is likely to be far 
from the true population mean
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http://en.wikipedia.org/wiki/Sample_%28statistics%29
http://en.wikipedia.org/wiki/Statistical_population


Sample - Population
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What allows us to conclude from the sample to the population?
 
The sample has to be representative 
(Figures about drug abuse of students cannot be generalised to the 
whole population of Germany)

How is representativity achieved? 
Large sample numbers
Random recruitment of samples from the population 

Randomisation: Random allocation of the samples to the different 
experimental groups



event during cell transformation and carcinogenesis. We
have shown, for the first time, that miR-296 is enriched in
many cancer cell lines and suppresses p53-p21WAF1

pathway, an early event during immortalization of
human cells. We provide evidence that miR-296 targets
p21WAF-1 by interacting with its 30 UTR. Since the
p53-p21WAF1 pathway has several activities, including
control of cell cycle, apoptosis, control of centrosome du-
plication and genomic stability, that are lost in human
cancers, miR-296 may be a candidate therapeutic target
for cancer therapy.
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Error Bars



Correspondence

Nature 428, 799 (22 April 2004) | doi:10.1038/428799c

Error message

David L. Vaux1

   1. The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3050, Australia

Sir

In the 19 February 2004 issue of Nature, there were ten items (one Brief Communication, one Article and eight Letters to Nature) 
containing figures with error bars, but only three had figure legends describing what the error bars were: in one 
case, 80% confidence intervals; in another, standard deviations; and in the third, standard error of the mean. The articles with incomplete 
legends represented both the biological and physical sciences, across many different disciplines, and clearly should not be considered 
isolated examples.

Error bars can be used by the reader to determine how much the data varied, allowing an estimation of whether the experiments gave 
reproducible results, whether the results were significantly different from the controls, and sometimes whether the data were obtained 
in an unbiased manner.

How did these omissions occur? If authors include error bars on their figures, why do they so often forget to state what they are in the 
legends? How can reviewers be confident that the conclusions are correct if they are not told about the errors 
in the data? Why don't reviewers request that descriptions of the error bars be included when they review the papers?

When properly described, error bars can be very revealing. In their analysis of the experiments and methods used by Jacques 
Benveniste to study homeopathy, John Maddox and colleagues illustrated how much information can be gained if one knows how to 
interpret errors correctly (Nature 334, 287–290; 198810.1038/334287a0).

By not ensuring that all papers that have error bars describe what they are, Nature publishes material that cannot be properly assessed 
by its readers.

Nature is fortunate in having such attentive readers. Our editors and reviewers expect error bars to be properly defined, and we shall be more 
vigilant in ensuring best practice in future — Editor, Nature.



Errors Bars - which and when

• show SD when you are interested in showing the scatter

• show the SEM (or confidence interval) when you want to 
know how well you know the population mean

• some people like to display SEM for another reason: 
SEMs are smallest measure of error and thus look nicest 
(SEM = SD/SQRT(n)) always report n!

• The scatter (however expressed) means different things in 
different contexts. Is the author showing the variability 
among replicates in a single experiment? Variability among 
experiments with genetically identical animals? Variability 
among cloned cells, or within patients? etc. etc.
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Figure 3. Enzyme activity for MEFs showing mean + SD from duplicate samples from one of three representative 
experiments. Values for wild-type vs. –/– MEFs were significant for enzyme activity at the 3-h timepoint (P < 
0.0005).  
 



A Journal’s “Rules”

• the value of n (i.e., the sample size, or the number of 
independently performed experiments) must be stated in the 
figure legend.

• error bars and statistics should only be shown for independently 
repeated experiments, and never for technical replicates. If a 
"representative" experiment is shown, it should not have error 
bars or P values, because in such an experiment, n = 1

• because experimental biologists are usually trying to compare 
experimental results with controls, it is usually appropriate to 
show inferential error bars, such as SE or CI, rather than SD. 
However, if n is very small (for example n = 3), rather than 
showing error bars and statistics, it is better to simply plot the 
individual data points.

 J Cell Biol. 2007 Apr 9;177(1):7-11
    Error bars in experimental biology.

    Cumming G, Fidler F, Vaux DL. 63



the link between error bars and significance

• The link between error bars and statistical significance 
is weaker than many wish to believe. 

• But: if two SEM error bars overlap you can conclude 
that the difference is not statistically significant (p>0.05), 
but that the converse is not true.

• Some graphs and tables show the mean with the 
standard deviation (SD) rather than the SEM. The SD 
quantifies variability, but does not account for sample 
size. To assess statistical significance, you must take into 
account sample size as well as variability.  
Therefore, observing whether SD error bars overlap or not 
tells you nothing about whether the difference is, or is not, 
statistically significant.
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case study



measurements

An enzyme level is measured in cultured cells. 
The experiment is repeated on 3 days. Each day 
triplicate measurements (technical replications) 
are performed.  
Summarize the data and justify your procedure

replicate 1 replicate 2 replicate 3

Monday 234 220 229

Tuesday 269 967 275

Wednesday 254 249 246

units/(min*mg)



measurements

“The experiment was performed three times in 
triplicate. After removing one extreme outlier, the 
mean for each experiment was calculated. The 
grand mean is 249.8. The 95% CI ranges from 
194.7 to 304.9. (n=3)”

replicate 1 replicate 2 replicate 3 Mean

Monday 234 220 229 227,67

Tuesday 269 967 275 272

Wednesday 254 249 246 249,67

Grand Mean 249,78

units/(min*mg)



Descriptive Stats - Best of

• Publish all raw data

• Summarise sensibly

• Report N

• Inference matters

• Don’t trust your eyes

68



Imputation



Why Missing Values?

• MCAR: missing completely at random

• MAR: missing at random 
missing-ness can be predicted

• NMAR: not missing at random 
correlation with unobservable 
characteristic

70



Strategies to deal with missing values

• List-wise deletion (>5% dropout)

• Pairwise deletion

• Mean/Median substitution

• Multiple imputation
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Multiple imputation

• Impute 

• Repeat 3-5 times

• Perform desired analysis on each repetition

• Average parameter estimates to obtain 
single point estimate

• Calculate SE based on variation across 
datasets
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stats twitter accounts to follow

• @d_spiegel

• @statsepi

• @MaartenvSmeden

• @lakens

• @VPrasadMDMPH

• @ProfDFrancis

73



Test Theory



non-sheep detector

Training:
Measure the length of all sheep that cross your way
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non-sheep detector

70 80 90 100 110 120 130 140

Groesse [cm]

Determine the distribution of the quantity of interest 
(length of sheep).
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non-sheep detector

70 80 90 100 110 120 130 140

Groesse [cm]

Not a 
sheep 

Test phase:  
For any unknown animal, test the hypothesis that it is a sheep. 

Measure its length and compare it to the learned length distribution 
of the sheep. If its length is „out of bounds“, the animal will be called 

a non-sheep (rejection of the hypothesis).  
Otherwise, we cannot say much (non-rejection).
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non-sheep detector

70 80 90 100 110 120 130 140

Groesse [cm]

True  
Negatives 

Negatives calls Positive calls 

Decision boundary 

True  
Positives False  

Positives False  
Negatives 

Advantage of the method:  
One does not need to know much about sheep.

Disadvantage:  
It produces errors…
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Statistic Hypothesis Testing

79

• State a null hypothesis H0  
(“nothing happens, there is no difference…”)

• Choose an appropriate test statistic (the data-derived quantity 
that finally leads to the decision) 
This implicitly determines the null distribution (the distribution 
of the test statistic under the null hypothesis).

-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]



Statistic Hypothesis Testing

80-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

α 

d 

Acceptance  
region 

• State an alternative hypothesis  
(e.g. “the test statistic is higher than expected under the null 
hypothesis”)

• Determine a decision boundary. This is equivalent to the choice 
of a significance level α, i.e. the fraction of false positive calls 
you are willing to accept.



Statistic Hypothesis Testing
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• Calculate the actual value of the test statistic in the sample, and 
make your decision according to the pre-specified(!) decision 
boundary.

-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

α 

d Keep H0 (no rejection) Reject H0 (assume 
the alternative 
hypothesis)  



Good/Bad Test Statistics
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 Accept 
null hypothesis

Reject 
null hypothesis

null hypothesis 
is TRUE

correct 
decision

Type I Error 
“False Positive”

alternative hypothesis 
is TRUE

Type II Error 
“False Negative”

correct 
decision

0

d Good statistic 
Distribution of the 
test statistic 
under the null 
hypothesis 

Distribution of 
the test statistic    
 under the  
  alternative  
   hypothesis 



Good/Bad Test Statistics
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 Accept 
null hypothesis

Reject 
null hypothesis

null hypothesis 
is TRUE

correct 
decision

Type I Error 
“False Positive”

alternative hypothesis 
is TRUE

Type II Error 
“False Negative”

correct 
decision

0

d Bad statistic 
Distribution of the 
test statistic 
under the null 
hypothesis 

Distribution of 
the test statistic    
 under the  
  alternative  
   hypothesis 



Statistical Power

• Probability that the test will reject the null 
hypothesis when the alternative hypothesis 
is true (i.e. the probability of not 
committing a Type II error). 

• As the power increases, the chances of a 
Type II error occurring decrease. The 
probability of a Type II error occurring is 
referred to as the false negative rate (β). 
Therefore power is equal to 1−β, which is 
also known as the sensitivity.
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IMPORTANT!!

• Statistical Power = 1-β

• It is wrong to assume that type I error 
(false positives) rates are independent of 
the power.  
In fact, it has been shown that many (most) 
significant results published are false 
positives also thanks to low statistical 
power of the test applied
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Power analysis

• Goal is to allow you to decide, while in the process of 
designing an experiment,  
(a) how large a sample is needed to enable statistical 
judgments that are accurate and reliable and  
(b) how likely your statistical test will be to detect effects 
of a given size in a particular situation.

• Performing power analysis and sample size estimation is an 
important aspect of experimental design, because without 
these calculations, sample size may be too high or too low.  
If sample size is too low, the experiment will lack the 
precision to provide reliable answers to the questions it is 
investigating.  
If sample size is too large, time and resources will be 
wasted, often for minimal gain.
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The p-value

87
-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

p = 0.08 

t=4.2 

Given a test statistic and its actual value t in a sample, a 
p-value can be calculated:

Each test value t maps to a p-value, the latter is the probability of observing a value 
of the test statistic which is at least as extreme as the actual value t (under the 
assumption of the null hypothesis).



The p-value

88

Given a test statistic and its actual value t in a sample, a 
p-value can be calculated:

Each test value t maps to a p-value, the latter is the probability of observing a value 
of the test statistic which is at least as extreme as the actual value t (under the 
assumption of the null hypothesis).

-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

p = 0.42 

t=0.7 



Test decisions according to p-value

89-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

α = 0.05 

         p ≥ α  
Keep H0 (no rejection) 

       p < α  

Reject H0 (assume 
the alternative 
hypothesis)  

t 

p = 0.02 

d t 

p = 0.83 

Decision boundary d 
Observed test statistic t 
t more extreme than d

significance level α 
p-value 
p smaller than α



p > α does  
not!  

prove equality



one- and two-sided hypotheses
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57 

-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

][ 
Acceptance region Rejection region 

one-sided alternative
H0: The value of a quantity of interest in group A is not higher 
than in group B.
H1:The value of a quantity of interest in group A is higher than in 
group B



one- and two-sided hypotheses
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two-sided alternative
H0: The quantity of interest has the same value in group A and 
group B
H1:The quantity of interest is different in group A and group B

58 

-10 -5 0 5 10 15

Blutdrucksenkung [mmHg]

][ 
Acceptance region Rejection region 

][ 
Rejection region 

Generally, two-sided alternatives are more conservative: 
Deviations in both directions are detected.





Colon carcinoma test

94

4y Survival

yes no

Vaccination

yes 
(n=32) 30 2

no 
(n=30) 23 7

Does vaccination yield any effect? 
 

Is the effect “significant”?



Colon carcinoma test

95

Null hypothesis H0:  
Vaccination has not (either positive or negative) impact on 
the patients. The survival rates in the vaccine and non-
vaccine group in the whole population are the same. 

Alternative hypothesis H1:  
For the whole population, the survival rates in the vaccine 
and non vaccine group are different.
 
Choose the significance level α  
(usually: α = 1%; 0.1%; 5%)
 
Interpretation of the significance level α : 
If there is no difference between the groups, one obtains a 
false positive result with a probability of α.
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the p-value is the probability to 
observe an effect of the measured 
size (or larger) by chance (there 
was no effect in first place)
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if the p-value is lower than a pre-defined threshold (α, 
0.05) the null hypothesis (no-effect) is rejected and the 
alternative hypothesis (effect) applies

α also defines the rate of accepting a false positive 
rejection of the null hypothesis (i.e. 5% false positives, 
type I error)



Colon carcinoma test
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choice of test statistic 
 

“Fisher’s Exact Test”



Colon carcinoma test
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Value of the test statistic t after the experiment has been 
carried out. This value can be converted into a p-value:

p  = 0.0766  7.7% 

Since we have chosen a significance level α = 5%, and p > α, 
we cannot reject the null hypothesis, thus we keep it.
 
Formulation of the result: At a 5% significance level (and 
using Fisher‘s Exact Test), no significant effect of vaccination 
on survival could be detected.
 
Consequence: We are not (yet) sufficiently convinced of the 
utility of this therapy.  
But this does not mean that there is no difference at all!



Common Tests



Which test?

• depends on the question asked

• depends on the number of independent 
(causes) and dependent (effect) variables

• depends on the number of levels of 
independent variables

• depends on the data type (continuous, 
discrete, categorical)

• depends on the requirements/assumptions  
of the test
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common assumptions for common tests

• sampling has to be independent

• sample has to be representative of the 
population

109



comparing two groups



the experiment

• independent variable: 
treatment (2 levels)

• dependent variable: 
a measurement of e.g. 
enzyme activity, protein 
level, RNA…

• 5 biological replicates and 
3 technical replicate 
measurements each

111

value treatment bio.replicate tech.replicate

7,47 control 1 1

7,19 control 1 2

8,06 control 1 3

6,74 control 2 1

7,49 control 2 2

6,41 control 2 3

7,37 control 3 1

7,23 control 3 2

7,56 control 3 3

6,64 control 4 1

6,14 control 4 2

6,11 control 4 3

7,62 control 5 1

7,69 control 5 2

7,11 control 5 3

5,22 drug 1 1

5,49 drug 1 2

5,79 drug 1 3

6,08 drug 2 1

6,56 drug 2 2

6,47 drug 2 3

6,84 drug 3 1

6,93 drug 3 2

7,58 drug 3 3

6,97 drug 4 1

6,51 drug 4 2

6,28 drug 4 3

6,26 drug 5 1

6,66 drug 5 2

6,98 drug 5 3



the experiment

• first average the technical replicates (e.g. 
using EXCEL or a calculator) 

112

value treatment bio.replicate

7,57 control 1

6,88 control 2

7,39 control 3

6,30 control 4

7,47 control 5

5,50 drug 1

6,37 drug 2

7,12 drug 3

6,59 drug 4

6,63 drug 5

Prism



visualise the data
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Two group comparisons

• does the drug have an effect?

• is there a “significant” difference in 
the measurements?

• null hypothesis: 
there is no difference in group means

• alternative hypothesis: 
there is a difference in group means

• how likely is such a group means 
difference occurring by chance?
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two sample t-test (unpaired, two-tailed)

requirements: 

a) roughly equal variances in both groups 

b) approx. normally distributed values 

c) group sizes can be different 

d) samples were obtained independently
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is my data homoscedastic (equal variance)?

• the measurements can be tested for equal 
variances (F-test)

• however, the test is very sensitive …

• and for a small number of n an estimation is 
not possible

• pragmatic solution: always use the t-test with 
Welch correction which allows for unequal 
variances
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normal distribution

117

Expectation 
value 

Standard-
deviation 

C.F Gauss (1777-1855): 
Roughly speaking, continuous variables that are the 
(additive) result of a lot of other random variables follow a 
Gaussian distribution. (central limit theorem) 
It is often sensible to assume a gaussian distribution for 
continuous variables.



non-normal distribution
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is my data normal?

• Look at a histogram if you sampled sufficiently enough 
data points (n>>20). Roughly normal is sufficient.

• If many data points are sampled a formal statistical test 
can be applied to test for normality (e.g. Shapiro test). 
However, many data sets that are significantly non-normal 
would be perfectly appropriate for a t-test or ANOVA.

• The distribution of the population is the important one 
(not the one of the sample). One therefore might look at 
other data, too. 

• Try data transformation to achieve normality. Gene 
expression and fluorescence intensity measurements are 
e.g. known to be normally distributed after log-
transformation.
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Data transformation!



log-normal distribution

121

mean GFP signal

Fr
eq

ue
nc

y

0.00 0.02 0.04 0.06

0
50
00

15
00
0

25
00
0

log2(mean GFP signal)

Fr
eq

ue
nc

y

−15 −10 −5 0
0

50
00

15
00
0



others (rarely to be used)

• Square-root transformation. This consists of taking the 
square root of each observation. The back transformation is to 
square the number. If you have negative numbers, you can't take the 
square root; you should add a constant to each number to make 
them all positive. 
The square-root transformation is commonly used when the 
variable is a count of something, such as bacterial colonies per petri 
dish, blood cells going through a capillary per minute, mutations per 
generation, etc.

• Arcsine transformation. This consists of taking the arcsine of 
the square root of a number. (The result is given in radians, not 
degrees, and can range from −π/2 to π/2.) The numbers to be 
arcsine transformed must be in the range −1 to 1. This is commonly 
used for proportions, which range from 0 to 1, such as the 
proportion of cells in culture that are infested by a mycoplasm.
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t-test EXCEL
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t-test Prism
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t-test R
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> mat 
      value treatment bio.replicate 
1  7.573993   control             1 
2  6.879926   control             2 
3  7.387153   control             3 
4  6.299270   control             4 
5  7.468581   control             5 
6  5.500070      drug             1 
7  6.371208      drug             2 
8  7.118872      drug             3 
9  6.585543      drug             4 
10 6.633153      drug             5 
 

> t.test(value~treatment,data=mat) 

	 Welch Two Sample t-test 

data:  value by treatment 
t = -1.909, df = 7.906, p-value = 0.09311 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -1.5031541  0.1431231 
sample estimates: 
   mean in group drug mean in group control  
             6.441769              7.121785  



CI of group mean difference

• 95% CI of the group mean 
difference ranges  
from -1.5 to 0.14

• spans 0, i.e. includes no 
difference

• provides a measure of the 
effect size and significance!

• better than p-value!!
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another example

127

Data was collected to test whether treating cultured cells 
with a drug increases the activity of an enzyme. Five 
different clones of the cell were tested. With each clone, 
control and treated cells were tested side by side.

control treated

24 52

6 11

16 28

5 8

2 4

←clone 1

←clone 2

←clone 3

←clone 4

←clone 5



t-test
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control treated

24 52 28

6 11 5

16 28 12

5 8 3

2 4 2

p=0.107 (t-test, unpaired, two-tailed)



graphical representation
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the ratio t-test (one sample t-test)
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control treated log ratio

1,38 1,72 0,34

0,78 1,04 0,26

1,20 1,45 0,24

0,70 0,90 0,20

0,30 0,60 0,30

p-value = 0.0003 (t-test, mu=0, two-tailed)
mean change: 0.26 (1.86 antilogged)

CI 95%:  0.20-0.33 (1.61-2.15 antilogged)

the ratio is much more informative (biologically)
but the ratio is asymmetric: log transformation! (here log10)



Two group comparisons, paired data
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is there a “significant” 
difference in expression?
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two sample t-test (paired, two-tailed)

requirements: 
a) approx. normally distributed values 
b) paired data

132

> t.test(expression.level~treatment, data=df, paired=T) 

	 Paired t-test 

data:  expression.level by treatment  
t = -3.0556, df = 4, p-value = 0.03782 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -4.6915433 -0.2245871  
sample estimates: 
mean of the differences  
              -2.458065  



Paired tests

• use if:  
- you measure a variable in each subject before and after an 
intervention 
- you run a laboratory experiment several times, each time 
-with a control and treatment preparation handled in 
parallel  
- whenever the value of one subject in the first group is 
expected to be more similar to particular subject in the the 
second group than to a random subject in the second group

• The statistical power of a paired test in a paired 
experimental layout is much higher than for an unpaired 
test in a paired layout.

• the decision about pairing has to be made before collecting 
the data! 133



the ratio t-test versus paired test
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control treated log ratio

1,38 1,72 0,34

0,78 1,04 0,26

1,20 1,45 0,24

0,70 0,90 0,20

0,30 0,60 0,30

p-value = 0.0003 (t-test, paired, two-tailed)
p-value = 0.0003 (t-test, mu=0, two-tailed)

mean change: 0.26 (1.86 antilogged)
CI 95%:  0.20-0.33 (1.61-2.15 antilogged)



one-tailed or two-tailed?
one tailed only if there is absolutely 
no possibility for a movement in the 

other direction  
and  

the decision for this test has been 
taken before data collection



Summary t-test

• Incredibly powerful 2-group comparison test

• Very few formal requirements: normality is 
most important

• Parameters: 

• paired: crucial

• unequal variance can be set by default

• alway 2-sided



Power analysis of two-tailed unpaired T-test

• sample size

• effect size 
pioneer experiments required to get mean 
difference and s! 

• α, significance level (0.05)

• power, 1-β (the probability of making a type 
II error) 
(typically set to 80% or 90%)
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how many samples  
to detect 2 fold change with a SD of 0.4?

138

     Two-sample t test power calculation  

              n = 4.574784 
              d = 2.5 
      sig.level = 0.05 
          power = 0.9 
    alternative = two.sided 

NOTE: n is number in *each* group 



2-sample t-test  unpaired
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Two group comparisons, non-normal distribution
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is there a “significant” 
difference in number of 

mitotic cells?
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Rank Tests (Wilcoxon, Mann-Whitney, U-Test)
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Mitoses 
ctr 18 3 6 9 5 

RNAi 15 10 8 7 12 

1  2  3 4  5  6  7  8  9 10 

3      5 6  7  8  9 10     12       15        18  
Original scale 

Rank scale 

Rank sum Group 1: 
1+2+3+6+10 = 22 

Rank sum Group 2: 
4+5+7+8+9 = 33 

> wilcox.test(mitoses~treatment,data=df) 

	 Wilcoxon rank sum test 

data:  mitoses by treatment  
W = 7, p-value = 0.3095 
alternative hypothesis: true location shift is not equal to 0  



Wrong Test - does it matter?

142

• for large data sets (n>50) a wrong decision does 
not matter

• for small data sets the wrong choice matters:

-nonparametric tests have low power

-parametric tests are not robust



Summary: comparison of 2 groups
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Does the data  
follow a Gaussian  

distribution? 

Paired data? Paired data? 

t-Test for 
paired data 

yes no 

t-Test for 
unpaired 
data 

Wilcoxon 
signed rank 
test 

Wilcoxon 
rank sum 
test 

ja ja nein nein 

Question: Are group 1 and group 2 identical with respect 
to the distribution of the endpoint? 



Unpaired binary data

144

Drosophila embryos are fed with a drug or a control 
substance. The hatched adults are tested for eye color 
(either “red” or “white”).  

100 flies of 185 treated with drug develop red eyes. 75 
flies of 185 treated with a control substance develop red 
eyes.
 
Is there a significant effect of the drug?



Unpaired binary data
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Red Eyes

yes no

Drug

yes 
(n=185) 100 85

no 
(n=185) 75 110



Unpaired binary data
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         Eyes 
Treatment red white 
     drug 100    85 
     ctr   75   110 
> fisher.test(FLIES) 

	 Fisher's Exact Test for Count Data 

data:  FLIES  
p-value = 0.01235 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 1.119345 2.661245  
sample estimates: 
odds ratio  
  1.722947  



Comparison of categorical variables

147

Binary data? 
 

Paired data? Paired data? 

McNemar Test 

yes no 

Fisher�s Exact 
Test  

(bivariate 
symmetry 

tests) 
Chisquared  
(χ2) -test 

yes yes no no 

Question: Is there a difference in the frequency 
distributions of one variable w.r.t. the values of the 
second variable? 



What if we increase the 
number of sample 

objects?



Unpaired binary data
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         Eyes 
Treatment   red white 
     drug 10000  8500 
     ctr   7500 11000 
> fisher.test(FLIES) 

	 Fisher's Exact Test for Count Data 

data:  FLIES  
p-value < 2.2e-16 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 1.655480 1.798476  
sample estimates: 
odds ratio  
  1.725494  



Unpaired binary data

150

         Eyes 
Treatment   red white 
     drug 10300  9990 
     ctr   9700 10010 
> fisher.test(FLIES) 

	 Fisher's Exact Test for Count Data 

data:  FLIES  
p-value = 0.001999 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 1.022848 1.106714  
sample estimates: 
odds ratio  
  1.063969  



high n increases the 
probability to reject H0
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samples had a higher G+C content than those from the whole-
genome background (Online Methods and Fig. 1a). Sequencing 
reads from the chromatin input and gDNA samples had different 
G+C composition distributions (median, 44% and 47%, respec-
tively; Mann-Whitney test, P < 2.2 × 10−16; Fig. 1a), suggesting 
that chromatin may affect sequencing coverage.

We compared the gDNA read count–normalized coverage 
of the chromatin input sample in different genomic regions 
using read ratios of the chromatin input to the gDNA sample  
in non-overlapping 1-kilobase (kb) windows. We first compared 
heterochromatin and euchromatin based on the annotation from 
University of California Santa Cruz (UCSC) Drosophila mela-
nogaster genome assembly (dm3) (Online Methods). Read ratios 
of the chromatin input to the gDNA sample in heterochromatin  
regions were significantly lower than those in euchromatin 
(Mann-Whitney test, P < 2.2 × 10−16, Fig. 1b). Comparison of 
sequencing coverage in enriched and depleted regions of 15 
histone marks17–19 (Online Methods) confirmed that normal-
ized chromatin input coverage correlated positively with active 
histone marks and negatively with repressive histone marks 
(Supplementary Fig. 1). We also observed higher coverage in 
euchromatin on the X chromosome than euchromatin of auto-
somes in the male-derived S2 lines (Fig. 1b). This is consistent 
with the dosage-compensation mechanism in Drosophila20.

Genes with higher expression had higher read ratios in gene 
bodies (Mann-Whitney test, P < 7.2 × 10−7, Online Methods 
and Fig. 1c), and promoter regions with H3K4me3 enrichment 
had higher read ratios than those without H3K4me3 (Fig. 1d, 
Mann-Whitney test, P < 2.2 × 10−16). These observations agree 
with results in Saccharomyces cerevisiae21 and indicate that cover-
age was higher in regions with more open chromatin states both  
chromosome-wide and for individual genes.

To characterize the impact of G+C bias and chromatin-state 
bias on the identification of ChIP-enriched regions, we identified 

Su(Hw) peaks using two different algorithms, the same ChIP data 
but with ‘control’ data from either chromatin input, gDNA or 
generated from a uniform background model across the genome 
that ignores G+C bias and chromatin-state bias. The gDNA data 
did not contain chromatin-state information and served only to 
correct the G+C bias. The chromatin input control corrected for 
both the G+C bias and the chromatin-state bias. Peaks identified 
using chromatin input as a control showed much better enrich-
ment of the Su(Hw) binding motif than those identified by other 
controls (Fig. 1e,f).

If we consider the fraction of peaks that did not contain a motif 
as a crude proxy of false discovery rate for peak calling, then at 
a fixed false discovery rate, using the chromatin input control 
resulted in more discovered binding sites than using other con-
trols (Fig. 1e,f). We missed 4–10% of ChIP-enriched regions iden-
tified using chromatin inputs by using other controls, indicating 
that ignoring the G+C bias and the chromatin-state bias also had 
a negative effect on detection sensitivity.

Single-end versus paired-end reads for ChIP-seq
Paired-end sequencing has been widely used in DNA- and RNA-
seq experiments to uncover fusion transcripts, genomic structural 
variations, rearrangements and new splice junctions, but the ben-
efits of paired-end sequencing for regular ChIP-seq experiments 
are less clear. We first compared the percentage of the uniquely 
mapped paired-end reads that were also uniquely mapped when 
the paired-end reads were treated as if they were independent  
single-end reads at different read lengths. At 18-bp read length, we 
observed <10% uniquely mapped single-end reads and over 80% 
when the read length exceeded 22 bp (Supplementary Fig. 2a 
and Supplementary Notes).

The difference in sequencing coverage of repeat regions by 
uniquely mapped paired-end reads when they were mapped as either 
paired-end or single-end reads (36 bp) at a sequencing depth of  
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Figure 1 | Impact of genomic sequence composition and 
chromatin state on read coverage. (a) G+C composition for  
reads from gDNA and chromatin input samples are compared  
with the genomic background. (b–d) Boxplots of the read  
count ratio of chromatin input to a gDNA sample are shown  
for non-overlapping 1-kb windows in annotated heterochromatin 
and euchromatin regions of the indicated chromosomes (b), for 
the coding regions of genes with different expression levels (c) 
and for the 2-kb windows centered at transcription start  
site that are with or without H3K4me3 enrichment (d).  
RPKM, reads per kilobase per million reads. (e,f) Fraction of 
computationally identified Su(Hw) peaks that contains a Su(Hw) 
binding motif plotted as a function of the number of top-ranked binding sites for different types of controls (chromatin input, gDNA and a uniform 
background) and for MACS (e) and Useq (f). The ranking is based on the significance of each peak that was assigned by individual algorithms.
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samples had a higher G+C content than those from the whole-
genome background (Online Methods and Fig. 1a). Sequencing 
reads from the chromatin input and gDNA samples had different 
G+C composition distributions (median, 44% and 47%, respec-
tively; Mann-Whitney test, P < 2.2 × 10−16; Fig. 1a), suggesting 
that chromatin may affect sequencing coverage.

We compared the gDNA read count–normalized coverage 
of the chromatin input sample in different genomic regions 
using read ratios of the chromatin input to the gDNA sample  
in non-overlapping 1-kilobase (kb) windows. We first compared 
heterochromatin and euchromatin based on the annotation from 
University of California Santa Cruz (UCSC) Drosophila mela-
nogaster genome assembly (dm3) (Online Methods). Read ratios 
of the chromatin input to the gDNA sample in heterochromatin  
regions were significantly lower than those in euchromatin 
(Mann-Whitney test, P < 2.2 × 10−16, Fig. 1b). Comparison of 
sequencing coverage in enriched and depleted regions of 15 
histone marks17–19 (Online Methods) confirmed that normal-
ized chromatin input coverage correlated positively with active 
histone marks and negatively with repressive histone marks 
(Supplementary Fig. 1). We also observed higher coverage in 
euchromatin on the X chromosome than euchromatin of auto-
somes in the male-derived S2 lines (Fig. 1b). This is consistent 
with the dosage-compensation mechanism in Drosophila20.

Genes with higher expression had higher read ratios in gene 
bodies (Mann-Whitney test, P < 7.2 × 10−7, Online Methods 
and Fig. 1c), and promoter regions with H3K4me3 enrichment 
had higher read ratios than those without H3K4me3 (Fig. 1d, 
Mann-Whitney test, P < 2.2 × 10−16). These observations agree 
with results in Saccharomyces cerevisiae21 and indicate that cover-
age was higher in regions with more open chromatin states both  
chromosome-wide and for individual genes.

To characterize the impact of G+C bias and chromatin-state 
bias on the identification of ChIP-enriched regions, we identified 

Su(Hw) peaks using two different algorithms, the same ChIP data 
but with ‘control’ data from either chromatin input, gDNA or 
generated from a uniform background model across the genome 
that ignores G+C bias and chromatin-state bias. The gDNA data 
did not contain chromatin-state information and served only to 
correct the G+C bias. The chromatin input control corrected for 
both the G+C bias and the chromatin-state bias. Peaks identified 
using chromatin input as a control showed much better enrich-
ment of the Su(Hw) binding motif than those identified by other 
controls (Fig. 1e,f).

If we consider the fraction of peaks that did not contain a motif 
as a crude proxy of false discovery rate for peak calling, then at 
a fixed false discovery rate, using the chromatin input control 
resulted in more discovered binding sites than using other con-
trols (Fig. 1e,f). We missed 4–10% of ChIP-enriched regions iden-
tified using chromatin inputs by using other controls, indicating 
that ignoring the G+C bias and the chromatin-state bias also had 
a negative effect on detection sensitivity.

Single-end versus paired-end reads for ChIP-seq
Paired-end sequencing has been widely used in DNA- and RNA-
seq experiments to uncover fusion transcripts, genomic structural 
variations, rearrangements and new splice junctions, but the ben-
efits of paired-end sequencing for regular ChIP-seq experiments 
are less clear. We first compared the percentage of the uniquely 
mapped paired-end reads that were also uniquely mapped when 
the paired-end reads were treated as if they were independent  
single-end reads at different read lengths. At 18-bp read length, we 
observed <10% uniquely mapped single-end reads and over 80% 
when the read length exceeded 22 bp (Supplementary Fig. 2a 
and Supplementary Notes).

The difference in sequencing coverage of repeat regions by 
uniquely mapped paired-end reads when they were mapped as either 
paired-end or single-end reads (36 bp) at a sequencing depth of  
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Figure 1 | Impact of genomic sequence composition and 
chromatin state on read coverage. (a) G+C composition for  
reads from gDNA and chromatin input samples are compared  
with the genomic background. (b–d) Boxplots of the read  
count ratio of chromatin input to a gDNA sample are shown  
for non-overlapping 1-kb windows in annotated heterochromatin 
and euchromatin regions of the indicated chromosomes (b), for 
the coding regions of genes with different expression levels (c) 
and for the 2-kb windows centered at transcription start  
site that are with or without H3K4me3 enrichment (d).  
RPKM, reads per kilobase per million reads. (e,f) Fraction of 
computationally identified Su(Hw) peaks that contains a Su(Hw) 
binding motif plotted as a function of the number of top-ranked binding sites for different types of controls (chromatin input, gDNA and a uniform 
background) and for MACS (e) and Useq (f). The ranking is based on the significance of each peak that was assigned by individual algorithms.



reporting p-values

• report the test applied and the test parameters.

• avoid the terms “statistically significant” and 
variations thereof (“extremely significant”).

• avoid categorisation of p-values (p<0.05, 
p<0.01..), just report the p-value as computed 
with 2 decimal precision.

• upon treatment with X we observed an increase 
in Y (p-value 0.002, Fisher’s exact test, two-
sided).

• always report n (biological replicates)
153



For large sample numbers, 
very small differences may 
become significant 
 
For small sample numbers,  
an observed difference may 
be relevant, but not 
statistically significant 

   Statistical Significance ≠ Relevance 



a p-value is a p-value

• a p-value is not necessarily a proxy for the 
robustness of an effect

• many applications produce “technical p-
values” which cannot give any information 
on biological robustness.  
Examples: Database searches, peptide 
identification in mass spectrometry, 
ChIPSeq peak calling and other within-
experiment analyses

155



Problems of p-values

• p-values are only valid if the assumptions of the 
underlying test are met

• most importantly, the samples have to be 
independent and representative of the 
population

156



Problems of p-values

• Performing multiple tests within an experiment 
increases the probability to get a false positive 
result (a “significant” effect)

• e.g. simultaneous testing of many endpoints 
(genes, proteins) in high throughput studies or 
simultaneous pairwise comparison of many 
groups or sequential testing 

• in order to control for the overall type I error 
rate the p-values have to be adjusted.

157



Multiple Testing

158

Examples:

• Simultaneous testing of many 
endpoints  
(e.g. genes in a microarray study)

• Simultaneous pairwise comparison of 
many (k) groups  
(k pairwise tests = k(k-1)/2 tests)

Although each individual test keeps the significance level (say α = 5%), the 
probability of obtaining (at least one) false positive increases dramatically 

with the number of tests:  αk = 1-(1-α)k.
For 6 tests, the probability of a false positive is already >25%! 

The expected number of significant results in a series of k independent 
hypothesis tests when all null hypotheses are actually true is simply 
calculated as: k * α
in a microarray study interrogating 10000 genes the expected number of false positives is 500



multiple testing correction

159

One possible solution: p-value correction for multiple 
testing, e.g. Bonferroni correction:
Each single test is performed at the level α/m („local 
significance level α/m“), where m is the number of tests.
The probability of obtaining a (at least one) false positive is 
then at most α („multiple/global significance level α“)  

Ex.: m = 6
Desired multiple level: α = 5% 
→ local level: α/m = 5%/6 = 0.83% 
 
Other solutions: Bonferroni-Holm, Benjamini-Hochberg, 
Control of False discovery rate (FDR) instead of significance 
at the group level (family wise error rate, FWER)



• Bonferroni correction (control of the FWER): 
FWER= probability of getting at least one false positive. 
The critical value (alpha) for an individual test is 
obtained by dividing the familywise error rate (usually 
0.05) by the number of tests.  
Thus if you are doing 100 statistical tests, the critical 
value for an individual test would be 0.05/100=0.0005, 
and you would only consider individual tests with 
P<0.0005 to be significant.

• Benjamini-Hochberg (control of FDR): 
controls the proportion of significant results being 
false positives. 

160



Repeated Testing to Reach Significance

161

 "If you torture your data long enough, they will tell you 
whatever you want to hear." (Mills ,1993).

needs adjustment! 
 

DON’T DO IT



p-value hacking (fishing)

Simmons JP, Nelson LD, Simonsohn U. 2011. False-
Positive Psychology: Undisclosed Flexibility 
in Data Collection and Analysis Allows 
Presenting Anything as Significant. 
Psychological Science 22: 1359–1366.

162

•sampling bias, the “drawer problem”
•trying different testing procedures
•sequential testing
•multiple endpoints reporting only the significant ones



ANOVA
• measure differences in more than 2 groups 

(avoiding multiple testing corrections when using 
standard t-tests)

• can be used to analyse the contribution of 
different sources of variation to a response



example

164

Null hypothesis: means of the measurement variable (expression) are the same for the different 
categories of data (genotype)
Alternative hypothesis: the means of expression are not all the same

A B C D E
genotype

expression



Assumptions to be met

• observations in each group are normally 
distributed

• standard deviations in the groups should be 
equal (homoscedastic). this is particularly 
important in unbalanced designs (unequal 
number of observations)

• independency, random selection

165



reporting the result

166

“The means were significantly heterogeneous  
(one-way anova, F(4,35)=7.83, P=1.3×10-4)”.

0

2

4

6

8

A B C D E
genotype

ex
pr
es
si
on

Error bars 
reflect 95% CI 
(SE or SD would 
be appropriate 
too)



Post tests
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A B C D E
genotype

expression



Post tests
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A B C D E
genotype

expression



Post tests
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A B C D E
genotype

expression



Post tests
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A B C D E
genotype

expression

A B C D E
genotype

expression



Post tests
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A B C D E
genotype

expression

A B C D E
genotype

expression



running ANOVA

172

Analysis of Variance Table 

Response: expression 
          Df Sum Sq Mean Sq F value    Pr(>F)     
genotype   4 10.126 2.53152  7.8323 0.0001283 *** 
Residuals 35 11.313 0.32322                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



Post tests

• compare all pairs: Bonferroni, Tukey, 
Student-Newman-Keuls, preferred method 
depends on number of groups

• Dunnett: compares a set of treatments 
against a single control mean

• all possibilities (contrasts): Scheffé test 
(low power)

• groups naturally ordered: test for trends

173



all pairs: Tukey

174

  Tukey multiple comparisons of means 
    95% family-wise confidence level 

Fit: aov(formula = expression ~ genotype, data = mm) 

$genotype 
          diff         lwr        upr     p adj 
B-A  0.2118143 -0.60545281  1.0290815 0.9441907 
C-A  0.9824239  0.16515675  1.7996910 0.0118801 
D-A -0.4203216 -1.23758873  0.3969455 0.5826797 
E-A -0.3413169 -1.15858403  0.4759503 0.7509171 
C-B  0.7706096 -0.04665757  1.5878767 0.0724970 
D-B -0.6321359 -1.44940305  0.1851312 0.1948625 
E-B -0.5531312 -1.37039835  0.2641359 0.3131110 
D-C -1.4027455 -2.22001262 -0.5854783 0.0001806 
E-C -1.3237408 -2.14100792 -0.5064736 0.0004106 
E-D  0.0790047 -0.73826243  0.8962718 0.9986269 
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Variations of ANOVA

• non-parametric version of ANOVA: Kruskal 
Wallis Test

• matched measurements across groups: 
Repeated-Measures ANOVA

175



2-way ANOVA

• First Factor differences of means

• Second Factor differences of means

• Interaction of Factor I and Factor II

176
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Analysis of Variance Table 

Response: expression 
                 Df Sum Sq Mean Sq F value  Pr(>F)   
treatment         1 2.0882 2.08819  7.2159 0.01201 * 
gender            1 1.8393 1.83932  6.3560 0.01767 * 
treatment:gender  1 0.1873 0.18728  0.6472 0.42791   
Residuals        28 8.1028 0.28939                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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interaction
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●

control.male treatment.male control.female treatment.female
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Analysis of Variance Table 

Response: expression 
                 Df  Sum Sq Mean Sq F value    Pr(>F)     
treatment         1  0.0010  0.0010  0.0037 0.9521800     

gender            1  4.8191  4.8191 17.7482 0.0002369 *** 
treatment:gender  1 10.5151 10.5151 38.7257 1.006e-06 *** 

Residuals        28  7.6028  0.2715                       
--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



Bivariate Analysis



              x          y 
[1,]  0.3019900 -0.6134757 
[2,]  0.6567339  0.8198604 
[3,] -0.3538068  0.1979478 
[4,] -1.0974897  0.1558479 
[5,] -0.9836460 -1.9128283 
[6,]  0.2854093 -0.2189882 

… 



Relation of two Variables 
Correlations
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Pearson’s Correlation Coefficient

• Useful for gaussian variables (but not only 
for those)

• Measures the degree of linear dependence

• -1 ≥ rxy ≤ 1

• rxy = 1/-1: perfect linear dependence

• rxy = 0: linear independence

183



calculation of Pearson correlation in EXCEL
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Pearson’s Correlation Coefficient
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Pearson’s Correlation Coefficient
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Pearson’s Correlation Coefficient
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non-linear relationships
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non-linear relationships

Pearson correlation 
r=0.42

Spearman correlation  
rs=0.15
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Pearson/Spearman Summary

190

• Pearson correlation is a measure for linear dependence

• Spearman correlation is a measure for monotone 
dependence

• The Spearman correlation is less sensitive than the Pearson 
correlation to strong outliers that are in the tails of both 
samples.

• Correlation coefficients do not tell anything about the 
(non-)existence of a functional dependence. 

• Correlation coefficients tell nothing about causal relations 
of two variables X and Y (on the contrary, they are 
symmetric in X and Y) 

• Correlation coefficients hardly tell anything about the 
shape of a scatterplot



Significance of correlations

• Correlation coefficients are a measure for the 
strength of a relationship between 2 variables

• That does not tell us anything about the 
significance of a relationship

• The significance of a correlation is expressed in 
probability levels (p-values) telling how likely a 
given correlation coefficient will occur given no 
relationship in the population. 

• Can be calculated easily in R using “cor.test”

191



Explorative data analysis using correlations

192

                   mpg cyl disp  hp drat    wt  qsec vs am gear carb 
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1 
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mpg - Miles/(US) gallon
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wt - Weight (lb/1000)
qsec - 1/4 mile time
vs - V/S
am - Transmission (0 = automatic, 1 = manual)
gear - Number of forward gears
carb - Number of carburetors
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responsible research
statistics don’t lie but liars use statistics

How to Lie with Statistics

Kjell Konis

1



most (90-95%) of the published pre-clinical 
research findings  are wrong (irreproducible) 

• Ioannidis JPA. 2005. Why most published research 
findings are false. PLoS Med 2: e124.

• Begley CG, Ellis LM. 2012. Drug development: Raise 
standards for preclinical cancer research. Nature 
483: 531–533.

• irreproducibility correlates with:

• inappropriate application of statistical procedures

• low statistical power

• inappropriate experimental design

• …
196



Estimating reproducibility

197

population

experiment

repetition

same result?



Replicability Reproducibility

Reproduction of the original results using the 
same protocol/reagents/tools

by the same 
person

by a different 
person in the 

lab

by a different 
person outside 

the lab

Reproduction using 
different reagents/
tools but the same 

protocol by a 
different person 
outside the lab

Reproduction  
just based on 

text description

POPULATIONPOPULATIONPOPULATION



How to avoid sampling bias?

• blinding: the person conducting the 
experiment should e.g. not be aware of 
whether control or treatment is applied

• randomisation: the samples should be 
assigned randomly to experimental groups

• exclusion criteria should be defined if 
exclusion of data is likely to happen.

• confounding factors have to be identified 
and controlled for
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A QPR show case

Neurobiology of Disease

Cannabis Use Is Quantitatively Associated with Nucleus
Accumbens and Amygdala Abnormalities in Young Adult
Recreational Users

Jodi M. Gilman,1,4,5 John K. Kuster,1,2* Sang Lee,1,6* Myung Joo Lee,1,6* Byoung Woo Kim,1,6 Nikos Makris,3,5

Andre van der Kouwe,4,5 Anne J. Blood,1,2,4,5† and Hans C. Breiter1,2,4,6†
1Laboratory of Neuroimaging and Genetics, Department of Psychiatry, 2Mood and Motor Control Laboratory, 3Center for Morphometric Analysis,
Department of Psychiatry, and 4Athinoula A. Martinos Center in Biomedical Imaging, Department of Radiology, Massachusetts General Hospital,
Charlestown, Massachusetts 02129, 5Harvard Medical School, Boston, Massachusetts 02115, and 6Warren Wright Adolescent Center, Department of
Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 06011

Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly
on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural
changes in brain regions such as the nucleus accumbens after exposure to !9-tetrahydrocannabinol, but less is known about cannabis use
and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users
and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using
voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density
analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to
subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use,
and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape
differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-
dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These
data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural
matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

Key words: cannabis; gray matter density; marijuana; multimodal imaging; reward; topology/shape

Introduction
Marijuana (cannabis) is the most commonly used illicit drug in
the United States (15.2 million past-month users; US Depart-
ment of Health and Human Services, 2008). It is also the most
widely used illicit drug on college campuses (Mohler-Kuo et al.,
2003). Moreover, its use is increasing among adolescents and

young adults (Henry et al., 2003), partially due to society’s chang-
ing beliefs about cannabis use and its legal status.

Cannabis use is associated with impairments of cognitive
functions, including learning and memory, attention, and
decision-making. Animal studies show structural changes in
brain regions underlying these functions after exposure to !9-
tetrahydrocannabinol (THC), the main psychoactive component
of cannabis (Lawston et al., 2000; Downer et al., 2001). In the
nucleus accumbens, the length of the dendrites and number of
dendritic spines increases with THC exposure in rats (Kolb et al.,
2006). Less is known about the relationship between cannabis use
and brain structure in humans. Although some studies have
shown volume reductions in the hippocampus, amygdala, and
cerebellum, others have not shown such effects (see Lorenzetti et
al., 2010 for review). Differences in methodology may have con-
tributed to these mixed results, suggesting that using a variety of
structural methods together to quantify brain morphology may
be important.

In the present study, we collected high-resolution T1 MRI
scans on young adult (age 18 –25 years) cannabis/marijuana users
and matched nonusing controls. We conducted three blinded,
automated, and independent analyses of brain structure and their
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confounding

determine whether gray matter density was associated with drug use
severity, we performed linear regressions between the average values of
each ROI and measures of drug use behavior including: number of joints
smoked per week, smoking occasions per day, smoking days per week,
and number of joints smoked per smoking occasion (see Behavioral Mea-
sures below). Because we conducted these tests in four regions (left and right
nucleus accumbens and amygdala), we performed a Bonferroni correction
on the resulting p-values (p ! 0.05/4 " 0.0125) for the voxel-based mor-
phometry analysis. We did not correct for the number of drug use measures
because these measures tend not be independent of each other (i.e., smoking
occasions per day, joints per occasion, joints per week, and smoking days per
week were all highly correlated, with p ! 0.01).

Volume analysis. Intracranial volume (ICV), total brain, gray matter,
white matter, and subcortical volumes were estimated using the standard
automated cortical and subcortical segmentations created by Freesurfer
(http://surfer.nmr.mgh.harvard.edu), again performed in a blinded
manner. Summary images for the segmentation outputs were generated
to check the quality of segmentations and these segmentations were also
spot checked using a blinded approach by an expert neuroanatomist
(N.M.), who directs the MGH Center for Morphometric Analysis
(CMA). We extracted volumes of our a priori regions (left and right
nucleus accumbens and amygdala) in each of the 40 participants. As with
the gray matter density measures from described in Voxel-based mor-
phomety analysis, above, these volume measurements were entered into
a multivariate general linear model, which allowed us to determine whether
group differences were significant after covarying factors such as age, sex,
alcohol use, and cigarette smoking. In addition, we performed linear regres-
sions between the volume of each region and measures of drug use behavior
(see Behavioral Measures below). Because we conducted these tests in four
regions (left and right nucleus accumbens and amygdala), we performed a
Bonferroni correction on the resulting p-values (p ! 0.05/4 " 0.0125).

We also extracted values of other striatal structures (i.e., caudate and
putamen), the medial temporal regions (i.e., hippocampus) and thala-

mus, to assess whether there were differences between groups in these
measures that met the threshold set for a priori regions. Values for these
brain volumes, along with a priori regions, are listed in Table 5. In these
analyses, ICV and sex were used as covariates.

Shape analysis. Shape of subcortical structures was computed using
FMRIB’s Integrated Registration and Segmentation Tool (FIRST), a
model-based segmentation/registration tool that segments all of the sub-
cortical structures, producing mesh and volumetric outputs (applying
boundary correction) of subcortical structures. The shape/appearance
models used in FIRST were constructed from manually segmented im-
ages provided by the CMA, which were segmented in a blinded fashion.
Further analyses by FIRST were also performed in a blinded fashion. The
manual labels were parameterized as surface meshes and modeled as a
point distribution model. Deformable surfaces were used to automati-
cally parameterize the volumetric labels in terms of meshes; the deform-
able surfaces were constrained to preserve vertex correspondence across
the training data. Furthermore, normalized intensities along the surface
normals were sampled and modeled. The shape and appearance model
was based on multivariate Gaussian assumptions. Shape was then ex-
pressed as a mean with modes of variation (principal components). More
information about these analyses can be found at http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FIRST/UserGuide#Vertex_Analysis_.28with_NEW_
features_in_v5.0.0.29.

After vertices were calculated for each ROI, each a priori region (left
and right nucleus accumbens and amygdala) was compared between
control and marijuana participants using FSL’s “Randomise” a permu-
tation test enabling modeling and inference using standard general linear
model design setup (Nichols and Holmes, 2002). Of these, two met a
cluster correction threshold for familywise error of p ! 0.05 (left nucleus
accumbens and right amygdala). The right nucleus accumbens and left
amygdala did not meet the cluster correction threshold for significant
differences between groups. From the resulting statistical maps gener-
ated by “Randomise” we identified the peak voxel showing the maximum

Table 1. Participant demographics

CON (n " 20) MJ (n " 20) p-value

Sex (M/F) 9 M/11 F 9 M/11 F N/A
Age 20.7 (1.9) 21.3 (1.9) 0.30
Years of education 14.3 (3.4) 12.6 (4.8) 0.20
STAIa

State 28.9 (7.94) 27.7 (7.38) 0.65
Trait 29.8 (7.32) 29.5 (5.56) 0.89

HAM-Db 0.80 (1.40) #range: 0 –5$ 1.10 (1.37) #range: 0 –5$ 0.50
TIPIc

Extroversion 10.9 (2.36) 10.7 (2.13) 0.78
Agreeableness 10.8 (2.47) 10.7 (1.81) 0.94
Conscientiousness 11.9 (2.08) 11.7 (2.13) 0.76
Emotional stability 10.5 (2.52) 11.4 (2.64) 0.27
Openness 12.1 (1.90) 12.4 (1.61) 0.57

Substance use
Alcohol

No. alcoholic drinks/week 2.64 (2.38) 5.09 (4.69) 0.10
AUDIT score 3.30 (1.78) 5.50 (2.21) 0.05

Cigarettes
No. of occasional smokersd 0 7 N/A
No. of daily smokers 0 1 N/A

Marijuana
No. days/week 0 3.83 (2.36) N/A
No. joints/week 0 11.2 (9.61) N/A
No. joints/occasion 0 1.80 (0.77) N/A
No. smoking occasions/day 0 1.80 (0.70) N/A
Age of onset (years) — 16.6 (2.13) N/A
Duration of use (years) — 6.21 (3.43) N/A

All values are expressed in means and SDs. CON, controls; MJ, marijuana users.
aState Trait Anxiety Inventory Form (Spielberger et al., 1983).
bHamilton Depression Rating Scale (Hamilton, 1960).
cTen-Item Personality Inventory (Gosling et al., 2003).
dOccasional smokers reported from 1 cigarette/week to 1 cigarette every 3 months.
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types of research



EXPLORATORY
• hypothesis generating

• no/little prior information on effects, frequently 
many endpoints measured (multiple testing)

• often not complying with elementary rules of 
sampling and experimental layout (e.g. sequential 
sampling, multiple testing)

• statistical testing will yield highly problematic 
results (low power, high error rate), potentially 
irreproducible



CONFIRMATORY

• performed to confirm hypotheses

• solid prior knowledge on effects

• involves prior power analysis, thoughtful 
experimental layout

• generates more reliable statistical test results, 
potentially reproducible



Experimental Design
If your experiment needs statistics, you ought to have done a better experiment - Ernest Rutherford

If your statistics should be any valid, you have to plan and perform experiments properly - Anonymous



Experimental Design

• Design of experiments, or experimental design, is the 
design of all information-gathering exercises where 
variation is present, whether under the full control of 
the experimenter or not.

• One central aim is to minimize random and 
systematic error contribution to the variation, such 
that the fluctuations of the dependent variable (the 
measurement) are maximally related to the levels of 
the independent variable (the treatment)

• Valid inferences on the behaviour of an entire 
population should be derived. 
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experiment flow chart

• formulate a hypothesis before data collection

• design an experiment to tests this hypothesis

• ideally this experiment should be a comparative one (2 states) 

• define what you measure (dependent variable), the link between the 
(proxy) variable and the biological model.

• make up your mind about the sample size (power analysis) and the 
statistics you want to apply

• consider potential sources of error and how you can minimise them

• perform experiment

• analyse your data

• consider to perform a completely different experiment that can confirm 
your finding
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a well designed experiment

• randomised block design

• ANOVA with fixed effect (treatment) and random 
effect (block)

• Problem: randomisation and statistical testing should 
involve an experienced statistician

209

13. Das Design von Experimenten

Abbildung 13.3.: Ein 20-fach repliziertes, randomisiertes Blockdesign.

13.3. Häufige Experimentelle Designs

13.3.1. Vollständig randomisiertes Blockdesign (fully randomised block design)

1. Definition Die Behandlungsflächen aller Behandlungskombinationen werden in einem Block
zusammengefasst. Dieser Block wird dann repliziert. Die Behandlungen werden den Flä-
chen innerhalb des Blocks zufällig zugewiesen.

2. Beispiel Wir wollen den Effekt von Nematoden auf Konkurrenz untersuchen. Untersucht
werden soll, ob die Konkurrenz von Festuca auf Artemisia abhängig ist von Nemato-
denfraß. Wir haben dabei folgende Behandlungen: Festuca rubra in Konkurrenz mit
Artemisia maritima (F+); Artemisia maritima in Monokultur (F−); unbehandelter
Boden mit Nematoden (N+); Nematicide-behandleter Boden ohne Nematoden (N−).
Damit erhält man in einem faktoriellen Experiment vier Behandlungskombinationen
(F+N+, F+N−, F−N+, F−N−), die in einem Block zusammengefasst, der, sagen wir,
20-fach repliziert wird. Damit sieht in einem Vollständig Randomisierten Blockdesign
das Ergebnis etwa so aus wie Abbildung 13.3.

3. Details Dieses Design ist das häufigste, wichtigste und intellektuell befriedigenste Ver-
suchsdesign. Es hat zwei Kernelemente: (1) Randomisiere was immer Du kannst. Und
(2) Tue alle Behandlungskombinationen in einen Block, der dann repliziert wird. Die
statistische Analyse ist unkompliziert, da keine Abhängigkeiten der Behandlungen oder
Blöcke vorliegen. Die gängige Auswertungsmethode ist (bei normalverteilten Daten) die
ANOVA. Da wir nicht wirklich am Unterschied zwischen Blöcken interessiert sind, wird
die Blocknummer als Zufallsvariable mit ins Modell hereingenommen.

4. Stärken & Schwächen Das Randomisieren kann recht viel Zeit in Anspruch nehmen (ob-
wohl wir dies auch schon im Vorraus und im Sessel machen können). Wenn wir um
die Existenz eines Gradienten im Untersuchungsgebieten wissen, der unser Experiment
beeinflussen kann, so müssten wir dies sowohl bei der räumlichen Verteilung der Blö-
cke als auch der der Behandlungsflächen innerhalb der Blöcke berücksichtigen. Dies ist
bei einem randomisierten Design natürlich nicht möglich, sondern Einflüsse dieser Art
müssen über eine Erhöhung der Stichprobenzahl kompensiert werden. D.h. wir müssen
mehr Replikate anlegen, als ohne diesen Gradienten notwendig wäre.

5. Literatur Crawley (2002); Hurlbert (1984); Mead (1988); Potvin (2001); Underwood (1997)

6. Rechenbeispiel Wir bleiben bei dem Beispiel mit den Nematoden und der Konkurrenz von Festuca

auf Artemisia. Unser Datensatz ist etwas löchriger, da für die Monokulturen nur 11 Replikate benutzt

wurden und für die Konkurrenz 16. Zudem sind die Pflanzen in zwei Töpfen gestorben. Aber dies
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the ideal design

• randomised block design, only 2 factor levels (control, treatment)

• suited to control for day-to-day fluctuations which are very 
common. Ideally one would change reagents, batches of cells etc. 
between the blocks as well. Every block a new batch, every block 
new reagents.

• paired t-test
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N is (too) small, what can you do?

• Improve experimental design

• simple comparative studies (2-group) have 
higher power than complex studies

• reduce systematic errors by e.g. random block 
design

• Improve the power of statistical test

• paired tests instead of unpaired tests (requires 
appropriate experimental design)

• avoid making comparisons that are of no 
interest
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