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Spin 2 Kaluza-Klein modes

g4 μν(x) = g(Λ)
μν (x) + ∑

i

hi
μν(x)ψi(y)

• A single higher-dimensional field gives rise to infinite towers of 4-dimensional fields: Kaluza-Klein modes

ds2
D = e2A(y)(gΛ

4 (x) + gn(y)) φ(x, y) = φ0(x) + ∑
i

δϕ(x)ξi(y)
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i
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• But when  is non-zero, the general form is not known, except for the 
universal spin 2 sector

A(y)

f ≡ (D − 2)A

• We want to find general results on the masses  , for any compactification solving its equations of motion:m2
i

Rmn − ∇m ∇n f +
1

n − (2 − d)
∇m f ∇n f = Λgmn + T̃mn

[Duff, Nilsson, Pope, ‘85]

1
D − 2

e−fΔ(ef) =
1
d

̂T(d) − Λ

• In particular,  for compactifications with sources, where it is generically singular.f ≠ 0
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• Yes: Bounds in terms of the Cheeger constants
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Weyl law from the gravitational potential
• Main idea: The  theory at distances  much smaller than the compactification scale has to 

reproduce the higher-  behavior. For this to happen, the very massive KK modes have to behave 
in an appropriate way. 

4d ρ
D

• We can check this explicitly in the universal spin 2 sector 
S = mD−2

D ∫ −gDRD + …• Take a general higher dimensional theory of gravity

• And compute the gravitational potential  between two 
mass sources with masses  and 

U
M1 M2 SM1,2

= − M1,2 ∫Σ
−gD|Σ

+
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• And compute the gravitational potential  between two 
mass sources with masses  and 

U
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• We compare two situations: 

-dimensional space-time is MinkD D

-dimensional space-time is a warped product D ℳ4 × X ds2
D = e2A(y)(η̄μνdxμdxν + gn(y))

[Readily generalizes to higher 
dimensions or ]Λ ≠ 0U4d(ρ) → UD(ρ)• And require ρ → 0
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Constraint on spectral data from gravity
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• We can also obtain a mathematically rigorous proof of this formula by directly comparing the local behavior of 
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Proof of the Weyl law: integrated argument

• The effect of the warping completely disappeared using

• Any result about the eigenvalues obtained for this formula will be the same for warped and unwarped 
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• To proceed, we make the ansatz that at large ,  , and we determine  and  fromk m2
k ∼ α2k2/ν α ν
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ε
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• More rigorously, the result follows from Karamata theorem [Karamata ‘30]
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• More rigorously, the result follows from Karamata theorem
• However, the exchange of limits is not delicate to justify in general, in particular in presence of singularities
• Using the RCD theory we can rigorously prove the Weyl law for solutions with D-brane singularities for which 

the spectrum is discrete (D6, D7, D8)

[Karamata ‘30]



Quantum ergodicity
• A finite number of modes does not contribute to the lhs, it’s 

the infinite tail at large  that gives a non-zero contribution to 
the limit. We need to estimate   for .
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• A finite number of modes does not contribute to the lhs, it’s 

the infinite tail at large  that gives a non-zero contribution to 
the limit. We need to estimate   for .

k
ψk(y0)2 k ≫ 1

• Few results are known for eigenfunctions. But for , if the space is ergodic it is also Quantum Ergodicf = 0
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• Ergodic: • Quantum ergodic:

• Probability of finding a classical particle in a 
region of phase space proportional to the 
volume of that region

• Probability of finding a quantum particle in a 
region  proportional to the volume of that regionB

∀f lim
T→∞

1
T ∫

T

0
f(γ(t), ·γ(t))dt = ∫S⋆X

fω
lim

k → ∞
k ∉ e

∫
B

gψ2
k

∫
X

gψ2
k

=
Vol(B)
Vol(X)⟹

[Schinrelman, ‘74; de Verdière, ‘85;

Zelditch, ‘87]
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• An explicit 1-dimensional check, , X = S1

f = sin(x) + cos3(x)
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• With our normalization lim
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• Integrating over a  both sides and using   gives again B m2
Pl,4 = mD−2

Pl,D Volf

• Weighted Quantum Ergodicity

• This is now a conjecture: it is not known to follow from a classical counterpart

• If  is smooth it can be argued for it starting by mapping to a Schrödinger problem and using QEf
• But for physical sources  is not smoothf

• An explicit 1-dimensional check, , X = S1

f = sin(x) + cos3(x)

lim
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Recap and future directions

• Can we prove stronger bounds on that exclude, or prove, separation of scales in 
certain regimes and for certain sources?

m2
KK / |Λ |

• The spin 2 Kaluza-Klein spectrum can be studied in general, without specifying the background
• By controlling the effective curvature is possible to prove universal bounds on masses of spin 2 

KK fields by using theorems in Optimal Transport Theory  
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• Can we prove stronger bounds on that exclude, or prove, separation of scales in 
certain regimes and for certain sources?

m2
KK / |Λ |

• The spin 2 Kaluza-Klein spectrum can be studied in general, without specifying the background
• By controlling the effective curvature is possible to prove universal bounds on masses of spin 2 
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• When warping is zero  the masses of the spin 2 fields are given by eigenvalues of the standard 
Laplacian

( f = 0)

Δ0ψi = λiψi

λk ∼ 4πΓ(1 + n/2)2/nVol−2/nk2/n

• Some properties of the spectrum independent of the curvature:

• With a positive lower bound on the Ricci tensor:

λ1 ⩾
h2

1

4

[Myers, '41]

[Cheeger, ‘69]

• Weyl Law

• Cheeger inequality

• Myer’s theorem

• Lichnerowicz bound

[Weyl, 1912

Minakshisundaram, Pleijel, 1949]k ≫ 1

Ric ⩾ (n − 1)K2

1. In general , so theorems on standard Laplacian are not directly useful

2. The equations of motion do not constrain the Ricci tensor enough 

f ≠ 0

⟹
diam ⩽

π
|K |

λ1 ⩾ nK2
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• We have analyzed the asymptotic behavior of  for warped compactifications, which is fairly insensitive 

to the geometry 
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Rmn − ∇m ∇n f +
1

n − (2 − d)
∇m f ∇n f = Λgmn + T̃mn

1
D − 2

e−fΔ(ef ) =
1
d

̂T(d) − Λ

• For warped compactifications, it does not seem possible to bound standard notions of curvature: 

: Effective Ricci curvature tensor, in  < 0 effective dimensionsRicN
f N = 2 − d

• This notion of curvature is studied in Bakry-Emery geometry, and Optimal Transport theory

• It also admits a rigorous definition for non-smooth metric spaces, in terms of concavity of entropy, 
allowing to rigorously write the supergravity equations for singular spaces. ‘Synthetic curvature’

• Can we obtain more detailed bounds on the KK spectrum by controlling the geometry through the EOMs?

θ ≡ ∇mξm θf ≡ e−f ∇m(efξm)

−∇ξθ ⩾ Rmnξmξn +
1
n

θ2 −∇ξθf ⩾ (RicN
f )mnξmξn +

1
N

θ2
f

tangent to 
geodesicsξ

[GBDL, De Ponti, Mondino, 
Tomasiello, 2212.02511]

f ≠ 0

EOMs:

Raychaudhuri:

expansion weighted expansion

[GBDL, De Ponti, 
Mondino, Tomasiello, 
2212.02511 & WIP]
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T̃mn ⩾ 0

Ric2−d,f
mn ⩾ − |Λ |

The Reduced Energy Condition

• Same sources that alone are 
insufficient to get Λ > 0

[GBDL,  Tomasiello ‘21]

⟹

Ric∞, f
mn ⩾ − ( |Λ | +

σ2

D − 2 ) Weaker physical consequences: it requires to 
control  independently. Mathematical theory 
more mature, more results availiable

∇f

Useful to obtain stronger physical results on the 
spectrum of , but mathematical techniques 
less developed. Very recent mathematical 
progress

Δf

• The equations of motion for general vacuum compactifications imply

• What can we say about ?T̃mn
[GBDL,  
Tomasiello ‘21]

[Gibbons '84,  de Wit, Smit, 
Hari Dass '87, Maldacena-
Nuñez,  '00]
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[e.g.: Ohta, Takatsu ‘10, ‘11, Ohta ‘13,  
Milman, ‘14, Woolgar, Wylie ‘17 ]



• If m0 = 0

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

Some eigenvalue bounds for N < 0 Ric2−d,f
mn ⩾ − |Λ |



• If m0 = 0

m2
1

|Λ |
⩾ α(diam/LAdS)

L2
AdS

diam2

⟹
Separation of scales achieved if 
diam ≪ LAdS

Intuitive, but now rigorous even with 
D-brane singularities and warping 

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

Some eigenvalue bounds for N < 0 Ric2−d,f
mn ⩾ − |Λ |

Th. 1:



• If m0 = 0

m2
1

|Λ |
⩾ α(diam/LAdS)

L2
AdS

diam2

⟹
Separation of scales achieved if 
diam ≪ LAdS

Intuitive, but now rigorous even with 
D-brane singularities and warping 

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

Some eigenvalue bounds for N < 0

Example small :h1

Define a generalization of Cheeger constants:

Ric2−d,f
mn ⩾ − |Λ |

Th. 1:

[Generalization of  Cheeger '69, Buser '82] 

hk ≡ inf
B0,…,Bk

max
0⩽i⩽k

Perf(Bi)
Volf(Bi) ( f = 0)



• If m0 = 0

m2
1

|Λ |
⩾ α(diam/LAdS)

L2
AdS

diam2

⟹
Separation of scales achieved if 
diam ≪ LAdS

Intuitive, but now rigorous even with 
D-brane singularities and warping 

m2
1 ⩾

1
4

h2
1

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

Some eigenvalue bounds for N < 0

Example small :h1

Define a generalization of Cheeger constants:

Ric2−d,f
mn ⩾ − |Λ |

Th. 1:

[Generalization of  Cheeger '69, Buser '82] 

Th. 2:

Th. 3:

If is not small,  cannot be small!hk mk

m2
k ⩾ Ck−6h2

k

hk ≡ inf
B0,…,Bk

max
0⩽i⩽k

Perf(Bi)
Volf(Bi) ( f = 0)



• If m0 = 0

m2
1

|Λ |
⩾ α(diam/LAdS)

L2
AdS

diam2

⟹
Separation of scales achieved if 
diam ≪ LAdS

Intuitive, but now rigorous even with 
D-brane singularities and warping 

m2
1 ⩾

1
4

h2
1 ⟹

Rigorous even in presence of O-planes

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

h2
1 ∼ N−1/2 , |Λ | ∼ N−3/2

Can be used to check sep. of scale in 
explicit proposed examples. e.g. in 

[DeWolfe, Giryavets, Kachru, Taylor, ‘05

Acharya, Benini, Valandro ‘06,

Junghans ‘20, Marchesano, Palti, Quirant, 
Tomasiello ‘20]
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Th. 4:

[GBDL, Tomasiello '21 using 

Hassannezhad, '12, Setti, '98,

Charalambous, Lu, Rowlett '15]
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Th. 6:

m2
1 ⩽ max 21
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h1 Λ +

σ2

D − 2
,

22
5

h2
1 m2

k < k2max 14112
25 (Λ +

σ2

D − 2 ),
2816

5
m2

1

Th. 7:

[GBDL, De Ponti, Mondino, Tomasiello, '21, using

De Ponti, Mondino ‘19 ]
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Th. 7:

[GBDL, De Ponti, Mondino, Tomasiello, '21, using

De Ponti, Mondino ‘19 ]

• Valid for smooth spaces with finite diameter:

• Valid also in presence of D-brane singularities:

[Klawer, Lust, Palti '18] 

[Bachas '19] 
• In tension with the spin 2 swampland conjecture in the limit ,  fixed h1 → 0 h2, σ

m2
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ds2
11 = L2

4ds2
AdS4

+ R2
c ds2

T7

TCas
μν = |ρc |ℓ9

11R
−11
c gμν TCas

ij = −
4
7

|ρc |ℓ9
11R

−11
c gij

F7 = f7volT7 1
ℓ6

11 ∫ F7 = N7

L2
4

R2
c

=
2401
4608

N6
7

ρ4
c

≫ 1

• Explicitly in M-theory on :AdS4 × T7

R11
c

ℓ11
11

∼ N22/3
7 ≫ 1

• Then solve the semi-classical equations:

• With a compact internal space, Casimir energy density can be automatically generated

• If the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

circle directionsother directions small circle size

[Arkani-Hamed, Dubovsky, Nicolis, Villadoro ‘07]
[cf. Maldacena, Milekhin, Popov ‘18]

−
2
−gD

S(class.)
D

δgD
MN

= ⟨T(Cas.)
MN ⟩

Rn = 0 + Casimir → Λ4 < 0

• Non-susy and unstable for M2 bubble nucleation

⟹
parametric separation of scales!

QG effects under 
control

• Compatible with AdS distance conjecture,   m2
KK ∼ |Λ |1/d

[GBDL,  De Ponti, Mondino, Tomasiello, ‘22]

[Lust, Palti, Vafa, ‘19

Gonzalo, Ibáñez, Valenzuela , ‘21]

• [Also non stable dS possible in this way but not under parametric control]


