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* The masses of these fields, are given by eigenvalues of certain
differential operators in the internal space. For example

« But when A(y) is non-zero, the general form is not known, except for the
universal spin 2 sector

[Csaki, Erich, Hollowood, Shirman, ‘00,

f = (D o 2)A Afl/jl = Al//l o Vf Vl//l — mlzl//l Bachas,Estes, ‘11]

e In particular, f # 0 for compactifications with sources, where it is generically singular.

[Duff, Nilsson, Pope, ‘85]
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e In particular, f # 0 for compactifications with sources, where it is generically singular.

« We want to find general results on the masses ml.2 , for any compactification solving its equations of motion;
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* Naively, we would expect the Weyl law for the weighted Laplacian still depends on the
Planck mass, so on the warped volume

* But this is false: for weighted Laplacians the Weyl law still depends on the ordinary volume

. . we will obtain the Weyl law for the warped case by using consistency of the gravitational theory,
end extend it to spaces with singularities



« Main idea: The 4d theory at distances p much smaller than the compactification scale has to

reproduce the higher-D behavior. For this to happen, the very massive KK modes have to behave
IN an appropriate way.

* We can check this explicitly in the universal spin 2 sector
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reproduce the higher-D behavior. For this to happen, the very massive KK modes have to behave
IN an appropriate way.

* We can check this explicitly in the universal spin 2 sector

* Jake a general higher dimensional theory of gravity

« And compute the gravitational potential U between two T
mass sources with masses M, and M, Sy = — MI,ZJ NETHR
» We compare two situations: =
D-dimensional space-time is Mink,
2 _ _2A0)(5
D-dimensional space-time is a warped product /, X X dsp, = e (y)(ﬂﬂudxﬂdxy +8,())

[Readily generalizes to higher

* And require Usd(p) = Up(p) p— 0 dimensions or A % O]
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* We can also obtain a mathematically rigorous proof of this formula by directly comparing the local behavior of
Green’s functions
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* Any result about the eigenvalues obtained for this formula will be the same for warped and unwarped

Laplacians

« To proceed, we make the ansatz that at large k, m? ~ a’k?*. and we determine a and v from

« For r < 1 the sum can be well approximated by an integral
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* More rigorously, the result follows from Karamata theorem
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« For r < 1 the sum can be well approximated by an integral
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* More rigorously, the result follows from Karamata theorem [Karamata ‘30]

* However, the exchange of limits is not delicate to justify in general, in particular in presence of singularities

* Using the RCD theory we can rigorously prove the Weyl law for solutions with D-brane singularities for which
the spectrum is discrete (D6, D7, D8)
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* Ergodic: * Quantum ergodic:
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* Ergodic: * Quantum ergodic:

» Probability of finding a classical particle in a * Probability of finding a quantum particle in a
region of phase space proportional to the region B proportional to the volume of that region
volume of that region [Schinrelman, ‘74; de Verdiere, ‘85; ,
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- In such spaces, y; () for large k oscillates around a constant r—0 = 5

 ‘Most’ spaces are ergodic, but not all, e.g. when there are symmetries

* |s there a similar notion for the eigenfunctions of the warped Laplacian (f # 0)?
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Weighted quantum ergodicity??

 For f # 0 eigenfunctions cannot oscillate around a constant

. y,(y,)” oscillates around e 700 for k > 1

o o Vol(B)
* With our normalization kll)moo B\/§€ Wi, = Vol/(X) Vol(X) * Weighted Quantum Ergodicity
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 An explicit 1-dimensional check, X = § L ¥ ﬁﬂ
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« Integrating over a b both sides and using Mp 4 = mPl,DVoIfglves again o A e

L o

* This iIs now a conjecture: it is not known to follow from a classical counterpart

» If fis smooth it can be argued for it starting by mapping to a Schrédinger problem and using QE

 But for physical sources f is not smooth
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* By controlling the effective curvature is possible to prove universal bounds on masses of spin 2
KK fields by using theorems in Optimal Transport Theory

« Can we prove stronger bounds on mlz{K/ | A | that exclude, or prove, separation of scales in
certain regimes and for certain sources?
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KK fields by using theorems in Optimal Transport Theory
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* Independently of curvature bounds, the \Weyl law ties the asymptotic KK masses to the volume

my ~ 4xl'(1 4+ n/2)"™Vol ="k s 1

* Can be proven from purely gravitational methods!

e |Leads to the notion of weighted quantum ergodicity
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* For warped compactifications, this does not allow to reconstruct the Planck mass Rule]

 Can we apply similar technigues to other spins?

 What are the corresponding operators? What controls their spectrum?
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« When warping is zero (f = 0) the masses of the spin 2 fields are given by eigenvalues of the standard
Laplacian

| | Aoy = A,

 Some properties of the spectrum independent of the curvature:

o 2/ y~—2/n7,2/ [Weyl, 1912

Weyl Law ;tk ~ 471'F(1 n/2) nVOI nk " k > 1 Minakshisundaram, Pleijel, 1949]
. . hi

* Cheeger inequality Ay 2 Tl [Cheeger, ‘69]

* With a positive lower bound on the Ricci tensor:
T
| * Myer’s theorem diam £ —— [Myers, '41]
Ric > (n — 1)K? — K|
* Lichnerowicz bound A = n K2 Lichnerowicz, ‘58]

e (Classical theorems of this kind are not directly applicable to KK

1. In general f # 0, so theorems on standard Laplacian are not directly useful
2. The equations of motion do not constrain the Ricci tensor enough
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Ry = Vi VS V. fV f=Ag +T, eTA(e)) = —T@ — A
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* This notion of curvature is studied in Bakry-Emery geometry, and Optimal Transport theory

. . C oy . . . [GBDL, De Ponti,
* It also admits a rigorous definition for non-smooth metric spaces, in terms of concavity of entropy, /1ondino. Tomasiello

allowing to rigorously write the supergravity equations for singular spaces. ‘Synthetic curvature’ 2212.02511 & WIP]
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SBDE, De Pontl, Mondino, Cinn ~ 2 | ‘ N<O: spectrum of A4 but mathematical techniques

Tomasiello, ‘23]
less developed. Very recent mathematical

Progress [e.g.: Ohta, Takatsu ‘10, ‘11, Ohta ‘13,
Milman, ‘14, Woolgar, Wylie ‘17 |



The Reduced Energy Condition

* The equations of motion for general vacuum compactifications imply

3 T
. 2—d, 7 = m2z P
RlCmn / — Agmn ~+ Tmn Tmn = Mmp, Tmn y Emn
. g,
What can we say about 1" T > 0 For fluxes, scalar fields, scalar potentials,
mn = D-dim cosmological constants and [Tﬁii[;;e”o 1]

localized sources with positive tension

Reduced Energy Condition

e Same sources that alone are

insufficient to get A > 0 [Gibbons '84, de Wit, Smit,
Hari Dass '87, Maldacena-

* Assuming the REC: Nufiez, '00]

_2—d.f Useful to obtain stronger physical results on the
’ > _ .
RICmn = | A ‘ N<O: spectrum of A, but mathematical techniques

Jl less developed. Very recent mathematical

Progress [e.g.: Ohta, Takatsu ‘10, ‘11, Ohta ‘13,
Milman, ‘14, Woolgar, Wylie ‘17 |

|[GBDL, De Ponti, Mondino,
Tomasiello, ‘23]

02

[GBDL, Tomasiello ‘21] RiC,c;f,;f >—| |A]A N = oo Weaker physical consequences: it requires to
D -2 o * control Vfindependently. Mathematical theory
more mature, more results availiable

o = |sup Vf]



Some eigenvalue bounds for N < 0

[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

. 2,
Ric f> —

mn

[ A



Some eigenvalue bounds for N < 0 Ric24 > — A

|[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

e If my = 0 Separation of scales achieved if
. "
j diam << L, 4¢
«ﬂ o
2 2 ;
Th. 1: my - Lias
A 2 a(d|am/LAdS) . ) dianm Intuitive, but now rigorous even with
diam - » Liss D-brane singularities and warping



Some eigenvalue bounds for N < 0 Ric2% > — | A

mn
|[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

e If my = 0 Separation of scales achieved if
X .
: diam << L, 4¢
«ﬂ o
2 2 =>
Th. 1: mj - Lias
> a(dlam/ LAdS) . I t Intuitive, but now rigorous even with
| A diam p diam ) ) - " -

- 485 D-brane singularities and warping

Define a generalization of Cheeger constants: [Generalization of Cheeger '69, Buser '82]

553

Per«(B)) Example small 4;:

h, = 1nf max
X By.....B, 0<i<k VOI«(B;) (f=0)




Some eigenvalue bounds for N < 0 Ric2% > — | A

mn
|[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

e If my = 0 Separation of scales achieved if
1= diam < L
'AdS
o —>
_ 2 L2
Th. 1: M S i T AdS
N > a(diam AdS) . ) oo Intuitive, but now rigorous even with
diam T » Lise D-brane singularities and warping
Define a generalization of Cheeger constants: [Generalization of Cheeger '69, Buser '82]
B>
. Per«(B)) Example small 4;:
h, = 1nf max
By.....B, 0<i<k VOI«(B;) (f=0)
2 1 2
4
Th. 3: m,? > Ck‘6hk2

If his not small, m;, cannot be small!



Some eigenvalue bounds for N < 0 Ric2% > — | A

mn
|[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

e If my = 0 Separation of scales achieved if
j ) diam < L, 4
> 72 " :7
Th. 1: my diam/I AdS
= a( lam AdS) . , Intuitive, but now rigorous even with
‘ A ‘ d 2 0\\am~/
lam - » Liss D-brane singularities and warping
Define a generalization of Cheeger constants: [Generalization of Cheeger '69, Buser '82]
Per«(B)) Example small 4;:
h, = 1nf max
By.....B, 0<i<k VOl«(B;) (f=0)
2 1 2 . .
Th. 2: m; > _hl Rigorous even in presence of O-planes

: [DeWolfe, Giryavets, Kachru, Taylor, ‘05

Acharya, Benini, Valandro ‘06,

Th. 3: m,? > Ck _6hk2 Can be used to check sep. of scale in %“”gh?”us “220(3 Marchesano, Palti, Quirant,
explicit proposed examples. e.g. In omasiello 20

If his not small, m, cannot be small! h? ~ N2 | A| ~ N7



. - 2
Some eigenvalue bounds for N = o0 Ricsy > — <|A\ = D"_2>

c = |sup Vf|



. - 2
Some eigenvalue bounds for NV = o0 Ric > - (\AI | D"_z)

[GBDL, Tomasiello 21 using

* Valid for smooth spaces with finite diameter: Hassannezhad, 12, Sett, 96 o = [sup Vf|
Th. 4: Th. 5:
m,? <n ( | A H 0 102> + y(n) K ml2 > ™ exp —c(n)diam\/\A\ | o
D -2 diam? diam? D-2



. - 2
Some eigenvalue bounds for NV = o0 Ric > - (\AI | D"_2>

[GBDL, Tomasiello 21 using

* Valid for smooth spaces with finite diameter: Hassannezhad, 12, Seft, 98, 6 = |sup Vf]
Th. 4: Th. 3:
m§<n<\/\\ | D_102)+7/(n) i me > w exp —c(n)diam\/w | o
D -2 diam? diam? D-2
- Valid also in presence of D-brane singularities: be Ponti Mondino 18]
Th. 6: Th. 7:

21 o> 22 14112 2 2816

2 2 o

m: < max hia/ A A ,—h 2 2 | 2
1 10 1\/ D_2 5 1 m; < k“max >s A A > ) m;



. - 2
Some eigenvalue bounds for NV = o0 Ric > - (\AI | D"_2>

[GBDL, Tomasiello 21 using

e Valid for smooth spaces with finite diameter: Hassannezhad, '12, Setti, '98, o = |sup Vf]
Charalambous, Lu, Rowlett '15]
Th. 4: Th. 5:
, D-1 , k? , 7’ _ o’
m; <n( |AlA o ) + y(n)— : my 2 —— exp —c(n)diamy/ |A| 4
D -2 diam diam D-12
» Valid also in presence of D-brane singularities: be Pont, Mondina 18] o
Th. 6: e
21 o> 22 14112 2\ 2816
2 < i | 2 2 _ 12 .0 )
m; < Mmax lohl\/A D—Z’Shl m; < k“max >s A.D_2 -

« In tension with the spin 2 swampland conjecture in the limit &, — 0, h,, o fixed Hlawer, Lbust, Paitl 16

[Bachas '19]



R, = 0 + Casimir - A, <0

 With a compact internal space, Casimir energy density can be automatically generated

[GBDL, De Ponti, Mondino, Tomasiello, ‘22]

* |f the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

D . k [Arkani-Hamed, Dubovsky, Nicolis, Villadoro ‘07]
K—) T’i,j ~ Rc(y) _Dgijf_) Ly~ 2 Rc(y) _Dgab [cf. Maldacena, Milekhin, Popov ‘18]
other directions circle directions \‘ small circle size \/
_ , , (class.)
» Then solve the semi-classical equations: __ 2 5b _ <T(Cas')>
\/—8 O8N My \ t .
CAS. +
« Explicitly in M-theory on A T’ 2 _ 12742 272
Cas _ 9 p—11 4 _
L™ = 1Pl 1R 8 TiJCaS - VALZS 11é’ij R N22/3 s 1
L; 2401 N§ £
S = 1 QG effects under

2 4 >
F7 — N7 Rc 4608 Pc control

F, = fvol 1 J —

\/ parametric separation of scales!

* Non-susy and unstable for M2 bubble nucleation
: : : : 1 Lust, Palti, Vafa, ‘19
+ Compatible with AdS distance conjecture, m2, ~ | A | o b e \atenzucla . 21]

* [Also non stable dS possible in this way but not under parametric control]



