Can you hear the Planck mass?

G. Bruno De Luca - Stanford University

Based on

2405.XXXX with De Ponti, Mondino, Tomasiello 2104.12773 with Tomasiello 2109.11560, 2212.02511, 2306.05456, with De Ponti, Mondino, Tomasiello

Swamplandia 2024 - in Bavaria May 27, 2024

• A single higher-dimensional field gives rise to infinite towers of 4-dimensional fields: Kaluza-Klein modes

$$ds_D^2 = e^{2A(y)}(g_4^{\Lambda}(x) + g_n(y)) \qquad \qquad \varphi(x, y) = \varphi^0(x) + \sum_i \delta\phi(x)\xi_i(y) \qquad \qquad g_{4\,\mu\nu}(x) = g_{\mu\nu}^{(\Lambda)}(x) + \sum_i h_{\mu\nu}^i(x)\psi_i(y)$$

• A single higher-dimensional field gives rise to infinite towers of 4-dimensional fields: Kaluza-Klein modes

$$ds_D^2 = e^{2A(y)}(g_4^{\Lambda}(x) + g_n(y)) \qquad \qquad \varphi^0(x) + \sum_i \delta\phi(x)\xi_i(y) \qquad \qquad g_{4\,\mu\nu}(x) = g_{\mu\nu}^{(\Lambda)}(x) + \sum_i h_{\mu\nu}^i(x)\psi_i(y)$$

• The masses of these fields, are given by eigenvalues of certain differential operators in the internal space. For example

[Duff, Nilsson, Pope, '85]

Table 5 Mass operators from the Freund-Rubin ansatz

Spin	Mass operator	
2+	Δ_0	
(3/2)(1), (2)	$D_{1/2} + 7m/2$	
1-(1), (2)	$\Delta_1 + 12m^2 \pm 6m(\Delta_1 + 4m^2)$	
1+	Δ_2	
(1/2)(4), (1)	$D_{1/2} - 9m/2$	
(1/2)(3), (2)	3m/2-10312	
0+(1), (3)	$\Delta_0 + 44m^2 \pm 12m(\Delta_0 + 9m)$	
0+(2)	$\Delta_{\rm L} - 4m^2$	
0 ^{-(1), (2)}	$Q^2 + 6mQ + 8m^2$	

$$ds_D^2 = e^{2A(y)}(g_4^{\Lambda}(x) + g_n(y)) \qquad \qquad \varphi(x, y) = \varphi^0(x) + \sum_i \delta\phi(x)\xi_i(y) \qquad \qquad g_{4\,\mu\nu}(x) = g_{\mu\nu}^{(\Lambda)}(x) + \sum_i h_{\mu\nu}^i(x)\psi_i(y)$$

- The masses of these fields, are given by eigenvalues of certain differential operators in the internal space. For example
- But when A(y) is non-zero, the general form is not known, except for the universal spin 2 sector

$$f \equiv (D-2)A$$
 $\Delta_f \psi_i \equiv \Delta \psi_i - \nabla f \cdot \nabla \psi_i = m_i^2 \psi_i$

• In particular, $f \neq 0$ for compactifications with sources, where it is generically singular.

• A single higher-dimensional field gives rise to infinite towers of 4-dimensional fields: Kaluza-Klein modes

[Duff, Nilsson, Pope, '85]

Table 5 Mass operators from the Freund-Rubin ansatz

Spin	Mass operator
	4
$(3/2)^{(1),(2)}$	$D_{10} + 7m/2$
1-(1), (2)	$\Delta_1 + 12m^2 \pm 6m(\Delta_1 + 4m^2)$
1+	Δ_2
(1/2)(4), (1)	$D_{1/2} - 9m/2$
(1/2)(3), (2)	3m/2-1032
0+(1), (3)	$\Delta_0 + 44m^2 \pm 12m(\Delta_0 + 9m)$
0+(2)	$\Delta_{\rm L} - 4m^2$
0-(1), (2)	$\overline{Q^2} + 6mQ + 8m^2$

[Csaki, Erich, Hollowood, Shirman, '00, Bachas, Estes, '11]

$$ds_D^2 = e^{2A(y)}(g_4^{\Lambda}(x) + g_n(y)) \qquad \qquad \varphi(x, y) = \varphi^0(x) + \sum_i \delta\phi(x)\xi_i(y) \qquad \qquad g_{4\,\mu\nu}(x) = g_{\mu\nu}^{(\Lambda)}(x) + \sum_i h_{\mu\nu}^i(x)\psi_i(y)$$

- The masses of these fields, are given by eigenvalues of certain differential operators in the internal space. For example
- But when A(y) is non-zero, the general form is not known, except for the universal spin 2 sector

$$f \equiv (D-2)A \qquad \qquad \Delta_f \psi_i \equiv \Delta \psi_i - \nabla f \cdot \nabla \psi_i = m_i^2 \psi_i$$

- In particular, $f \neq 0$ for compactifications with sources, where it is generically singular.
- We want to find general results on the masses m_i^2 , for any compactification solving its equations of motion:

$$\frac{1}{D-2}e^{-f}\Delta(e^f) = \frac{1}{d}\hat{T}^{(d)} - \Lambda$$

A single higher-dimensional field gives rise to infinite towers of 4-dimensional fields: Kaluza-Klein modes

[Duff, Nilsson, Pope, '85]

Table 5 Mass operators from the Freund-Rubin ansatz

Spin	Mass operator
2+	Δ0
(3/2)(1), (2)	$D_{1/2} + 7m/2$
1-(1), (2)	$\Delta_1 + 12m^2 \pm 6m(\Delta_1 + 4m^2)$
1 ⁺	Δ_2
(1/2) ^{(4), (1)}	1/2 - 9m/2
(1/2)(3), (2)	3m/2-10312
0+(1), (3)	$\Delta_0 + 44m^2 \pm 12m(\Delta_0 + 9m)$
0+(2)	$\Delta_{\rm L} - 4m^2$
0-(1), (2)	$Q^2 + 6mQ + 8m^2$

 ψ_i

[Csaki, Erich, Hollowood, Shirman, '00, Bachas, Estes, '11]

$${}_{nn} - \nabla_m \nabla_n f + \frac{1}{n - (2 - d)} \nabla_m f \nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn}$$

Curvature bounds and the spectrum $R_{mn} - \nabla_m \nabla_n f + \frac{1}{D-2} \nabla_m f \nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn}$

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

Curvature bounds and the spectrum

$$R_{mn} - \nabla_m \nabla_n f + \frac{1}{D-2} \nabla_m f \nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn}$$

- Synthetic Ricci curvature in effective dimension
- Studied in the Optimal Transport literature, controls the spectrum of Δ_f
 - Allows to derive rigorous bounds on $m_{KK}^2/|\Lambda|$ in general
 - Stronger bounds if only classical sources are allowed. But not enough to prove \bullet absence of separation of scales even with just classical sources

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

$$N = 2 - d$$

[Sturm '06, Lott, Villani '07, Villani '09, Ambrosio, Gigli, Savaré '14, ...]

[GBDL, Tomasiello, '21, GBDL, De Ponti, Mondino, Tomasiello, '21, '22, '23]

Curvature bounds and the spectrum

$$R_{mn} - \nabla_m \nabla_n f + \frac{1}{D-2} \nabla_m f \nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn}$$

- Synthetic Ricci curvature in effective dimension
- Studied in the Optimal Transport literature, controls the spectrum of Δ_f
 - Allows to derive rigorous bounds on $m_{KK}^2/|\Lambda|$ in general
 - Stronger bounds if only classical sources are allowed. But not enough to prove absence of separation of scales even with just classical sources
- Are there universal results, independent of the curvature bounds?
 - Yes: Bounds in terms of the Cheeger constants [GBDL, De Ponti, Mondino, Tomasiello, '21]
 - Allow to rigorously bound and estimate the sprectrum of the warped Laplacian even in presence of orientifold planes
 - Can be used to check sep. of scale in explicit proposed examples (e.g. DGKT) without needing to compute the spectrum

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

$$N = 2 - d$$

[GBDL, Tomasiello, '21, GBDL, De Ponti, Mondino, Tomasiello, '21, '22, '23]

[Sturm '06, Lott, Villani '07, Villani '09,

Ambrosio, Gigli, Savaré '14, ...]

 $m_1^2 \ge \frac{1}{\Lambda} h_1^2 \quad m_k^2 \ge Ck^{-6}h_k^2$

[DeWolfe, Giryavets, Kachru, Taylor, '05 Acharya, Benini, Valandro '06, Junghans '20, Marchesano, Palti, Quirant, Tomasiello '20]

$$h_1^2 \sim N^{-1/2} , |\Lambda| \sim N^{-3/2}$$

Curvature bounds and the spectrum

$$R_{mn} - \nabla_m \nabla_n f + \frac{1}{D-2} \nabla_m f \nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn}$$

- Synthetic Ricci curvature in effective dimension
- Studied in the Optimal Transport literature, controls the spectrum of Δ_f
 - Allows to derive rigorous bounds on $m_{KK}^2/|\Lambda|$ in general
 - Stronger bounds if only classical sources are allowed. But not enough to prove absence of separation of scales even with just classical sources
- Are there universal results, independent of the curvature bounds?
 - Yes: Bounds in terms of the Cheeger constants [GBDL, De Ponti, Mondino, Tomasiello, '21]
 - Allow to rigorously bound and estimate the sprectrum of the warped Laplacian even in presence of orientifold planes
 - Can be used to check sep. of scale in explicit proposed examples (e.g. DGKT) without needing to compute the spectrum
- This talk: another class of universal properties

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

$$N = 2 - d$$

[GBDL, Tomasiello, '21, GBDL, De Ponti, Mondino, Tomasiello, '21, '22, '23]

[Sturm '06, Lott, Villani '07, Villani '09,

Ambrosio, Gigli, Savaré '14, ...]

 $m_1^2 \ge \frac{1}{\Lambda} h_1^2 \quad m_k^2 \ge Ck^{-6}h_k^2$

[DeWolfe, Giryavets, Kachru, Taylor, '05 Acharya, Benini, Valandro '06, Junghans '20, Marchesano, Palti, Quirant, Tomasiello '20]

$$h_1^2 \sim N^{-1/2} , |\Lambda| \sim N^{-3/2}$$

• The eigenvalues of the standard Laplacian on smooth, compact, *n*-dimensional Riemannian manifolds satisfy

$$\Delta_0 \psi_i = \lambda_i \psi_i \qquad \lambda_k \sim 4\pi \Gamma (1 + n)$$

• You cannot hear the shape of a drum but you can hear its area! [Kac, 1966,...]

[Weyl, 1912 $(k/2)^{2/n} \sqrt{O}^{-2/n} k^{2/n}$ $k \gg 1$ [Weyl, 1912] Minakshisundaram, Pleijel, 1949] ...]

Weyl law

• The eigenvalues of the standard Laplacian on smooth, compact, *n*-dimensional Riemannian manifolds satisfy

$$\Delta_0 \psi_i = \lambda_i \psi_i \qquad \lambda_k \sim 4\pi \Gamma (1 + n)$$

- You cannot hear the shape of a drum but you can hear its area! [Kac, 1966,...]
- For a compactification without warping (f = 0):
 - Knowing the asymptotics of the spectrum allows to reconstruct the 4d Planck mass

 $(2)^{2/n} \mathrm{Vol}^{-2/n} k^{2/n} \qquad k \gg 1$ [Weyl, 1912] Minakshisundaram, Pleijel, 1949

...]

$$m_k^2 = \lambda_k \qquad \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \text{Vol}$$

Weyl law

• The eigenvalues of the standard Laplacian on smooth, compact, *n*-dimensional Riemannian manifolds satisfy

$$\Delta_0 \psi_i = \lambda_i \psi_i \qquad \lambda_k \sim 4\pi \Gamma (1 + n/2)^{2/n} \text{Vol}^{-2/n} k^{2/n} \qquad k \gg 1$$

- You cannot hear the shape of a drum but you can hear its area! [Kac, 1966,...]
- For a compactification without warping (f = 0):
 - Knowing the asymptotics of the spectrum allows to reconstruct the 4d Planck mass
- $\Delta_f \psi_k = (\Delta \nabla f \cdot \nabla) \psi_k =$ • With warping:
 - Naively, we would expect the Weyl law for the weighted Laplacian still depends on the Planck mass, so on the warped volume

[Weyl, 1912] Minakshisundaram, Pleijel, 1949 ...]

$$m_k^2 = \lambda_k \qquad \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \text{Vol}$$

$$= m_k^2 \psi_k \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \operatorname{Vol}_f \qquad \operatorname{Vol}_f \equiv \int_{M_n} \sqrt{g_n} e^f$$

Weyl law

• The eigenvalues of the standard Laplacian on smooth, compact, *n*-dimensional Riemannian manifolds satisfy

$$\Delta_0 \psi_i = \lambda_i \psi_i \qquad \lambda_k \sim 4\pi \Gamma (1 + n/2)^{2/n} \text{Vol}^{-2/n} k^{2/n} \qquad k \gg 1$$

- You cannot hear the shape of a drum but you can hear its area! [Kac, 1966,...]
- For a compactification without warping (f = 0):
 - Knowing the asymptotics of the spectrum allows to reconstruct the 4d Planck mass
- $\Delta_f \psi_k = (\Delta \nabla f \cdot \nabla) \psi_k =$ • With warping:
 - Naively, we would expect the Weyl law for the weighted Laplacian still depends on the Planck mass, so on the warped volume
- end extend it to spaces with singularities

[Weyl, 1912] Minakshisundaram, Pleijel, 1949 ...]

$$m_k^2 = \lambda_k \qquad \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \text{Vol}$$

$$= m_k^2 \psi_k \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \operatorname{Vol}_f \qquad \operatorname{Vol}_f \equiv \int_{M_n} \sqrt{g_n} e^f$$

• But this is false: for weighted Laplacians the Weyl law still depends on the ordinary volume

• Next: we will obtain the Weyl law for the warped case by using consistency of the gravitational theory,

Weyl law from the gravitational potential

- Main idea: The 4d theory at distances ρ much smaller than the compactification scale has to in an appropriate way.
- We can check this explicitly in the universal spin 2 sector $S = m_D^{D-2} \int \sqrt{-g_D} R_D + \dots$ • Take a general higher dimensional theory of gravity • And compute the gravitational potential U between two $S_{M_{1,2}} = -M_{1,2} \int_{\Sigma} \sqrt{-g_D} |_{\Sigma}$ mass sources with masses M_1 and M_2

reproduce the higher-D behavior. For this to happen, the very massive KK modes have to behave

Weyl law from the gravitational potential

- Main idea: The 4d theory at distances ρ much smaller than the compactification scale has to in an appropriate way.
- We can check this explicitly in the universal spin 2 sector $S = m_D^{D-2} \int \sqrt{-g_D} R_D + \dots$ • Take a general higher dimensional theory of gravity • And compute the gravitational potential U between two $S_{M_{1,2}} = -M_{1,2} \int_{\Sigma} \sqrt{-g_D} |_{\Sigma}$ mass sources with masses M_1 and M_2

 $\rho \rightarrow 0$

- We compare two situations:

D-dimensional space-time is Mink_D

D-dimensional space-time is a warped product $\mathscr{M}_4 imes X$

• And require $U_{4d}(\rho) \rightarrow U_D(\rho)$

reproduce the higher-D behavior. For this to happen, the very massive KK modes have to behave

$$ds_D^2 = e^{2A(y)} (\bar{\eta}_{\mu\nu} dx^{\mu} dx^{\nu} + g_n (x^{\mu} dx^{\nu}) + g_n (x^{\mu} dx^{\mu}) + g_n$$

[Readily generalizes to higher dimensions or $\Lambda \neq 0$]

Constraint on spectral data from gravity

Constraint on spectral data from gravity

$$\begin{split} & h_{00} = \frac{M_1}{2} \delta_{D-1} \qquad h_{00} = -\frac{M_1}{2(D-3)\omega_{(D-2)}} \frac{1}{\rho^{D-3}} \\ & \underline{U_D(\rho) = M_2 \left(1 - m_{Pl,D}^{2-D} h_{00}(\rho)\right)} \\ & = m_k^2 \psi_k \qquad \int_X \sqrt{g} e^f \psi_k \psi_l = \operatorname{Vol}_J \delta_{kl} \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \operatorname{Vol}_f \\ & \underline{V_k^2} h_{00}^k = \frac{M_1}{2} e^{2A(y_0)} \psi_k(y_0) \delta_3(x) \qquad \bar{h}_{00}^k = -\frac{M_1}{8\pi} \frac{e^{-m_k r}}{r} e^{-A(y_0)} \psi_k(y_0) \\ & \underline{U_{4d}(r) = M_2 \left(1 - \frac{m_{Pl,4}^{-2}}{2} \sum_k e^{2A(y_0)} \bar{h}_{00}^k(r, y_0) \psi_k(y_0)\right)} \end{split}$$

Constraint on spectral data from gravity

Green's functions

$$\begin{split} & h_{00} = -\frac{M_1}{2} \delta_{D-1} \qquad h_{00} = -\frac{M_1}{2(D-3)\omega_{(D-2)}} \frac{1}{\rho^{D-3}} \\ & U_D(\rho) = M_2 \left(1 - m_{Pl,D}^{2-D} h_{00}(\rho)\right) \\ &= m_k^2 \psi_k \qquad \int_X \sqrt{g} e^f \psi_k \psi_l = \operatorname{Vol}_f \delta_{kl} \qquad m_{Pl,4}^2 = m_{Pl,D}^{D-2} \operatorname{Vol}_f \\ & k_k^2 \delta_{00}^2 = \frac{M_1}{2} e^{2A(y_0)} \psi_k(y_0) \delta_3(x) \qquad \bar{h}_{00}^k = -\frac{M_1}{8\pi} \frac{e^{-m_k r}}{r} e^{-A(y_0)} \psi_k(y_0) \\ & U_{4d}(r) = M_2 \left(1 - \frac{m_{Pl,4}^{-2}}{2} \sum_k e^{2A(y_0)} \bar{h}_{00}^k(r, y_0) \psi_k(y_0)\right) \\ & f^{(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \end{split}$$

• We can also obtain a mathematically rigorous proof of this formula by directly comparing the local behavior of

Proof of the Weyl law: integrated argument

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} -$$

- The effect of the warping completely disappeared using
 - Any result about the eigenvalues obtained for thi Laplacians

• Any result about the eigenvalues obtained for this formula will be the same for warped and unwarped

Proof of the Weyl law: integrated argument

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}}$$

$$\int_{X}$$

- The effect of the warping completely disappeared using
 - Laplacians
- - For $r \ll 1$ the sum can be well approximated by an integral

• More rigorously, the result follows from Karamata theorem

1

• Any result about the eigenvalues obtained for this formula will be the same for warped and unwarped

• To proceed, we make the ansatz that at large k, $m_k^2 \sim \alpha^2 k^{2/\nu}$, and we determine α and ν from

[Karamata '30]

Proof of the Weyl law: integrated argument

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}}$$

$$\int_{X}$$

- The effect of the warping completely disappeared using
 - Laplacians
- - For $r \ll 1$ the sum can be well approximated by an integral

- More rigorously, the result follows from Karamata theorem
- the spectrum is discrete (D6, D7, D8)

• Any result about the eigenvalues obtained for this formula will be the same for warped and unwarped

• To proceed, we make the ansatz that at large k, $m_k^2 \sim \alpha^2 k^{2/\nu}$, and we determine α and ν from

[Karamata '30]

• However, the exchange of limits is not delicate to justify in general, in particular in presence of singularities • Using the RCD theory we can rigorously prove the Weyl law for solutions with D-brane singularities for which

Quantum ergodicity

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \quad \text{the}$$

finite number of modes does not contribute to the lhs, it's e infinite tail at large k that gives a non-zero contribution to e limit. We need to estimate $\psi_k(y_0)^2$ for $k \gg 1$.

Quantum ergodicity

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \qquad \text{the}$$

• Ergodic:

• Probability of finding a classical particle in a region of phase space proportional to the volume of that region

[Schinrelman, '74; de Verdière, '85; Zelditch, '87]

$$\forall f \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\gamma(t), \dot{\gamma}(t)) dt = \int_{S^* X} f\omega$$

finite number of modes does not contribute to the lhs, it's e infinite tail at large k that gives a non-zero contribution to e limit. We need to estimate $\psi_k(y_0)^2$ for $k \gg 1$.

• Few results are known for eigenfunctions. But for f = 0, if the space is ergodic it is also Quantum Ergodic

• Quantum ergodic:

 Probability of finding a quantum particle in a region B proportional to the volume of that region

$$\lim_{\substack{k \to \infty \\ k \notin e}} \frac{\int_B \sqrt{g} \psi_k^2}{\int_X \sqrt{g} \psi_k^2} = \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(X)}$$

Quantum ergodicity

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \qquad \text{the}$$

• Ergodic:

• Probability of finding a classical particle in a region of phase space proportional to the volume of that region

[Schinrelman, '74; de Verdière, '85; Zelditch, '87]

$$\forall f \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\gamma(t), \dot{\gamma}(t)) dt = \int_{S^* X} f\omega$$

- In such spaces, $\psi_k^2(y_0)$ for large k oscillates around a constant
 - 'Most' spaces are ergodic, but not all, e.g. when there are symmetries
- Is there a similar notion for the eigenfunctions of the warped Laplacian ($f \neq 0$)?

finite number of modes does not contribute to the lhs, it's e infinite tail at large k that gives a non-zero contribution to e limit. We need to estimate $\psi_k(y_0)^2$ for $k \gg 1$.

• Few results are known for eigenfunctions. But for f = 0, if the space is ergodic it is also Quantum Ergodic

• Quantum ergodic:

 Probability of finding a quantum particle in a region B proportional to the volume of that region

$$\lim_{\substack{k \to \infty \\ k \notin e}} \frac{\int_{B} \sqrt{g} \psi_{k}^{2}}{\int_{X} \sqrt{g} \psi_{k}^{2}} = \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(X)}$$
$$\lim_{k \neq e} r^{n} \sum_{k=0}^{\infty} e^{-m_{k}r} = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \operatorname{Vol}(R)$$

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \quad \bullet \quad \mathsf{Fc}$$

- or $f \neq 0$ eigenfunctions cannot oscillate around a constant
- $\psi_k(y_0)^2$ oscillates around $e^{-f(y_0)}$ for $k \gg 1$

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \quad \bullet \quad \mathsf{Fc}$$

With our normalization

• An explicit 1-dimensional check, $X = S^1$, $f = \sin(x) + \cos^3(x)$

or $f \neq 0$ eigenfunctions cannot oscillate around a constant $V_k(y_0)^2$ oscillates around $e^{-f(y_0)}$ for $k \gg 1$

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \quad \bullet \quad \mathsf{Fc}$$

With our normalization

 $\lim_{\substack{k \to \infty \\ k \notin e}} \int_{B} \sqrt{g} e^{f} \psi_{k}^{2} = \operatorname{Vol}_{f}(X) \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(X)}$

• An explicit 1-dimensional check, $X = S^1$, $f = \sin(x) + \cos^3(x)$

- Integrating over a B both sides and using $m_{Pl,4}^2 = m_{Pl,D}^{D-2} \text{Vol}_f$ gives again

or $f \neq 0$ eigenfunctions cannot oscillate around a constant $\psi_k(y_0)^2$ oscillates around $e^{-f(y_0)}$ for $k \gg 1$ Weighted Quantum Ergodicity

 $\lim_{r \to 0} r^n \sum_{k=0}^{\infty} e^{-m_k r} = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \text{Vol}$

$$e^{f(y_0)} \lim_{r \to 0} r^n \sum_{k=0}^{\infty} \psi_k^2(y_0) e^{-m_k r} = \frac{m_{Pl,4}^2}{m_{Pl,D}^{D-2}} \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \quad \bullet \quad \mathsf{Fc}$$

With our normalization

 $\lim_{\substack{k \to \infty \\ k \notin e}} \int_{B} \sqrt{g} e^{f} \psi_{k}^{2} = \operatorname{Vol}_{f}(X) \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(X)}$

• An explicit 1-dimensional check, $X = S^1$, $f = \sin(x) + \cos^3(x)$

• Integrating over a *B* both sides and using $m_{Pl,4}^2 = m_{Pl,D}^{D-2} \text{Vol}_f$ gives again

- This is now a conjecture: it is not known to follow from a classical counterpart

 - But for physical sources *f* is not smooth

or $f \neq 0$ eigenfunctions cannot oscillate around a constant $V_k(y_0)^2$ oscillates around $e^{-f(y_0)}$ for $k \gg 1$ Weighted Quantum Ergodicity $\lim_{r \to 0} r^n \sum_{k=0}^{\infty} e^{-m_k r} = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \text{Vol}$

• If f is smooth it can be argued for it starting by mapping to a Schrödinger problem and using QE

Recap and future directions

- - KK fields by using theorems in Optimal Transport Theory
 - certain regimes and for certain sources?

• The spin 2 Kaluza-Klein spectrum can be studied in general, without specifying the background

• By controlling the effective curvature is possible to prove universal bounds on masses of spin 2

• Can we prove stronger bounds on $m_{KK}^2/|\Lambda|$ that exclude, or prove, separation of scales in

Recap and future directions

- The spin 2 Kaluza-Klein spectrum can be studied in general, without specifying the background
 - By controlling the effective curvature is possible to prove universal bounds on masses of spin 2 KK fields by using theorems in Optimal Transport Theory
 - Can we prove stronger bounds on $m_{KK}^2/|\Lambda|$ that exclude, or prove, separation of scales in certain regimes and for certain sources?
 - Independently of curvature bounds, the Weyl law ties the asymptotic KK masses to the volume

$$m_k^2 \sim 4\pi\Gamma(1+n/2)^{2/n} \text{Vol}^{-2/n} k^{2/n}$$
 $k \gg 1$

- Can be proven from purely gravitational methods!
- Leads to the notion of weighted quantum ergodicity
- For warped compactifications, this does not allow to reconstruct the Planck mass

[Hinchliffe's Rule]

Recap and future directions

- The spin 2 Kaluza-Klein spectrum can be studied in general, without specifying the background
 - By controlling the effective curvature is possible to prove universal bounds on masses of spin 2 KK fields by using theorems in Optimal Transport Theory
 - Can we prove stronger bounds on $m_{KK}^2/|\Lambda|$ that exclude, or prove, separation of scales in certain regimes and for certain sources?
 - Independently of curvature bounds, the Weyl law ties the asymptotic KK masses to the volume

$$m_k^2 \sim 4\pi\Gamma(1+n/2)^{2/n}$$
 Vol^{-2/n} $k^{2/n}$ $k \gg 1$

- Can be proven from purely gravitational methods!
- Leads to the notion of weighted quantum ergodicity
- For warped compactifications, this does not allow to reconstruct the Planck mass
- Can we apply similar techniques to other spins?
 - What are the corresponding operators? What controls their spectrum?

Rule]

V I. Cont. *

A Manh

Some classical geometrical results

• When warping is zero (f = 0) the masses of the Laplacian

• When warping is zero (f = 0) the masses of the spin 2 fields are given by eigenvalues of the standard

$$\Delta_0 \psi_i = \lambda_i \psi_i$$

Some classical geometrical results

- Laplacian
 - Some properties of the spectrum independent of the curvature:

• Weyl Law
$$\lambda_k \sim 4\pi\Gamma($$

• Cheeger inequality $\lambda_1 \ge \frac{h_1^2}{4}$

• With a positive lower bound on the Ricci tensor:

$$\mathsf{Ric} \ge (n-1)K^2$$

• When warping is zero (f = 0) the masses of the spin 2 fields are given by eigenvalues of the standard

$$\Delta_0 \psi_i = \lambda_i \psi_i$$

[Weyl, 1912 $(1 + n/2)^{2/n} \text{Vol}^{-2/n} k^{2/n}$ $k \gg 1$ Minakshisundaram, Pleijel, 1949]

[Cheeger, '69]

Some classical geometrical results

- Laplacian
 - Some properties of the spectrum independent of the curvature:

• Weyl Law
$$\lambda_k \sim 4\pi\Gamma($$

• Cheeger inequality $\lambda_1 \ge \frac{h_1^2}{4}$

With a positive lower bound on the Ricci tensor:

$$\operatorname{Ric} \ge (n-1)K^2$$
 =

- Classical theorems of this kind are not directly applicable to KK
 - 1. In general $f \neq 0$, so theorems on standard Laplacian are not directly useful
 - 2. The equations of motion do not constrain the Ricci tensor enough

• When warping is zero (f = 0) the masses of the spin 2 fields are given by eigenvalues of the standard

$$\Delta_0 \psi_i = \lambda_i \psi_i$$

[Weyl, 1912 $(1 + n/2)^{2/n} \text{Vol}^{-2/n} k^{2/n} \qquad k \gg 1$ Minakshisundaram, Pleijel, 1949] [Cheeger, '69]

- We have analyzed the asymptotic behavior of m_k^2 for warped compactifications, which is fairly insensitive to the geometry

• Can we obtain more detailed bounds on the KK spectrum by controlling the geometry through the EOMs?

- We have analyzed the asymptotic behavior of m_k^2 for warped compactifications, which is fairly insensitive to the geometry

 - For warped compactifications, it does not seem possible to bound standard notions of curvature:

$$R_{mn} - \nabla_m \nabla_n f + \frac{1}{n - (2 - d)} \nabla_m f \nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn} \qquad \qquad \frac{1}{D - 2} e^{-f} \Delta(e^f) = \frac{1}{d} \hat{T}^{(d)} - \Lambda$$

• Can we obtain more detailed bounds on the KK spectrum by controlling the geometry through the EOMs?

- We have analyzed the asymptotic behavior of m_k^2 for warped compactifications, which is fairly insensitive to the geometry

 - For warped compactifications, it does not seem possible to bound standard notions of curvature:

• Can we obtain more detailed bounds on the KK spectrum by controlling the geometry through the EOMs?

$$\nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn} \qquad \qquad \frac{1}{D-2} e^{-f} \Delta(e^f) = \frac{1}{d} \hat{T}^{(d)} - \Lambda$$

[GBDL, De Ponti, Mondino, Tomasiello, 2212.02511]

- We have analyzed the asymptotic behavior of m_{k}^{2} for warped compactifications, which is fairly insensitive to the geometry

 - For warped compactifications, it does not seem possible to bound standard notions of curvature:

• Can we obtain more detailed bounds on the KK spectrum by controlling the geometry through the EOMs?

$$\nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn} \qquad \qquad \frac{1}{D-2} e^{-f} \Delta(e^f) = \frac{1}{d} \hat{T}^{(d)} - \Lambda$$

[GBDL, De Ponti, Mondino, Tomasiello, 2212.02511]

- We have analyzed the asymptotic behavior of m_{k}^{2} for warped compactifications, which is fairly insensitive to the geometry

 - For warped compactifications, it does not seem possible to bound standard notions of curvature:

- This notion of curvature is studied in Bakry-Emery geometry, and Optimal Transport theory
 - It also admits a rigorous definition for non-smooth metric spaces, in terms of concavity of entropy, allowing to rigorously write the supergravity equations for singular spaces. 'Synthetic curvature'

• Can we obtain more detailed bounds on the KK spectrum by controlling the geometry through the EOMs?

$$\nabla_n f = \Lambda g_{mn} + \tilde{T}_{mn} \qquad \qquad \frac{1}{D-2} e^{-f} \Delta(e^f) = \frac{1}{d} \hat{T}^{(d)} - \Lambda$$

[GBDL, De Ponti, Mondino, Tomasiello, 2212.02511]

[GBDL, De Ponti, Mondino, Tomasiello, 2212.02511 & WIP]

• The equations of motion for general vacuum compactifications imply

$$\operatorname{Ric}_{mn}^{2-d,f} = \Lambda g_{mn} + \tilde{T}_m$$

• What can we say about \tilde{T}_{mn} ?

mn

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

• The equations of motion for general vacuum compactifications imply

$$\mathsf{Ric}_{mn}^{2-d,f} = \Lambda g_{mn} + \tilde{T}_{mn}$$

• What can we say about T_{mn} ?

Reduced Energy Condition

mn

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

For fluxes, scalar fields, scalar potentials, D-dim cosmological constants and localized sources with positive tension

[GBDL, Tomasiello '21]

• Same sources that alone are

insufficient to get $\Lambda > 0$

[Gibbons '84, de Wit, Smit, Hari Dass '87, Maldacena-Nuñez, '00]

• The equations of motion for general vacuum compactifications imply

$$\mathsf{Ric}_{mn}^{2-d,f} = \Lambda g_{mn} + \tilde{T}$$

• What can we say about T_{mn} ?

 $\tilde{T}_{mn} \ge 0$

Reduced Energy Condition

• Assuming the REC:

[GBDL, De Ponti, Mondino, Tomasiello, '23]

 $\operatorname{Ric}_{mn}^{2-d,f} \ge -|\Lambda| \longrightarrow N < 0:$

mn

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

For fluxes, scalar fields, scalar potentials, D-dim cosmological constants and localized sources with positive tension

[GBDL, Tomasiello '21]

 Same sources that alone are insufficient to get $\Lambda > 0$

[Gibbons '84, de Wit, Smit, Hari Dass '87, Maldacena-Nuñez, '00]

Useful to obtain stronger physical results on the spectrum of Δ_f , but mathematical techniques less developed. Very recent mathematical progress [e.g.: Ohta, Takatsu '10, '11, Ohta '13, Milman, '14, Woolgar, Wylie '17]

• The equations of motion for general vacuum compactifications imply

$$\mathsf{Ric}_{mn}^{2-d,f} = \Lambda g_{mn} + \tilde{T}$$

• What can we say about T_{mn} ?

 $\tilde{T}_{mn} \ge 0$

Reduced Energy Condition

• Assuming the REC:

 $\operatorname{Ric}_{mn}^{2-d,f} \ge -|\Lambda| \longrightarrow N < 0:$ [GBDL, De Ponti, Mondino, Tomasiello, '23] $\operatorname{Ric}_{mn}^{\infty,f} \ge |\Lambda| + \frac{\sigma}{D-2}$ [GBDL, Tomasiello '21] $\sigma \equiv |\sup \nabla f|$

mn

$$\tilde{T}_{mn} \equiv m_D^{2-D} \left(T_{mn} - \frac{T^{(d)}}{d} g_{mn} \right)$$

For fluxes, scalar fields, scalar potentials, D-dim cosmological constants and localized sources with positive tension

[GBDL, Tomasiello '21]

 Same sources that alone are insufficient to get $\Lambda > 0$

[Gibbons '84, de Wit, Smit, Hari Dass '87, Maldacena-Nuñez, '00]

Useful to obtain stronger physical results on the spectrum of Δ_f , but mathematical techniques less developed. Very recent mathematical progress [e.g.: Ohta, Takatsu '10, '11, Ohta '13, Milman, '14, Woolgar, Wylie '17]

 $\rightarrow N = \infty$:

Weaker physical consequences: it requires to control ∇f independently. Mathematical theory more mature, more results available

[GBDL, De Ponti, Mondino, Tomasiello, '22]

• If $m_0 = 0$

[GBDL, De Ponti, Mondino, Tomasiello, '22]

oliam/Lads

 $\operatorname{Ric}_{mn}^{2-d,f} \ge -|\Lambda|$

Separation of scales achieved if diam $\ll L_{AdS}$

Intuitive, but now rigorous even with D-brane singularities and warping

[GBDL, De Ponti, Mondino, Tomasiello, '22]

• If
$$m_0 = 0$$

Th. 1: $\frac{m_1^2}{|\Lambda|} \ge \alpha (\text{diam}/L_{AdS}) \frac{L_{AdS}^2}{\text{diam}^2}$

Define a generalization of Cheeger constants:

$$h_k \equiv \inf_{B_0, \dots, B_k} \max_{0 \le i \le k} \frac{\operatorname{Per}_f(B_i)}{\operatorname{Vol}_f(B_i)}$$
Example
(f = 0)

 $\operatorname{Ric}_{mn}^{2-d,f} \ge - |\Lambda|$

Separation of scales achieved if diam $\ll L_{AdS}$

Intuitive, but now rigorous even with D-brane singularities and warping

[Generalization of Cheeger '69, Buser '82]

oliam/LASS

e small h_1 : (C)

[GBDL, De Ponti, Mondino, Tomasiello, '22]

• If
$$m_0 = 0$$

Th. 1: $\frac{m_1^2}{|\Lambda|} \ge \alpha (\text{diam}/L_{AdS}) \frac{L_{AdS}^2}{\text{diam}^2}$

Define a generalization of Cheeger constants:

$$h_k \equiv \inf_{B_0, \dots, B_k} \max_{0 \le i \le k} \frac{\operatorname{Per}_f(B_i)}{\operatorname{Vol}_f(B_i)}$$
Example (f = 0)

Th. 2:
$$m_1^2 \ge \frac{1}{4}h_1^2$$

 $m_k^2 \ge Ck^{-6}h_k^2$ Th. 3:

If h_k is not small, m_k cannot be small!

 $\operatorname{Ric}_{mn}^{2-d,f} \ge -|\Lambda|$

Separation of scales achieved if diam $\ll L_{AdS}$

Intuitive, but now rigorous even with D-brane singularities and warping

[Generalization of Cheeger '69, Buser '82]

oliam/LAds

e small h_1 : (0)

[GBDL, De Ponti, Mondino, Tomasiello, '22]

• If
$$m_0 = 0$$

Th. 1: $\frac{m_1^2}{|\Lambda|} \ge \alpha (\text{diam}/L_{AdS}) \frac{L_{AdS}^2}{\text{diam}^2}$

Define a generalization of Cheeger constants:

$$h_k \equiv \inf_{B_0, \dots, B_k} \max_{0 \le i \le k} \frac{\operatorname{Per}_f(B_i)}{\operatorname{Vol}_f(B_i)}$$
Example
(f = 0)

If h_k is not small, m_k cannot be small!

 $\operatorname{Ric}_{mn}^{2-d,f} \ge -|\Lambda|$

Separation of scales achieved if diam $\ll L_{AdS}$

Intuitive, but now rigorous even with D-brane singularities and warping

[Generalization of Cheeger '69, Buser '82]

oliam/Lads

e small h_1 : **(**(

Rigorous even in presence of O-planes

Can be used to check sep. of scale in explicit proposed examples. e.g. in

[DeWolfe, Giryavets, Kachru, Taylor, '05] Acharya, Benini, Valandro '06, Junghans '20, Marchesano, Palti, Quirant, Tomasiello '20]

 $h_1^2 \sim N^{-1/2}$, $|\Lambda| \sim N^{-3/2}$

Some eigenvalue bounds for $N = \infty$

 $\operatorname{Ric}_{mn}^{\infty,f} \ge -\left(|\Lambda| + \frac{\sigma^2}{D-2}\right)$

 $\sigma \equiv |\sup \nabla f|$

 Valid for smooth spaces with finite diameter: Th. 4:

$$m_k^2 \leqslant n\left(|\Lambda| + \frac{D-1}{D-2}\sigma^2\right) + \gamma(n)\frac{k^2}{\text{diam}^2}$$

$$\operatorname{Ric}_{mn}^{\infty,f} \ge -\left(|\Lambda| + \frac{\sigma^2}{D-2} \right)$$
[GBDL, Tomasiello '21 using
Hassannezhad, '12, Setti, '98,
Charalambous, Lu, Rowlett '15]
$$\sigma \equiv |\operatorname{sup} \nabla f|$$
Th. 5:
$$m_1^2 \ge \frac{\pi^2}{\operatorname{diam}^2} \exp\left(-c(n)\operatorname{diam}\sqrt{|\Lambda| + \frac{\sigma^2}{D-2}} \right)$$

 Valid for smooth spaces with finite diameter: Th. 4:

$$m_k^2 \leqslant n \left(|\Lambda| + \frac{D-1}{D-2} \sigma^2 \right) + \gamma(n) \frac{k^2}{\text{diam}^2}$$

• Valid also in presence of D-brane singularities:

Th. 6:

$$m_1^2 \leq \max\left\{\frac{21}{10}h_1\sqrt{\Lambda + \frac{\sigma^2}{D-2}}, \frac{22}{5}h_1^2\right\} \qquad m_k^2 <$$

$$N = \infty \qquad \operatorname{Ric}_{mn}^{\infty,f} \ge -\left(|\Lambda| + \frac{\sigma^2}{D-2}\right)$$
[GBDL, Tomasiello '21 using
Hassannezhad, '12, Setti, '98,
Charalambous, Lu, Rowlett '15]
$$\sigma \equiv |\operatorname{sup} \nabla f$$
Th. 5:
$$m_1^2 \ge \frac{\pi^2}{\operatorname{diam}^2} \exp\left(-c(n)\operatorname{diam}\sqrt{|\Lambda| + \frac{\sigma^2}{D-2}}\right)$$

[GBDL, De Ponti, Mondino, Tomasiello, '21, using De Ponti, Mondino '19]

 $n_k^2 < k^2 \max\left\{\frac{14112}{25} \left(\Lambda + \frac{\sigma^2}{D-2}\right), \frac{2816}{5} m_1^2\right\}$

• Valid for smooth spaces with finite diameter: Th. 4:

$$m_k^2 \leqslant n\left(|\Lambda| + \frac{D-1}{D-2}\sigma^2\right) + \gamma(n)\frac{k^2}{\text{diam}^2}$$

• Valid also in presence of D-brane singularities:

Th. 6:

$$m_1^2 \le \max\left\{\frac{21}{10}h_1\sqrt{\Lambda + \frac{\sigma^2}{D-2}}, \frac{22}{5}h_1^2\right\} \qquad m_k^2 < k^2 \max\left\{\frac{14112}{25}\left(\Lambda + \frac{\sigma^2}{D-2}\right), \frac{2816}{5}m_1^2\right\}$$

Τ

• In tension with the spin 2 swampland conjecture in the limit $h_1 \rightarrow 0, h_2, \sigma$ fixed

$$N = \infty$$

$$\operatorname{Ric}_{mn}^{\infty,f} \ge -\left(\left|\Lambda\right| + \frac{\sigma^{2}}{D-2}\right)$$

$$\operatorname{[GBDL, Tomasiello '21 using Hassannezhad, '12, Setti, '98, Charalambous, Lu, Rowlett '15]} \quad \sigma \equiv |\operatorname{sup} \nabla f|$$
h. 5:
$$m_{1}^{2} \ge \frac{\pi^{2}}{\operatorname{diam}^{2}} \exp\left(-c(n)\operatorname{diam}\sqrt{|\Lambda| + \frac{\sigma^{2}}{D-2}}\right)$$

$$\operatorname{[GBDL, De Ponti, Mondino, Tomasiello, '21, using De Ponti, Mondino, '19]}$$

[Klawer, Lust, Palti '18]

[Bachas '19]

$R_n = 0 + \text{Casimir} \rightarrow \Lambda_4 < 0$

- With a compact internal space, Casimir energy density can be automatically generated
- If the space has small circles, with antiperiodic BCs for fermions, Casimir energies are of the form

$$\xrightarrow{} T_{ij} \sim R_c(y)^{-D} g_{ij} \xrightarrow{} T_{ab} \sim -\frac{D-1}{k}$$

other directions

circle directions

- Then solve the semi-classical equations:
- Explicitly in M-theory on $AdS_4 \times T'$:

$$T_{\mu\nu}^{Cas} = |\rho_c| \ell_{11}^9 R_c^{-11} g_{\mu\nu} \quad T_{ij}^{Cas} = -\frac{4}{7} |\rho_c| \ell_{11}^9 R_c^{-11} g_{ij}$$
$$F_7 = f_7 vol_{T^7} \quad \frac{1}{\ell_{11}^6} \int F_7 = N_7$$

- Non-susy and unstable for M2 bubble nucleation
- Compatible with AdS distance conjecture, $m_{KK}^2 \sim |\Lambda|^{1/d}$
- [Also non stable dS possible in this way but not under parametric control]

[Lust, Palti, Vafa, '19 Gonzalo, Ibáñez, Valenzuela, '21]