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Monodromies

Π(z) ↦ Π(e2πiz) = M ⋅ Π(z)

Circling a boundary point 
induces a monodromy:

(M ∈ SL(2,ℤ), Sp(4,ℤ), SO(3,2; ℤ))

Equivalent loops have same monodromy:

z = 0

z = 1

z = ∞

M0M1 = (M∞)−1

ℳcs = ℙ1 − {0,1,∞}

Side-remark: need at least three singular points for a non-trivial moduli space
(monodromy group must be infinite order and completely reducible [Griffiths, ’70])
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Kähler potential and flux superpotential:

e−Kcs = ∫Y4

Ω̄(z̄) ∧ Ω(z) = Π̄T(z̄)ΣΠ(z)

W = ∫Y4

G4 ∧ Ω(z) = GT
4ΣΠ(z)

Dependence on complex structure moduli encoded in period vector:

ΠI(z) = ∫ΓI

Ω(z)

ΓI ∈ H4(Y4, ℤ)

Ω(z) ∈ H4,0

This talk: 

Hodge numbers h3,1 = h2,2 = 1
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Cota, Klemm, Schimannek ’18; 
Marchesano, Prieto, Wiesner ’21]

MLCS(κ, c2) =

1 0 0 0 0
−1 1 0 0 0
−1 1 1 0 0

1
24 (c2 + 13κ) − κ

2 −κ 1 0
1
24 (c2 + κ) − 1

24 (c2 + κ) 0 1 1

Periods in LCS regime:

Monodromy under :t ↦ t + 1

Encode topological data 
of mirror Calabi-Yau

(covering coordinate: )z = e2πit
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• (Non-effective) Finiteness theorem by [Deligne ’81]
For a given moduli space with fixed singularity structure, there are only finitely many 
monodromy groups possible. 

[Doran, Morgan ’05]
ℳcs = ℙ1\{0,1,∞}

- Mirror symmetry constrains LCS and conifold monodromy
- Quasi-unipotence of monodromy around infinity }14 Calabi-Yau threefolds

• Effective method for enumerating Calabi-Yau threefolds with

apply to Calabi-Yau fourfold moduli spaces
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Quasi-unipotence of monodromies

[Schmid, ’73]
[Landman, ’73]geometric proof by 

group-theoretic proof by 

• Finite order l = 1,2,3,4,5,6,8,10,12

Driving principle behind classification: quasi-unipotence

• Nilpotence degree d = 0,1,…,4 (complex dimension of Calabi-Yau manifold)

(possible orders for a  matrix)GL(5,ℚ)
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Warm-up: T2 monodromies

M0 = (1 0
1 1) M1 = (1 −κ

0 1 ) M∞ = (M0M1)−1 = (1 − κ κ
−1 1)

• Monodromies in :SL(2,ℤ)

 solutions ⟹ κ = 3,2,1,4

• Check quasi-unipotence condition for degree  finite order d = 0,1, l = 1,2,3,4,6,
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Warm-up: T2 periods
Periods are solutions to the hypergeometric differential operator

 fixed by eigenvalues of :⟹ L M∞ e2πia1, e2πia2

Periods are given by hypergeometric functions:
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Reverse-engineer geometries

Expand fundamental period in large complex structure regime:

weights of projective space 

degree of hypersurface 

[Hosono, Klemm, Theisen, Yau ’93]

 complete intersection Calabi-Yau : sextic in ⟹ X6(1,2,3) ℙ2[1,2,3]

(example: ) κ = 1
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Back to Calabi-Yau fourfolds
MLCS(κ, c2)

M∞(κ, c2) = (MLCS(κ, c2)MC)−1

[Grimm, Ha, Klemm, Klevers ’09]

 impose quasi-unipotence on  

and solve for topo. data

⟹ M∞(κ, c2)
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Example

Impose a finite order monodromy of order :l = 6

(M∞(κ, c2))6 − 𝕀 = 0

 polynomial set of equations for  and ⟹ κ c2

Only 1 solution: κ = 6, c2 = 90

 data of the sextic in , (without doing a geometrical computation) ⟹ ℙ5



Landscape of monodromy groups [DvdH, ’24]
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Computing the periods

L = θ5 − μz(θ + a1)(θ + a2)(θ + a3)(θ + a4)(θ + a5)

• Periods solve the hypergeometric equation:

Fundamental period solution:

• Can determine the CICY from series expansion of this period


• Other 4 periods have similar expressions in hypergeometric functions

θ = z
d
dz
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Calabi-Yau fourfold landscape

• 9 CY4 already known


• 5 CY4 are new
[Cabo-Bizet, Klemm, Lopes ’14] 



Phases at infinity
• LCS point: another maximally unipotent point, d = 4



Phases at infinity
• LCS point: another maximally unipotent point, d = 4

• CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1



Phases at infinity
• LCS point: another maximally unipotent point, d = 4

• CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2



Phases at infinity
• LCS point: another maximally unipotent point, d = 4

• CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2

• Landau-Ginzburg point: finite order monodromy, d = 0



Phases at infinity
• LCS point: another maximally unipotent point, d = 4

• CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2

• Landau-Ginzburg point: finite order monodromy, d = 0

 for each phase an example worked out in⟹ [DvdH, ’24] 



Phases at infinity
• LCS point: another maximally unipotent point, d = 4

• CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2

• Landau-Ginzburg point: finite order monodromy, d = 0

 for each phase an example worked out in⟹ [DvdH, ’24] 



CY3-point of X6,6(14,2,32)

Π(τ) =

1
1
2 +

i 3
2

0
τ

( 1
2 +

i 3
2 )τ

+
i

3

0
0

−1
− 2

3
1
3

+ 𝒪(e2πiτ)

Period expansion around the CY3-point:

Π(τ) = A

1
1
2 +

i 3
2

− i

3

τ− 2i

3 3

i

3 3
− ( 1

2 +
i 3

2 )τ

−
3i

21/3π2
e2πiτ

0
0
3
4

−2

−
27 3

22/3π3A
e4πiτ

1
1
2 −

i 3
2

i

3

τ− 1
πi + 2i

3 3

( 1
2 −

i 3
2 )(τ− 1

πi ) − i

3 3

+ … ,

τ = log[z]/2πi



CY3-point of X6,6(14,2,32)

Π(τ) =

1
1
2 +

i 3
2

0
τ

( 1
2 +

i 3
2 )τ

+
i

3

0
0

−1
− 2

3
1
3

+ 𝒪(e2πiτ)

Period expansion around the CY3-point:

Π(τ) = A

1
1
2 +

i 3
2

− i

3

τ− 2i

3 3

i

3 3
− ( 1

2 +
i 3

2 )τ

−
3i

21/3π2
e2πiτ

0
0
3
4

−2

−
27 3

22/3π3A
e4πiτ

1
1
2 −

i 3
2

i

3

τ− 1
πi + 2i

3 3

( 1
2 −

i 3
2 )(τ− 1

πi ) − i

3 3

+ … ,

• Rigid Calabi-Yau threefold with period vector (1, 1
2 +

i 3
2 )

τ = log[z]/2πi



CY3-point of X6,6(14,2,32)

Π(τ) =

1
1
2 +

i 3
2

0
τ

( 1
2 +

i 3
2 )τ

+
i

3

0
0

−1
− 2

3
1
3

+ 𝒪(e2πiτ)

Period expansion around the CY3-point:

Π(τ) = A

1
1
2 +

i 3
2

− i

3

τ− 2i

3 3

i

3 3
− ( 1

2 +
i 3

2 )τ

−
3i

21/3π2
e2πiτ

0
0
3
4

−2

−
27 3

22/3π3A
e4πiτ

1
1
2 −

i 3
2

i

3

τ− 1
πi + 2i

3 3

( 1
2 −

i 3
2 )(τ− 1

πi ) − i

3 3

+ … ,

• Rigid Calabi-Yau threefold with period vector (1, 1
2 +

i 3
2 )

• Complex structure coordinate parametrizes the string coupling

τ = log[z]/2πi
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Fourfold periods are known to encode open-string physics

Remaining period: superpotential induced by worldvolume flux of D7-branes
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Jockers-Mayr-Walcher ’09; Clinghler-Donagi-Wijnholt ’12]

z = e2πiτ

=
qD7

π2
z

∞

∑
k=0

Γ (k + 1
2 )

5

πΓ(k + 1)Γ (k + 2
3 )

2
Γ (k + 4

3 )
2 (−21033z)k



Conclusions & outlook

• Monodromies give a powerful tool in charting the landscape


• New  moduli spaces to be explored further


• Singularities at infinity  novel phases of  string compactifications

𝒩 = 1

⟹ 𝒩 = 1

(e.g. in searching for flux vacua, cf. [Plauschinn, Schlechter ’23; Lüst ’24]


