Building Moduli Spaces from Monodromies

Damian van de Heisteeg

Based on: 2404.03456
Swamplandia 2024
Kloster Seeon
May 27th

$$
-0
$$

Motivation

Motivation

Central question:
What are the global consistency conditions for putting together asymptotic phases?

Motivation

Central question:
What are the global consistency conditions for putting together asymptotic phases?

Motivation

Central question:
What are the global consistency conditions for putting together asymptotic phases?

Motivation

Central question:
What are the global consistency conditions for putting together asymptotic phases?
see also: [Etheredge, Heidenreich, Rudelius, Ruiz, Valenzuela; to appear]

Monodromies

Circling a boundary point induces a monodromy:

$$
\boldsymbol{\Pi}(z) \mapsto \boldsymbol{\Pi}\left(e^{2 \pi i} z\right)=M \cdot \boldsymbol{\Pi}(z)
$$

$(M \in S L(2, \mathbb{Z}), S p(4, \mathbb{Z}), S O(3,2 ; \mathbb{Z}))$

Monodromies

Circling a boundary point induces a monodromy:

$$
\boldsymbol{\Pi}(z) \mapsto \boldsymbol{\Pi}\left(e^{2 \pi i} z\right)=M \cdot \boldsymbol{\Pi}(z)
$$

$(M \in S L(2, \mathbb{Z}), S p(4, \mathbb{Z}), S O(3,2 ; \mathbb{Z}))$

Monodromies

Circling a boundary point induces a monodromy:

$$
\boldsymbol{\Pi}(z) \mapsto \boldsymbol{\Pi}\left(e^{2 \pi i} z\right)=M \cdot \boldsymbol{\Pi}(z)
$$

$(M \in S L(2, \mathbb{Z}), S p(4, \mathbb{Z}), S O(3,2 ; \mathbb{Z}))$

Equivalent loops have same monodromy:

$$
M_{0} M_{1}=\left(M_{\infty}\right)^{-1}
$$

Monodromies

Circling a boundary point induces a monodromy:

$$
\boldsymbol{\Pi}(z) \mapsto \Pi\left(e^{2 \pi i} z\right)=M \cdot \Pi(z)
$$

$(M \in S L(2, \mathbb{Z}), S p(4, \mathbb{Z}), S O(3,2 ; \mathbb{Z}))$

Equivalent loops have same monodromy:

$$
M_{0} M_{1}=\left(M_{\infty}\right)^{-1}
$$

Side-remark: need at least three singular points for a non-trivial moduli space

F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$
\begin{array}{rlr}
e^{-K_{\mathrm{cs}}} & =\int_{Y_{4}} \bar{\Omega}(\bar{z}) \wedge \Omega(z)=\bar{\Pi}^{T}(\bar{z}) \Sigma \boldsymbol{\Pi}(z) & \Omega(z) \in H^{4,0} \\
W & =\int_{Y_{4}} G_{4} \wedge \Omega(z)=\mathbf{G}_{4}^{T} \Sigma \Pi(z) &
\end{array}
$$

F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$
\begin{array}{rlr}
e^{-K_{\mathrm{cs}}} & =\int_{Y_{4}} \bar{\Omega}(\bar{z}) \wedge \Omega(z)=\bar{\Pi}^{T}(\bar{z}) \Sigma \boldsymbol{\Pi}(z) \\
W & =\int_{Y_{4}} G_{4} \wedge \Omega(z)=\mathbf{G}_{4}^{T} \Sigma \Pi(z) & \Omega(z) \in H^{4,0}
\end{array}
$$

Dependence on complex structure moduli encoded in period vector:

$$
\Pi^{I}(z)=\int_{\Gamma_{I}} \Omega(z)
$$

F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$
\begin{array}{rlr}
e^{-K_{\mathrm{cs}}} & =\int_{Y_{4}} \bar{\Omega}(\bar{z}) \wedge \Omega(z)=\bar{\Pi}^{T}(\bar{z}) \Sigma \boldsymbol{\Pi}(z) \\
W & =\int_{Y_{4}} G_{4} \wedge \Omega(z)=\mathbf{G}_{4}^{T} \Sigma \Pi(z) & \Omega(z) \in H^{4,0}
\end{array}
$$

Dependence on complex structure moduli encoded in period vector:

$$
\Pi^{I}(z)=\int_{\Gamma_{I}} \Omega(z) \quad \begin{aligned}
& \text { This talk: } \\
& \text { Hodge numbers } h^{3,1}=h^{2,2}=1
\end{aligned}
$$

Large complex structure periods

Periods in LCS regime:
[Gerhardus, Jonkers '16;
Cota, Klemm, Schimannek '18;
Marchesano, Prieto, Wiesner '21]

$$
\Pi_{\mathrm{LCS}}=\left(\begin{array}{c}
1 \\
-t \\
-\frac{1}{2} t^{2}-\frac{1}{2} t+\frac{c_{2}}{24 \kappa} \\
\frac{\kappa}{6} t^{3}+\frac{\kappa}{4} t^{2}+\frac{\kappa}{8} t+\frac{i c_{3}(3)}{8 \pi^{3}}-\frac{c_{2}}{48} \\
\frac{\kappa}{24} t^{4}+\frac{c_{2}}{48} t^{2}+\frac{i c_{3} t \zeta(3)}{8 \pi^{3}}-\frac{c_{4}}{3456}-\frac{5}{12}
\end{array}\right)
$$

Large complex structure periods

Periods in LCS regime:
[Gerhardus, Jonkers '16;
Cota, Klemm, Schimannek '18;
Marchesano, Prieto, Wiesner '21]

$$
\Pi_{\mathrm{LCS}}=\left(\begin{array}{c}
1 \\
-t \\
-\frac{1}{2} t^{2}-\frac{1}{2} t+\frac{c_{2}}{24 \kappa} \\
\frac{\kappa}{6} t^{3}+\frac{\kappa}{4} t^{2}+\frac{\kappa}{8} t+\frac{i c_{3} \zeta(3)}{8 \pi^{3}}-\frac{c_{2}}{48} \\
\frac{\kappa}{24} t^{4}+\frac{c_{2}}{48} t^{2}+\frac{i c_{3} 3 \zeta(3)}{8 \pi^{3}}-\frac{c_{4}}{3456}-\frac{5}{12}
\end{array}\right)
$$

(covering coordinate: $\left.z=e^{2 \pi i t}\right)$

Large complex structure periods

Periods in LCS regime:
[Gerhardus, Jonkers '16;
Cota, Klemm, Schimannek '18;
Marchesano, Prieto, Wiesner '21]

$$
\Pi_{\mathrm{LCS}}=\left(\begin{array}{c}
1 \\
-t \\
-\frac{1}{2} t^{2}-\frac{1}{2} t+\frac{c_{2}}{24 \kappa} \\
\frac{\kappa}{6} t^{3}+\frac{\kappa}{4} t^{2}+\frac{\kappa}{8} t+\frac{i c_{3} \zeta(3)}{8 \pi^{3}}-\frac{c_{2}}{48} \\
\frac{\kappa}{24} t^{4}+\frac{c_{2}}{48} t^{2}+\frac{i c_{3} 3 \zeta(3)}{8 \pi^{3}}-\frac{c_{4}}{3456}-\frac{5}{12}
\end{array}\right)
$$

(covering coordinate: $\left.z=e^{2 \pi i t}\right)$
Monodromy under $t \mapsto t+1$:

Encode topological data

$$
M_{\mathrm{LCS}}\left(\kappa, c_{2}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 \\
\frac{1}{24}\left(c_{2}+13 \kappa\right) & -\frac{\kappa}{2} & -\kappa & 1 & 0 \\
\frac{1}{24}\left(c_{2}+\kappa\right) & -\frac{1}{24}\left(c_{2}+\kappa\right) & 0 & 1 & 1
\end{array}\right)
$$ of mirror Calabi-Yau

Finiteness of monodromy groups

- (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

Finiteness of monodromy groups

- (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathscr{M}_{\mathrm{cs}}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$
[Doran, Morgan '05]

Finiteness of monodromy groups

- (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathscr{M}_{\mathrm{cs}}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$
[Doran, Morgan '05]
- Mirror symmetry constrains LCS and conifold monodromy

Finiteness of monodromy groups

- (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathscr{M}_{\mathrm{cs}}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$
[Doran, Morgan '05]
- Mirror symmetry constrains LCS and conifold monodromy
- Quasi-unipotence of monodromy around infinity

Finiteness of monodromy groups

- (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathscr{M}_{\mathrm{cs}}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$
[Doran, Morgan '05]
- Mirror symmetry constrains LCS and conifold monodromy
- Quasi-unipotence of monodromy around infinity

14 Calabi-Yau threefolds

Finiteness of monodromy groups

- (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathscr{M}_{\mathrm{cs}}=\mathbb{P}^{1} \backslash\{0,1, \infty\}$
[Doran, Morgan '05]
- Mirror symmetry constrains LCS and conifold monodromy
- Quasi-unipotence of monodromy around infinity

14 Calabi-Yau threefolds
apply to Calabi-Yau fourfold moduli spaces

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$
\left(M^{l}-\mathbb{I}\right)^{d} \neq 0, \quad\left(M^{l}-\mathbb{I}\right)^{d+1}=0, \quad \begin{aligned}
& \text { geometric proof by [Landman, '73] } \\
& \text { group-theoretic proof by [Schmid, } \left.{ }^{\prime} 73\right]
\end{aligned}
$$

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$
\left(M^{l}-\mathbb{I}\right)^{d} \neq 0, \quad\left(M^{l}-\mathbb{I}\right)^{d+1}=0
$$

geometric proof by [Landman, '73] group-theoretic proof by [Schmid, '73]

- Nilpotence degree $d=0,1, \ldots, 4$ (complex dimension of Calabi-Yau manifold)

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$
\left(M^{l}-\mathbb{I}\right)^{d} \neq 0, \quad\left(M^{l}-\mathbb{I}\right)^{d+1}=0, \quad \begin{aligned}
& \text { geometric proof by [Landman, '73] } \\
& \text { group-theoretic proof by [Schmid, } 73]
\end{aligned}
$$

- Nilpotence degree $d=0,1, \ldots, 4$ (complex dimension of Calabi-Yau manifold)
- Finite order $l=1,2,3,4,5,6,8,10,12$ (possible orders for a $G L(5, \mathbb{Q})$ matrix)

Argument for quasi-unipotence ${ }_{[s c m i d, ~}^{\text {73] }}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)

Argument for quasi-unipotence ${ }_{[s c m i d,}{ }^{73]}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)
Quasi-unipotence $\quad \Longleftrightarrow \quad$ eigenvalues λ of M_{s} are roots of unity

Argument for quasi-unipotence ${ }_{[s c m i d,}{ }^{73]}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)
Quasi-unipotence \Longleftrightarrow eigenvalues λ of M_{s} are roots of unity

Compute distance on group manifold $\mathrm{SO}(3,2) /(S O(2) \times S O(2))$
(analogue of $S L(2) / S O(2)$)

Argument for quasi-unipotence ${ }_{[s c m i d,}{ }^{73]}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)
Quasi-unipotence \Longleftrightarrow eigenvalues λ of M_{s} are roots of unity

Compute distance on group manifold $S O(3,2) /(S O(2) \times S O(2))$

$$
\left.d\left(\mathrm{Id}, g_{y}^{-1} M g_{y}\right)=d(i y, i y+1) \sim \frac{1}{y} \quad \text { (analogue of } \operatorname{SL}(2) / S O(2)\right)
$$

Argument for quasi-unipotence ${ }_{[s c m i d,}{ }^{73]}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)
Quasi-unipotence \Longleftrightarrow eigenvalues λ of M_{s} are roots of unity

Compute distance on group manifold $S O(3,2) /(S O(2) \times S O(2))$

$$
\left.d\left(\mathrm{Id}, g_{y}^{-1} M g_{y}\right)=d(i y, i y+1) \sim \frac{1}{y} \quad \text { (analogue of } \operatorname{SL}(2) / S O(2)\right)
$$

\Longrightarrow Eigenvalues λ of M must have $|\lambda|=1$

Argument for quasi-unipotence ${ }_{[s c m i d,}{ }^{73]}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)
Quasi-unipotence \Longleftrightarrow eigenvalues λ of M_{s} are roots of unity

Compute distance on group manifold $S O(3,2) /(S O(2) \times S O(2))$

$$
\left.d\left(\mathrm{Id}, g_{y}^{-1} M g_{y}\right)=d(i y, i y+1) \sim \frac{1}{y} \quad \text { (analogue of } S L(2) / S O(2)\right)
$$

\Longrightarrow Eigenvalues λ of M must have $|\lambda|=1$

$$
\left(\text { roots to } \lambda^{n}+c_{1} \lambda^{n-1}+\ldots+c_{n}=0 \text { for some } c_{i} \in \mathbb{Z}\right)
$$

Also, eigenvalues must be algebraic integers

Argument for quasi-unipotence ${ }_{[s c m i d,}{ }^{73]}$

Jordan decomposition $M=M_{u} M_{s} \quad$ (M_{s} semi-simple, $M_{u}-1$ nilpotent)
Quasi-unipotence \Longleftrightarrow eigenvalues λ of M_{s} are roots of unity

Compute distance on group manifold $S O(3,2) /(S O(2) \times S O(2))$

$$
\left.d\left(\mathrm{Id}, g_{y}^{-1} M g_{y}\right)=d(i y, i y+1) \sim \frac{1}{y} \quad \text { (analogue of } S L(2) / S O(2)\right)
$$

\Longrightarrow Eigenvalues λ of M must have $|\lambda|=1$

$$
\left(\text { roots to } \lambda^{n}+c_{1} \lambda^{n-1}+\ldots+c_{n}=0 \text { for some } c_{i} \in \mathbb{Z}\right)
$$

Also, eigenvalues must be algebraic integers $\Longrightarrow \lambda$ are roots of unity

Warm-up: T2 monodromies

- Monodromies in $S L(2, \mathbb{Z})$:

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad M_{1}=\left(\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right) \quad M_{\infty}=\left(M_{0} M_{1}\right)^{-1}=\left(\begin{array}{cc}
1-\kappa & \kappa \\
-1 & 1
\end{array}\right)
$$

Warm-up: T2 monodromies

- Monodromies in $S L(2, \mathbb{Z})$:

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad M_{1}=\left(\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right) \quad M_{\infty}=\left(M_{0} M_{1}\right)^{-1}=\left(\begin{array}{cc}
1-\kappa & \kappa \\
-1 & 1
\end{array}\right)
$$

- Check quasi-unipotence condition for degree $d=0,1$, finite order $l=1,2,3,4,6$,

Warm-up: T2 monodromies

- Monodromies in $S L(2, \mathbb{Z})$:

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad M_{1}=\left(\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right) \quad M_{\infty}=\left(M_{0} M_{1}\right)^{-1}=\left(\begin{array}{cc}
1-\kappa & \kappa \\
-1 & 1
\end{array}\right)
$$

- Check quasi-unipotence condition for degree $d=0,1$, finite order $l=1,2,3,4,6$, An example, $d=0, l=3: \quad M_{\infty}^{3}-1=(\kappa-3)\left(\begin{array}{cc}2 \kappa-\kappa^{2} & \kappa^{2}-\kappa \\ 1-\kappa & \kappa\end{array}\right)=0$,

Warm-up: T2 monodromies

- Monodromies in $S L(2, \mathbb{Z})$:

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad M_{1}=\left(\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right) \quad M_{\infty}=\left(M_{0} M_{1}\right)^{-1}=\left(\begin{array}{cc}
1-\kappa & \kappa \\
-1 & 1
\end{array}\right)
$$

- Check quasi-unipotence condition for degree $d=0,1$, finite order $l=1,2,3,4,6$,

$$
\begin{aligned}
M_{\infty}^{3}-1 & =(\kappa-3)\left(\begin{array}{cc}
2 \kappa-\kappa^{2} & \kappa^{2}-\kappa \\
1-\kappa & \kappa
\end{array}\right)=0, \\
M_{\infty}^{4}-1 & =(\kappa-2)\left(\begin{array}{cc}
\kappa^{3}-5 \kappa^{2}+5 \kappa & -\kappa^{3}+4 \kappa^{2}-2 \kappa \\
\kappa^{2}-4 \kappa+2 & 3 \kappa-\kappa^{2}
\end{array}\right)=0, \\
M_{\infty}^{6}-1 & =(\kappa-1)(\kappa-3)\left(\begin{array}{cc}
\kappa^{4}-7 \kappa^{3}+14 \kappa^{2}-7 \kappa & -\kappa^{4}+6 \kappa^{3}-9 \kappa^{2}+2 \kappa \\
\kappa^{3}-6 \kappa^{2}+9 \kappa-2 & -\kappa^{3}+5 \kappa^{2}-5 \kappa
\end{array}\right)=0, \\
\left(M_{\infty}^{2}-1\right)^{2} & =(\kappa-4)\left(\begin{array}{cc}
\kappa^{3}-3 \kappa^{2}+\kappa & 2 \kappa^{2}-\kappa^{3} \\
\kappa^{2}-2 \kappa & \kappa-\kappa^{2}
\end{array}\right)=0,
\end{aligned}
$$

Warm-up: T2 monodromies

- Monodromies in $\operatorname{SL}(2, \mathbb{Z})$:

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad M_{1}=\left(\begin{array}{cc}
1 & -\kappa \\
0 & 1
\end{array}\right) \quad M_{\infty}=\left(M_{0} M_{1}\right)^{-1}=\left(\begin{array}{cc}
1-\kappa & \kappa \\
-1 & 1
\end{array}\right)
$$

- Check quasi-unipotence condition for degree $d=0,1$, finite order $l=1,2,3,4,6$,

$$
\begin{aligned}
M_{\infty}^{3}-1 & =(\kappa-3)\left(\begin{array}{cc}
2 \kappa-\kappa^{2} & \kappa^{2}-\kappa \\
1-\kappa & \kappa
\end{array}\right)=0, \\
M_{\infty}^{4}-1 & =(\kappa-2)\left(\begin{array}{cc}
\kappa^{3}-5 \kappa^{2}+5 \kappa & -\kappa^{3}+4 \kappa^{2}-2 \kappa \\
\kappa^{2}-4 \kappa+2 & 3 \kappa-\kappa^{2}
\end{array}\right)=0, \\
M_{\infty}^{6}-1 & =(\kappa-1)(\kappa-3)\left(\begin{array}{cc}
\kappa^{4}-7 \kappa^{3}+14 \kappa^{2}-7 \kappa & -\kappa^{4}+6 \kappa^{3}-9 \kappa^{2}+2 \kappa \\
\kappa^{3}-6 \kappa^{2}+9 \kappa-2 & -\kappa^{3}+5 \kappa^{2}-5 \kappa
\end{array}\right)=0, \\
\left(M_{\infty}^{2}-1\right)^{2} & =(\kappa-4)\left(\begin{array}{cc}
\kappa^{3}-3 \kappa^{2}+\kappa & 2 \kappa^{2}-\kappa^{3} \\
\kappa^{2}-2 \kappa & \kappa-\kappa^{2}
\end{array}\right)=0,
\end{aligned}
$$

\Longrightarrow solutions $\kappa=3,2,1,4$

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

$$
L=\theta^{2}-\mu z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right) \quad \theta=z \frac{d}{d z}
$$

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

$$
L=\theta^{2}-\mu z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right) \quad \theta=z \frac{d}{d z}
$$

$\Longrightarrow L$ fixed by eigenvalues of $M_{\infty}: e^{2 \pi i a_{1}}, e^{2 \pi i a_{2}}$

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

$$
L=\theta^{2}-\mu z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right) \quad \theta=z \frac{d}{d z}
$$

$\Longrightarrow L$ fixed by eigenvalues of $M_{\infty}: e^{2 \pi i a_{1}}, e^{2 \pi i a_{2}}$

Periods are given by hypergeometric functions:

$$
\varpi_{0}={ }_{2} F_{1}\left(a_{1}, a_{2} ; 1 ; \mu z\right), \quad \varpi_{1}=\frac{i}{\sqrt{\kappa}} \cdot{ }_{2} F_{1}\left(a_{1}, a_{2} ; 1 ; 1-\mu z\right)
$$

Reverse-engineer geometries

Expand fundamental period in large complex structure regime:

(example: $\kappa=1$)

$$
\varpi_{0}=\sum_{n=0}^{\infty} \frac{(6 n)!}{n!(2 n)!(3 n)!} z^{n}=1+60 z+13860 z^{2}+4084080 z^{3}+\mathcal{O}\left(z^{4}\right)
$$

Reverse-engineer geometries

Expand fundamental period in large complex structure regime:

$$
\varpi_{0}=\sum_{n=0}^{\infty} \frac{(6 n)!}{n!(2 n)!(3 n)!} z^{n}=1+60 z+13860 z^{2}+4084080 z^{3}+\mathcal{O}\left(z^{4}\right)
$$

Reverse-engineer geometries

Expand fundamental period in large complex structure regime:

$$
\begin{aligned}
& \varpi_{0}=\sum_{n=0}^{\infty} \frac{(6 n)!}{n!(2 n)!(3 n)!} z^{n}=1+60 z+13860 z^{2}+4084080 z^{3}+\mathcal{O}\left(z^{4}\right) \\
& \text { weights of projective space }
\end{aligned}
$$

Reverse-engineer geometries

Expand fundamental period in large complex structure regime:

\Longrightarrow complete intersection Calabi-Yau $X_{6}(1,2,3)$: sextic in $\mathbb{P}^{2}[1,2,3]$

Warm-up: T2 landscape

$\left(a_{1}, a_{2}\right)$	$\left(\frac{1}{6}, \frac{5}{6}\right)$	$\left(\frac{1}{4}, \frac{3}{4}\right)$	$\left(\frac{1}{3}, \frac{2}{3}\right)$	$\left(\frac{1}{2}, \frac{1}{2}\right)$
κ	1	2	3	4
μ	432	64	27	16
(d, l)	$(0,6)$	$(0,4)$	$(0,3)$	$(1,2)$
Modular group	$\Gamma_{1}(1)$	$\Gamma_{1}(2)$	$\Gamma_{1}(3)$	$\Gamma_{1}(4)$
Elliptic curve	$X_{6}(1,2,3)$	$X_{4}\left(1^{2}, 2\right)$	$X_{3}\left(1^{3}\right)$	$X_{2,2}\left(1^{4}\right)$

Back to Calabi-Yau fourfolds

Back to Calabi-Yau fourfolds

$M_{C}=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0\end{array}\right)$
[Grimm, Ha, Klemm, Klevers '09]

Back to Calabi-Yau fourfolds

$M_{C}=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0\end{array}\right)$
[Grimm, Ha, Klemm, Klevers '09]

Back to Calabi-Yau fourfolds

Example

Impose a finite order monodromy of order $l=6$:

$$
\left(M_{\infty}\left(\kappa, c_{2}\right)\right)^{6}-\rrbracket=0
$$

Example

Impose a finite order monodromy of order $l=6$:

$$
\left(M_{\infty}\left(\kappa, c_{2}\right)\right)^{6}-\mathbb{\square}=0
$$

\Longrightarrow polynomial set of equations for κ and c_{2}

Example

Impose a finite order monodromy of order $l=6$:

$$
\left(M_{\infty}\left(\kappa, c_{2}\right)\right)^{6}-\mathbb{\square}=0
$$

\Longrightarrow polynomial set of equations for κ and c_{2}

Only 1 solution: $\kappa=6, c_{2}=90$

Example

Impose a finite order monodromy of order $l=6$:

$$
\left(M_{\infty}\left(\kappa, c_{2}\right)\right)^{6}-\mathbb{\square}=0
$$

\Longrightarrow polynomial set of equations for κ and c_{2}

Only 1 solution: $\kappa=6, c_{2}=90$
\Longrightarrow data of the sextic in \mathbb{P}^{5}, (without doing a geometrical computation)

Landscape of monodromy groups

(κ, a)	$(6,4)$	$(4,4)$	$(2,3)$	$(10,5)$	$(2,4)$	$(4,3)$	$(12,5)$					
degree d	0											
order l	6	8	10							12		

(a) Finite order monodromies.

(κ, a)	$(8,4)$	$(2,2)$	$(18,6)$	$(16,6)$	$(8,5)$	$(24,7)$	$(32,8)$
degree d	1			2			4
order l	4	6			4	6	
2							

(b) Infinite order monodromies.

Computing the periods

- Periods solve the hypergeometric equation:

$$
L=\theta^{5}-\mu z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right)\left(\theta+a_{3}\right)\left(\theta+a_{4}\right)\left(\theta+a_{5}\right) \quad \theta=z \frac{d}{d z}
$$

Computing the periods

- Periods solve the hypergeometric equation:

$$
L=\theta^{5}-\mu z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right)\left(\theta+a_{3}\right)\left(\theta+a_{4}\right)\left(\theta+a_{5}\right) \quad \theta=z \frac{d}{d z}
$$

Fundamental period solution:

$$
\Pi^{0}(z)={ }_{5} F_{4}\left(a_{1}, \ldots, a_{5} ; 1^{4} ; \mu z\right)
$$

Computing the periods

- Periods solve the hypergeometric equation:

$$
L=\theta^{5}-\mu z\left(\theta+a_{1}\right)\left(\theta+a_{2}\right)\left(\theta+a_{3}\right)\left(\theta+a_{4}\right)\left(\theta+a_{5}\right) \quad \theta=z \frac{d}{d z}
$$

Fundamental period solution:

$$
\Pi^{0}(z)={ }_{5} F_{4}\left(a_{1}, \ldots, a_{5} ; 1^{4} ; \mu z\right)
$$

- Can determine the CICY from series expansion of this period
- Other 4 periods have similar expressions in hypergeometric functions

Calabi-Yau fourfold landscape

$a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$	Type	Mirror	μ	(κ, a)	c_{2}	c_{3}	c_{4}
$\frac{1}{5}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{4}{5}$	F	$X_{2,5}\left(1^{7}\right)$	$2^{2} 5^{5}$	$(10,5)$	110	-420	2190
$\frac{1}{10}, \frac{3}{10}, \frac{1}{2}, \frac{7}{10}, \frac{9}{10}$	F	$X_{10}\left(1^{5}, 5\right)$	$2^{10} 5^{5}$	$(2,3)$	70	-580	5910
$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	LCS	$X_{25}\left(1^{10}\right)$	2^{10}	$(32,8)$	160	-320	960
$\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}$	CY 3	$X_{2,3,3}\left(1^{8}\right)$	$2^{2} 3^{6}$	$(18,6)$	126	-324	1206
$\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{3}$	C	$X_{2,2,2,3}\left(1^{9}\right)$	$2^{6} 3^{3}$	$(24,7)$	144	-336	1152
$\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	C	$X_{2,2,4}\left(1^{8}\right)$	2^{12}	$(16,6)$	128	-384	1632
$\frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8}$	F	$X_{2,8}\left(1^{6}, 4\right)^{*}$	2^{18}	$(4,4)$	92	-600	4908
$\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}$	F	$X_{6}\left(1^{6}\right)$	6^{6}	$(6,4)$	90	-420	2610
$\frac{1}{12}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{11}{12}$	F	$X_{2,2,12}\left(1^{6}, 4,6\right)^{* *}$	$2^{14} 3^{6}$	$(2,4)$	94	-972	11814
$\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}$	CY 3	$X_{4,4}\left(1^{6}, 2\right)$	2^{14}	$(8,4)$	88	-304	1464
$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}$	F	$X_{3,4}\left(1^{7}\right)$	$2^{8} 3^{3}$	$(12,5)$	108	-336	1476
$\frac{1}{6}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{5}{6}$	F	$X_{4,6}\left(1^{5}, 2,3\right)^{*}$	$2^{12} 3^{3}$	$(4,3)$	68	-320	2028
$\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{5}{6}$	CY 3	$X_{6,6}\left(1^{4}, 2,3^{2}\right)^{*}$	$2^{10} 3^{3}$	$(2,2)$	46	-244	1734
$\frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{6}$	C	$X_{2,2,6}\left(1^{7}, 3\right)^{*}$	$2^{10} 3^{6}$	$(8,5)$	112	-528	3264

Calabi-Yau fourfold landscape

$a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$	Type	Mirror	μ	(κ, a)	c_{2}	c_{3}	c_{4}
$\frac{1}{5}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{4}{5}$	F	$X_{2,5}\left(1^{7}\right)$	$2^{2} 5^{5}$	$(10,5)$	110	-420	2190
$\frac{1}{10}, \frac{3}{10}, \frac{1}{2}, \frac{7}{10}, \frac{9}{10}$	F	$X_{10}\left(1^{5}, 5\right)$	$2^{10} 5^{5}$	$(2,3)$	70	-580	5910
$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	LCS	$X_{25}\left(1^{10}\right)$	2^{10}	$(32,8)$	160	-320	960
$\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}$	CY 3	$X_{2,3,3}\left(1^{8}\right)$	$2^{2} 3^{6}$	$(18,6)$	126	-324	1206
$\frac{1}{3}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{2}{3}$	C	$X_{2,2,2,3}\left(1^{9}\right)$	$2^{6} 3^{3}$	$(24,7)$	144	-336	1152
$\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	C	$X_{2,2,4}\left(1^{8}\right)$	2^{12}	$(16,6)$	128	-384	1632
$\frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8}$	F	$X_{2,8}\left(1^{6}, 4\right)^{*}$	2^{18}	$(4,4)$	92	-600	4908
$\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}$	F	$X_{6}\left(1^{6}\right)$	6^{6}	$(6,4)$	90	-420	2610
$\frac{1}{12}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{11}{12}$	F	$X_{2,2,12}\left(1^{6}, 4,6\right)^{* *}$	$2^{14} 3^{6}$	$(2,4)$	94	-972	11814
$\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}$	CY 3	$X_{4,4}\left(1^{6}, 2\right)$	2^{14}	$(8,4)$	88	-304	1464
$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}$	F	$X_{3,4}\left(1^{7}\right)$	$2^{8} 3^{3}$	$(12,5)$	108	-336	1476
$\frac{1}{6}, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \frac{5}{6}$	F	$X_{4,6}\left(1^{5}, 2,3\right)^{*}$	$2^{12} 3^{3}$	$(4,3)$	68	-320	2028
$\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}, \frac{5}{6}$	CY 3	$X_{6,6}\left(1^{4}, 2,3^{2}\right)^{*}$	$2^{10} 3^{3}$	$(2,2)$	46	-244	1734
$\frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{5}{6}$	C	$X_{2,2,6}\left(1^{7}, 3\right)^{*}$	$2^{10} 3^{6}$	$(8,5)$	112	-528	3264

- 9 CY4 already known
[Cabo-Bizet, Klemm, Lopes '14]
- 5 CY4 are new

Phases at infinity

- LCS point: another maximally unipotent point, $d=4$

Phases at infinity

- LCS point: another maximally unipotent point, $d=4$
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, $d=1$

Phases at infinity

- LCS point: another maximally unipotent point, $d=4$
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, $d=1$
- Conifold-point: finite distance point, but infinite order monodromy, $d=2$

Phases at infinity

- LCS point: another maximally unipotent point, $d=4$
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, $d=1$
- Conifold-point: finite distance point, but infinite order monodromy, $d=2$
- Landau-Ginzburg point: finite order monodromy, $d=0$

Phases at infinity

- LCS point: another maximally unipotent point, $d=4$
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, $d=1$
- Conifold-point: finite distance point, but infinite order monodromy, $d=2$
- Landau-Ginzburg point: finite order monodromy, $d=0$
\Longrightarrow for each phase an example worked out in [DvdH, '24]

Phases at infinity

- LCS point: another maximally unipotent point, $d=4$
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, $d=1$
- Conifold-point: finite distance point, but infinite order monodromy, $d=2$
- Landau-Ginzburg point: finite order monodromy, $d=0$
\Longrightarrow for each phase an example worked out in [DvdH, '24]

CY3-point of $X_{6,6}\left(1^{4}, 2,3^{2}\right)$

Period expansion around the CY3-point:

$$
\Pi(\tau)=\left(\begin{array}{c}
1 \\
\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
0 \\
\tau \\
\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \tau
\end{array}\right)+\frac{i}{\sqrt{3}}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
-\frac{2}{3} \\
\frac{1}{3}
\end{array}\right)+\mathcal{O}\left(e^{2 \pi i \tau}\right) \quad \tau=\log [z] / 2 \pi i
$$

CY3-point of $X_{6,6}\left(1^{4}, 2,3^{2}\right)$

Period expansion around the CY3-point:

$$
\Pi(\tau)=\left(\begin{array}{c}
1 \\
\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
0 \\
\tau \\
\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \tau
\end{array}\right)+\frac{i}{\sqrt{3}}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
-\frac{2}{3} \\
\frac{1}{3}
\end{array}\right)+\mathcal{O}\left(e^{2 \pi i \tau}\right) \quad \tau=\log [z] / 2 \pi i
$$

- Rigid Calabi-Yau threefold with period vector $\left(1, \frac{1}{2}+\frac{i \sqrt{3}}{2}\right)$

CY3-point of $X_{6,6}\left(1^{4}, 2,3^{2}\right)$

Period expansion around the CY3-point:

$$
\Pi(\tau)=\left(\begin{array}{c}
1 \\
\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
0 \\
\tau \\
\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \tau
\end{array}\right)+\frac{i}{\sqrt{3}}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
-\frac{2}{3} \\
\frac{1}{3}
\end{array}\right)+\mathcal{O}\left(e^{2 \pi i \tau}\right) \quad \tau=\log [z] / 2 \pi i
$$

- Rigid Calabi-Yau threefold with period vector $\left(1, \frac{1}{2}+\frac{i \sqrt{3}}{2}\right)$
- Complex structure coordinate parametrizes the string coupling

D7-brane superpotential

Fourfold periods are known to encode open-string physics
[Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09;
Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

D7-brane superpotential

Fourfold periods are known to encode open-string physics
[Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$
W_{\mathrm{D} 7}=q_{\mathrm{D} 7} \frac{\sqrt{z}}{\pi^{2}}{ }_{5} F_{4}\left(\frac{1^{5}}{2} ; \frac{2^{2}}{3}, \frac{4^{2}}{3} ;-2^{10} 3^{3} z\right)
$$

$$
z=e^{2 \pi i \tau}
$$

D7-brane superpotential

Fourfold periods are known to encode open-string physics
[Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt ' 12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$
\begin{array}{r}
W_{\mathrm{D} 7}=q_{\mathrm{D} 7} \frac{\sqrt{z}}{\pi^{2}}{ }_{5} F_{4}\left(\frac{1}{2}^{5} ; \frac{2}{3}^{2}, \frac{4^{2}}{3} ;-2^{10} 3^{3} z\right)=\frac{q_{\mathrm{D} 7}}{\pi^{2}} \sqrt{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{1}{2}\right)^{5}}{\sqrt{\pi} \Gamma(k+1) \Gamma\left(k+\frac{2}{3}\right)^{2} \Gamma\left(k+\frac{4}{3}\right)^{2}}\left(-2^{10} 3^{3} z\right)^{k} \\
z=e^{2 \pi i \tau}
\end{array}
$$

D7-brane superpotential

Fourfold periods are known to encode open-string physics
[Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt ' 12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$
\begin{aligned}
W_{\mathrm{D} 7} & =q_{\mathrm{D} 7} \frac{\sqrt{z}}{\pi^{2}}{ }_{5} F_{4}\left(\frac{1}{2}^{5} ; \frac{2^{2}}{3}, \frac{4^{2}}{3} ;-2^{10} 3^{3} z\right)=\frac{q_{\mathrm{D} 7}}{\pi^{2}} \sqrt{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{1}{2}\right)^{5}}{\sqrt{\pi} \Gamma(k+1) \Gamma\left(k+\frac{2}{3}\right)^{2} \Gamma\left(k+\frac{4}{3}\right)^{2}}\left(-2^{10} 3^{3} z\right)^{k} \\
& =\frac{q_{\mathrm{D} 7}}{\pi^{2}} \sqrt{z}\left(1-\frac{2187}{2} z+\frac{9298091736}{1225} z^{2}-\frac{4236443047215}{49} z^{3}+\mathcal{O}\left(z^{4}\right)\right) \quad z=e^{2 \pi i \tau}
\end{aligned}
$$

Conclusions \& outlook

- Monodromies give a powerful tool in charting the landscape
- New $\mathcal{N}=1$ moduli spaces to be explored further
(e.g. in searching for flux vacua, cf. [Plauschinn, Schlechter '23; Lüst '24]
- Singularities at infinity \Longrightarrow novel phases of $\mathcal{N}=1$ string compactifications

