Building Moduli Spaces from Monodromies

Damian van de Heisteeg

HARVARD UNIVERSITY CENTER OF MATHEMATICAL SCIENCES AND APPLICATIONS Based on: 2404.03456

Swamplandia 2024 Kloster Seeon May 27th

Motivation

M

Motivation

Motivation

What are the **global** consistency conditions for putting together asymptotic phases?

Central question:

Central question:

Central question:

Circling a boundary point induces a monodromy:

 $\mathbf{\Pi}(z) \mapsto \mathbf{\Pi}(e^{2\pi i}z) = M \cdot \mathbf{\Pi}(z)$

 $(M \in SL(2,\mathbb{Z}), Sp(4,\mathbb{Z}), SO(3,2;\mathbb{Z}))$

Circling a boundary point induces a monodromy:

 $\mathbf{\Pi}(z) \mapsto \mathbf{\Pi}(e^{2\pi i}z) = M \cdot \mathbf{\Pi}(z)$

 $(M \in SL(2,\mathbb{Z}), Sp(4,\mathbb{Z}), SO(3,2;\mathbb{Z}))$

Circling a boundary point induces a monodromy:

 $\mathbf{\Pi}(z) \mapsto \mathbf{\Pi}(e^{2\pi i}z) = M \cdot \mathbf{\Pi}(z)$

 $(M \in SL(2,\mathbb{Z}), Sp(4,\mathbb{Z}), SO(3,2;\mathbb{Z}))$

Equivalent loops have same monodromy:

$$M_0 M_1 = (M_{\infty})^{-1}$$

Circling a boundary point induces a monodromy:

 $\mathbf{\Pi}(z) \mapsto \mathbf{\Pi}(e^{2\pi i}z) = M \cdot \mathbf{\Pi}(z)$

 $(M \in SL(2,\mathbb{Z}), Sp(4,\mathbb{Z}), SO(3,2;\mathbb{Z}))$

Equivalent loops have same monodromy:

$$M_0 M_1 = (M_{\infty})^{-1}$$

Side-remark: need at least three singular points for a non-trivial moduli space (monodromy group must be infinite order and completely reducible [Griffiths, '70])

F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$e^{-K_{cs}} = \int_{Y_4} \bar{\Omega}(\bar{z}) \wedge \Omega(z) = \bar{\Pi}^T(\bar{z}) \Sigma \Pi(z)$$
$$W = \int_{Y_4} G_4 \wedge \Omega(z) = \mathbf{G}_4^T \Sigma \Pi(z)$$

 $\Omega(z) \in H^{4,0}$

F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$e^{-K_{cs}} = \int_{Y_4} \bar{\Omega}(\bar{z}) \wedge \Omega(z) = \bar{\Pi}^T(\bar{z}) \Sigma \Pi(z)$$
$$W = \int_{Y_4} G_4 \wedge \Omega(z) = \mathbf{G}_4^T \Sigma \Pi(z)$$

Dependence on complex structure moduli encoded in period vector:

F-theory on Calabi-Yau fourfolds

Kähler potential and flux superpotential:

$$e^{-K_{cs}} = \int_{Y_4} \bar{\Omega}(\bar{z}) \wedge \Omega(z) = \bar{\Pi}^T(\bar{z}) \Sigma \Pi(z)$$
$$W = \int_{Y_4} G_4 \wedge \Omega(z) = \mathbf{G}_4^T \Sigma \Pi(z)$$

Dependence on complex structure moduli encoded in period vector:

This talk: Hodge numbers $h^{3,1} = h^{2,2} = 1$

Large complex structure periods

Periods in LCS regime:

[Gerhardus, Jonkers '16; Cota, Klemm, Schimannek '18; Marchesano, Prieto, Wiesner '21]

Large complex structure periods

Periods in LCS regime:

[Gerhardus, Jonkers '16; Cota, Klemm, Schimannek '18; Marchesano, Prieto, Wiesner '21]

(covering coordinate: $z = e^{2\pi i t}$)

Monodromy under $t \mapsto t + 1$: $M_{LCS}(\kappa)$

$$\mathbf{r}, c_2) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ \frac{1}{24} \left(c_2 + 13\kappa \right) & -\frac{\kappa}{2} & -\kappa & 1 & 0 \\ \frac{1}{24} \left(c_2 + \kappa \right) & -\frac{1}{24} \left(c_2 + \kappa \right) & 0 & 1 & 1 \end{pmatrix}$$

Large complex structure periods

Periods in LCS regime:

[Gerhardus, Jonkers '16; Cota, Klemm, Schimannek '18; Marchesano, Prieto, Wiesner '21]

(covering coordinate: $z = e^{2\pi i t}$)

Monodromy under $t \mapsto t + 1$: $M_{LCS}(\kappa)$

Encode **topological data** of mirror Calabi-Yau

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

• Effective method for enumerating Calabi-Yau threefolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ [Doran, Morgan '05]

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Mirror symmetry constrains LCS and conifold monodromy

• Effective method for enumerating Calabi-Yau threefolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ [Doran, Morgan '05]

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- - Mirror symmetry constrains LCS and conifold monodromy
 - Quasi-unipotence of monodromy around infinity

• Effective method for enumerating Calabi-Yau threefolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ [Doran, Morgan '05]

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ [Doran, Morgan '05] - Mirror symmetry constrains LCS and conifold monodromy - Quasi-unipotence of monodromy around infinity

 - 14 Calabi-Yau threefolds

• (Non-effective) Finiteness theorem by [Deligne '81]

For a given moduli space with fixed singularity structure, there are only finitely many monodromy groups possible.

- Effective method for enumerating Calabi-Yau threefolds with $\mathcal{M}_{cs} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ [Doran, Morgan '05] - Mirror symmetry constrains LCS and conifold monodromy 14 Calabi-Yau threefolds - Quasi-unipotence of monodromy around infinity

apply to Calabi-Yau fourfold moduli spaces

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$(M^l - \mathbb{I})^d \neq 0, \qquad (M^l - \mathbb{I})^{d+1}$$

= 0,

geometric proof by [Landman, '73] group-theoretic proof by [Schmid, '73]

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$(M^l - \mathbb{I})^d \neq 0, \qquad (M^l - \mathbb{I})^{d+1}$$

• Nilpotence degree $d = 0, 1, \dots, 4$

- geometric proof by [Landman, '73] =0,group-theoretic proof by [Schmid, '73]

(complex dimension of Calabi-Yau manifold)

Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

$$(M^l - \mathbb{I})^d \neq 0, \qquad (M^l - \mathbb{I})^{d+1}$$

- Nilpotence degree $d = 0, 1, \dots, 4$
- Finite order l = 1, 2, 3, 4, 5, 6, 8, 10, 12(possible orders for a $GL(5,\mathbb{Q})$ matrix)

- geometric proof by [Landman, '73] = 0,group-theoretic proof by [Schmid, '73]

(complex dimension of Calabi-Yau manifold)

Argument for quasi-unipotence [Schmid, '73]

Jordan decomposition $M = M_u M_s$ (M_s semi-simple, $M_u - 1$ nilpotent)

Argument for quasi-unipotence [Schmid, '73]

Jordan decomposition $M = M_{\mu}M_{s}$ (M_{s} semi-simple, $M_{\mu} - 1$ nilpotent)

Quasi-unipotence \iff eigenvalues λ of M_s are **roots of unity**

Argument for quasi-unipotence [Schmid, '73]

Jordan decomposition $M = M_{\mu}M_{s}$ (M_{s} semi-simple, $M_{\mu} - 1$ nilpotent)

Quasi-unipotence \iff eigenvalues λ of M_s are **roots of unity**

Compute distance on group manifold $SO(3,2)/(SO(2) \times SO(2))$ (analogue of SL(2)/SO(2))

Argument for quasi-unipotence [Schmid, '73] Jordan decomposition $M = M_{\mu}M_{s}$ (M_{s} semi-simple, $M_{\mu} - 1$ nilpotent)

Quasi-unipotence \iff eigenvalues λ of M_s are **roots of unity**

Compute distance on group manifold $SO(3,2)/(SO(2) \times SO(2))$ (analogue of SL(2)/SO(2)) $d(\mathsf{Id}, g_y^{-1}Mg_y) = d(iy, iy+1) \sim \frac{1}{v}$

Argument for quasi-unipotence [Schmid, '73] Jordan decomposition $M = M_{\mu}M_{s}$ (M_{s} semi-simple, $M_{\mu} - 1$ nilpotent) Quasi-unipotence \iff eigenvalues λ of M_s are **roots of unity**

Compute distance on group manifold $SO(3,2)/(SO(2) \times SO(2))$ $d(\mathsf{Id}, g_y^{-1}Mg_y) = d(iy, iy+1) \sim \frac{1}{v}$ (analogue of SL(2)/SO(2)) \implies Eigenvalues λ of M must have $|\lambda| = 1$

Argument for quasi-unipotence [Schmid, '73] Jordan decomposition $M = M_{\mu}M_{s}$ (M_{s} semi-simple, $M_{\mu} - 1$ nilpotent) Quasi-unipotence \iff eigenvalues λ of M_s are **roots of unity**

- Compute distance on group manifold $SO(3,2)/(SO(2) \times SO(2))$ $d(\mathsf{Id}, g_y^{-1}Mg_y) = d(iy, iy+1) \sim \frac{1}{v}$
- \implies Eigenvalues λ of M must have $|\lambda| = 1$

(roots to $\lambda^n + c_1 \lambda^{n-1} + \ldots + c_n = 0$ for some $c_i \in \mathbb{Z}$)

Also, eigenvalues must be algebraic integers

(analogue of SL(2)/SO(2))

Argument for quasi-unipotence [Schmid, '73] Jordan decomposition $M = M_{\mu}M_{s}$ (M_{s} semi-simple, $M_{\mu} - 1$ nilpotent) Quasi-unipotence \iff eigenvalues λ of M_s are **roots of unity**

- Compute distance on group manifold $SO(3,2)/(SO(2) \times SO(2))$ $d(\mathsf{Id}, g_y^{-1}Mg_y) = d(iy, iy+1) \sim \frac{1}{v}$
- \implies Eigenvalues λ of M must have $|\lambda| = 1$

(roots to $\lambda^n + c_1 \lambda^{n-1} + \ldots + c_n = 0$ for some $c_i \in \mathbb{Z}$)

Also, eigenvalues must be algebraic integers $\implies \lambda$ are roots of unity

(analogue of SL(2)/SO(2))

iy + 1 iy

 g_{y}

 Mg_{v}

Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

• Check quasi-unipotence condition for degree d = 0, 1, finite order l = 1, 2, 3, 4, 6,

Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

An example, d = 0, l = 3: $M_{\infty}^3 - 1 = (\kappa - 1)^3$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

• Check quasi-unipotence condition for degree d = 0,1, finite order l = 1,2,3,4,6,

$$\begin{array}{ccc} -3 \end{array} \left(\begin{array}{ccc} 2\kappa - \kappa^2 & \kappa^2 - \kappa \\ 1 - \kappa & \kappa \end{array} \right) = 0 \,,$$
Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

$$\begin{split} M_{\infty}^{3} - 1 &= (\kappa - 3) \begin{pmatrix} 2\kappa - \kappa^{2} & \kappa^{2} - \kappa \\ 1 - \kappa & \kappa \end{pmatrix} = 0, \\ M_{\infty}^{4} - 1 &= (\kappa - 2) \begin{pmatrix} \kappa^{3} - 5\kappa^{2} + 5\kappa & -\kappa^{3} + 4\kappa^{2} - 2\kappa \\ \kappa^{2} - 4\kappa + 2 & 3\kappa - \kappa^{2} \end{pmatrix} = 0, \\ M_{\infty}^{6} - 1 &= (\kappa - 1)(\kappa - 3) \begin{pmatrix} \kappa^{4} - 7\kappa^{3} + 14\kappa^{2} - 7\kappa & -\kappa^{4} + 6\kappa^{3} - 9\kappa^{2} + 2\kappa \\ \kappa^{3} - 6\kappa^{2} + 9\kappa - 2 & -\kappa^{3} + 5\kappa^{2} - 5\kappa \end{pmatrix} = 0, \\ M_{\infty}^{2} - 1)^{2} &= (\kappa - 4) \begin{pmatrix} \kappa^{3} - 3\kappa^{2} + \kappa & 2\kappa^{2} - \kappa^{3} \\ \kappa^{2} - 2\kappa & \kappa - \kappa^{2} \end{pmatrix} = 0, \end{split}$$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

• Check quasi-unipotence condition for degree d = 0, 1, finite order l = 1, 2, 3, 4, 6,

Warm-up: T2 monodromies

• Monodromies in $SL(2,\mathbb{Z})$:

$$M_0 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad M_1 = \begin{pmatrix} 1 & -\kappa \\ 0 & 1 \end{pmatrix}$$

$$\begin{split} M_{\infty}^{3} - 1 &= (\kappa - 3) \begin{pmatrix} 2\kappa - \kappa^{2} & \kappa^{2} - \kappa \\ 1 - \kappa & \kappa \end{pmatrix} = 0, \\ M_{\infty}^{4} - 1 &= (\kappa - 2) \begin{pmatrix} \kappa^{3} - 5\kappa^{2} + 5\kappa & -\kappa^{3} + 4\kappa^{2} - 2\kappa \\ \kappa^{2} - 4\kappa + 2 & 3\kappa - \kappa^{2} \end{pmatrix} = 0, \\ M_{\infty}^{6} - 1 &= (\kappa - 1)(\kappa - 3) \begin{pmatrix} \kappa^{4} - 7\kappa^{3} + 14\kappa^{2} - 7\kappa & -\kappa^{4} + 6\kappa^{3} - 9\kappa^{2} + 2\kappa \\ \kappa^{3} - 6\kappa^{2} + 9\kappa - 2 & -\kappa^{3} + 5\kappa^{2} - 5\kappa \end{pmatrix} = 0, \\ M_{\infty}^{2} - 1)^{2} &= (\kappa - 4) \begin{pmatrix} \kappa^{3} - 3\kappa^{2} + \kappa & 2\kappa^{2} - \kappa^{3} \\ \kappa^{2} - 2\kappa & \kappa - \kappa^{2} \end{pmatrix} = 0, \end{split}$$

 \implies solutions $\kappa = 3, 2, 1, 4$

$$M_{\infty} = (M_0 M_1)^{-1} = \begin{pmatrix} 1 - \kappa & \kappa \\ -1 & 1 \end{pmatrix}$$

• Check quasi-unipotence condition for degree d = 0,1, finite order l = 1,2,3,4,6,

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

 $L = \theta^2 - \mu z(\theta + a_1)(\theta + a_2)$

$$\theta = z \frac{d}{dz}$$

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

$$L = \theta^2 - \mu z(\theta + a_1)(\theta + a_2)$$

 $\implies L \text{ fixed by eigenvalues of } M_{\infty}: e^{2\pi i a_1}, e^{2\pi i a_2}$

$$\theta = z \frac{d}{dz}$$

Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

$$L = \theta^2 - \mu z(\theta + a_1)(\theta + a_2)$$

 \implies L fixed by eigenvalues of M_{∞} :

Periods are given by hypergeometric functions:

$$\varpi_0 = {}_2F_1(a_1, a_2; 1; \mu z) , \qquad \varpi_1 = \frac{\imath}{\sqrt{\kappa}} \cdot {}_2F_1(a_1, a_2; 1; 1 - \mu z)$$

$$\theta = z \frac{d}{dz}$$

$$e^{2\pi i a_1}, e^{2\pi i a_2}$$

Expand fundamental period in large complex structure regime:

$$\varpi_0 = \sum_{n=0}^{\infty} \frac{(6n)!}{n!(2n)!(3n)!} z^n = 1 + 60z + 6$$

(example: $\kappa = 1$)

 $+13860z^{2}+4084080z^{3}+\mathcal{O}(z^{4})$

Expand fundamental period in large complex structure regime:

degree of hypersurface $\varpi_0 = \sum_{n=0}^{\infty} \frac{(6n)!}{n!(2n)!(3n)!} z^n = 1 + 60z + 13860z^2 + 4084080z^3 + \mathcal{O}(z^4)$

- (example: $\kappa = 1$)

Expand fundamental period in large complex structure regime:

- (example: $\kappa = 1$)

Expand fundamental period in large complex structure regime:

weights of projective space

- (example: $\kappa = 1$)

complete intersection Calabi-Yau $X_6(1,2,3)$: sextic in $\mathbb{P}^2[1,2,3]$

Warm-up: T2 landscape

(a_1,a_2)	$\left(\frac{1}{6},\frac{5}{6}\right)$	$(rac{1}{4},rac{3}{4})$	$(rac{1}{3},rac{2}{3})$	$(rac{1}{2},rac{1}{2})$
κ	1	2	3	4
μ	432	64	27	16
(d,l)	(0, 6)	(0,4)	(0,3)	(1,2)
Modular group	$\Gamma_1(1)$	$\Gamma_1(2)$	$\Gamma_1(3)$	$\Gamma_1(4)$
Elliptic curve	$X_6(1,2,3)$	$X_4(1^2, 2)$	$X_{3}(1^{3})$	$X_{2,2}(1^4)$

$$M_C = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

[Grimm, Ha, Klemm, Klevers '09]

$$M_C = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

[Grimm, Ha, Klemm, Klevers '09]

$$M_C = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

[Grimm, Ha, Klemm, Klevers '09]

 \Rightarrow impose quasi-unipotence on $M_{\infty}(\kappa, c_2)$ and solve for topo. data

Impose a finite order monodromy of order l = 6:

 $(M_{\infty}(\kappa, c_2))^6 - \mathbb{I} = 0$

Impose a finite order monodromy of order l = 6:

 $(M_{\infty}(\kappa, c_2))^6 - \mathbb{I} = 0$

Impose a finite order monodromy of order l = 6:

 $(M_{\infty}(\kappa, c_2))^6 - \mathbb{I} = 0$

 \implies polynomial set of equations for κ and c_2

Only 1 solution: $\kappa = 6$, $c_2 = 90$

Impose a finite order monodromy of order l = 6:

 $(M_{\infty}(\kappa, c_2))^6 - \mathbb{I} = 0$

 \implies polynomial set of equations for κ and c_2

Only 1 solution: $\kappa = 6$, $c_2 = 90$

 \implies data of the sextic in \mathbb{P}^5 , (without doing a geometrical computation)

Landscape of monodromy groups [DvdH, '24]

(κ, a)	(6,4)	(4,4)	(2,3)	(10,5)	
degree d				0	
order l	6	8	10		

(a) Finite order monodromies.

(κ, a)	(8,4)	(2,2)	(18, 6)	(16, 6)	(8,5)	(24,7)	(32, 8)
degree d	1			2			4
order l	4	6		4	6		2

(b) Infinite order monodromies.

$$(2,4)$$
 $(4,3)$ $(12,5)$
12

$$a = (\kappa + c_2)/24$$

Computing the periods

• Periods solve the hypergeometric equation:

 $L = \theta^5 - \mu z(\theta + a_1)(\theta + a_2)(\theta + a_3)(\theta + a_4)(\theta + a_5)$

 $\theta = z \frac{d}{dz}$

Computing the periods

• Periods solve the hypergeometric equation:

$$L = \theta^5 - \mu z(\theta + a_1)(\theta + a_2)(\theta + a_3)(\theta + a_4)(\theta + a_5)$$

Fundamental period solution:

$$\Pi^{0}(z) = {}_{5}F_{4}(a_{1}, ...$$

 $\theta = z \frac{d}{dz}$

 $., a_5; 1^4; \mu z)$

Computing the periods

Periods solve the hypergeometric equation:

$$L = \theta^5 - \mu z(\theta + a_1)(\theta + a_2)(\theta + a_3)(\theta + a_4)(\theta + a_5) \qquad \theta = z \frac{d}{dz}$$

Fundamental period solution:

$$\Pi^{0}(z) = {}_{5}F_{4}(a_{1}, \ldots, a_{5}; 1^{4}; \mu z)$$

- Can determine the CICY from series expansion of this period
- Other 4 periods have similar expressions in hypergeometric functions

Calabi-Yau fourfold landscape

a_1,a_2,a_3,a_4,a_5	Type	Mirror	μ	(κ, a)	c_2	c_3	c_4
$rac{1}{5},rac{2}{5},rac{1}{2},rac{3}{5},rac{4}{5}$	F	$X_{2,5}(1^7)$	$2^{2}5^{5}$	(10, 5)	110	-420	2190
$\frac{1}{10}, \frac{3}{10}, \frac{1}{2}, \frac{7}{10}, \frac{9}{10}$	\mathbf{F}	$X_{10}(1^5,5)$	$2^{10}5^{5}$	(2, 3)	70	-580	5910
$rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2}$	LCS	$X_{2^5}(1^{10})$	2^{10}	(32, 8)	160	-320	960
$\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}$	CY3	$X_{2,3,3}(1^8)$	$2^{2}3^{6}$	(18, 6)	126	-324	1206
$rac{1}{3},rac{1}{2},rac{1}{2},rac{1}{2},rac{2}{3}$	С	$X_{2,2,2,3}(1^9)$	$2^{6}3^{3}$	(24, 7)	144	-336	1152
$rac{1}{4}, rac{1}{2}, rac{1}{2}, rac{1}{2}, rac{3}{4}$	C	$X_{2,2,4}(1^8)$	2^{12}	(16, 6)	128	-384	1632
$\frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8}$	\mathbf{F}	$X_{2,8}(1^6,4)^*$	2^{18}	(4, 4)	92	-600	4908
$rac{1}{6}, rac{1}{3}, rac{1}{2}, rac{2}{3}, rac{5}{6}$	\mathbf{F}	$X_6(1^6)$	6^{6}	(6, 4)	90	-420	2610
$\frac{1}{12}, \frac{5}{12}, \frac{1}{2}, \frac{7}{12}, \frac{11}{12}$	\mathbf{F}	$X_{2,2,12}(1^6, 4, 6)^{**}$	$2^{14}3^{6}$	(2, 4)	94	-972	11814
$rac{1}{4},rac{1}{4},rac{1}{2},rac{3}{4},rac{3}{4}$	CY3	$X_{4,4}(1^6,2)$	2^{14}	(8, 4)	88	-304	1464
$rac{1}{4}, rac{1}{3}, rac{1}{2}, rac{2}{3}, rac{3}{4}$	\mathbf{F}	$X_{3,4}(1^7)$	$2^{8}3^{3}$	(12, 5)	108	-336	1476
$rac{1}{6}, rac{1}{4}, rac{1}{2}, rac{3}{4}, rac{5}{6}$	\mathbf{F}	$X_{4,6}(1^5,2,3)^*$	$2^{12}3^3$	(4,3)	68	-320	2028
$rac{1}{6}, rac{1}{6}, rac{1}{2}, rac{5}{6}, rac{5}{6}$	CY3	$X_{6,6}(1^4, 2, 3^2)^*$	$2^{10}3^{3}$	(2, 2)	46	-244	1734
$rac{1}{6}, rac{1}{2}, rac{1}{2}, rac{1}{2}, rac{5}{6}$	C	$X_{2,2,6}(1^7,3)^*$	$2^{10}3^{6}$	(8, 5)	112	-528	3264

Calabi-Yau fourfold landscape

a_1,a_2,a_3,a_4,a_5	Type	Mirror	μ	(κ, a)	c_2	c_3	c_4
$rac{1}{5},rac{2}{5},rac{1}{2},rac{3}{5},rac{4}{5}$	F	$X_{2,5}(1^7)$	$2^{2}5^{5}$	(10, 5)	110	-420	2190
$\frac{1}{10}, \frac{3}{10}, \frac{1}{2}, \frac{7}{10}, \frac{9}{10}$	F	$X_{10}(1^5,5)$	$2^{10}5^{5}$	(2,3)	70	-580	5910
$rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2}$	LCS	$X_{2^5}(1^{10})$	2^{10}	(32, 8)	160	-320	960
$\frac{1}{3}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{2}{3}$	CY3	$X_{2,3,3}(1^8)$	$2^{2}3^{6}$	(18, 6)	126	-324	1206
$rac{1}{3},rac{1}{2},rac{1}{2},rac{1}{2},rac{2}{3}$	С	$X_{2,2,2,3}(1^9)$	$2^{6}3^{3}$	(24, 7)	144	-336	1152
$rac{1}{4},rac{1}{2},rac{1}{2},rac{1}{2},rac{3}{4}$	С	$X_{2,2,4}(1^8)$	2^{12}	(16, 6)	128	-384	1632
$rac{1}{8},rac{3}{8},rac{1}{2},rac{5}{8},rac{7}{8}$	F	$X_{2,8}(1^6,4)^*$	2^{18}	(4, 4)	92	-600	4908
$rac{1}{6}, rac{1}{3}, rac{1}{2}, rac{2}{3}, rac{5}{6}$	F	$X_{6}(1^{6})$	6^{6}	(6, 4)	90	-420	2610
$rac{1}{12}, rac{5}{12}, rac{1}{2}, rac{7}{12}, rac{11}{12}$	F	$X_{2,2,12}(1^6,4,6)^{**}$	$2^{14}3^{6}$	(2, 4)	94	-972	11814
$rac{1}{4},rac{1}{4},rac{1}{2},rac{3}{4},rac{3}{4}$	CY3	$X_{4,4}(1^6,2)$	2^{14}	(8, 4)	88	-304	1464
$rac{1}{4}, rac{1}{3}, rac{1}{2}, rac{2}{3}, rac{3}{4}$	F	$X_{3,4}(1^7)$	$2^{8}3^{3}$	(12, 5)	108	-336	1476
$rac{1}{6}, rac{1}{4}, rac{1}{2}, rac{3}{4}, rac{5}{6}$	F	$X_{4,6}(1^5,2,3)^*$	$2^{12}3^3$	(4, 3)	68	-320	2028
$rac{1}{6}, rac{1}{6}, rac{1}{2}, rac{5}{6}, rac{5}{6}$	CY3	$X_{6,6}(1^4,2,3^2)^*$	$2^{10}3^{3}$	(2, 2)	46	-244	1734
$rac{1}{6}, rac{1}{2}, rac{1}{2}, rac{1}{2}, rac{5}{6}$	С	$X_{2,2,6}(1^7,3)^*$	$2^{10}3^{6}$	(8, 5)	112	-528	3264

9 CY4 already known

[Cabo-Bizet, Klemm, Lopes '14]

• 5 CY4 are new

• LCS point: another maximally unipotent point, d = 4

- LCS point: another maximally unipotent point, d = 4
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1

- LCS point: another maximally unipotent point, d = 4
- **CY3-point:** weak string-coupling limit of a **rigid** Calabi-Yau orientifold, d = 1
- Conifold-point: finite distance point, but infinite order monodromy, d=2

- LCS point: another maximally unipotent point, d = 4
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1
- Conifold-point: finite distance point, but infinite order monodromy, d = 2
- Landau-Ginzburg point: finite order monodromy, d = 0

- LCS point: another maximally unipotent point, d = 4
- CY3-point: weak string-coupling limit of a rigid Calabi-Yau orientifold, d = 1
- Conifold-point: finite distance point, but infinite order monodromy, d = 2
- Landau-Ginzburg point: finite order monodromy, d = 0

 \implies for each phase an example worked out in [DvdH, '24]

- LCS point: another maximally unipotent point, d = 4

- Landau-Ginzburg point: finite order monodromy, d = 0

 \implies for each phase an example worked out in [DvdH, '24]

• **CY3-point:** weak string-coupling limit of a **rigid** Calabi-Yau orientifold, d = 1

• Conifold-point: finite distance point, but infinite order monodromy, d = 2

CY3-point of $X_{6,6}(1^4, 2, 3^2)$

Period expansion around the CY3-point:

$$\Pi(\tau) = \begin{pmatrix} 1 \\ \frac{1}{2} + \frac{i\sqrt{3}}{2} \\ 0 \\ \tau \\ (\frac{1}{2} + \frac{i\sqrt{3}}{2})\tau \end{pmatrix} + \frac{i}{\sqrt{3}} \begin{pmatrix} 0 \\ 0 \\ -1 \\ -\frac{2}{3} \\ \frac{1}{3} \end{pmatrix} + \mathcal{O}(e$$

$2\pi i\tau$

 $\tau = \log[z]/2\pi i$

CY3-point of $X_{6,6}(1^4, 2, 3^2)$

Period expansion around the CY3-point:

Rigid Calabi-Yau threefold with period

$$\tau^{2\pi i\tau}$$
) $\tau = \log[z]/2\pi i$

d vector
$$(1, \frac{1}{2} + \frac{i\sqrt{3}}{2})$$

CY3-point of $X_{6.6}(1^4, 2, 3^2)$

Period expansion around the CY3-point:

- Rigid Calabi-Yau threefold with perio
- Complex structure coordinate parametrizes the string coupling

$$\tau^{2\pi i\tau}$$
) $\tau = \log[z]/2\pi i$

od vector
$$(1, \frac{1}{2} + \frac{i\sqrt{3}}{2})$$

D7-brane superpotential

Fourfold periods are known to encode open-string physics

[Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

D7-brane superpotential

Fourfold periods are known to encode open-string physics [Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$W_{\rm D7} = q_{\rm D7} \frac{\sqrt{z}}{\pi^2} {}_5F_4\left(\frac{1}{2};\frac{2}{3};\frac{4}{3};-2^{10}3^3z\right)$$

$$z = e^{2\pi i \tau}$$

D7-brane superpotential

Fourfold periods are known to encode open-string physics [Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$W_{\rm D7} = q_{\rm D7} \frac{\sqrt{z}}{\pi^2} {}_5F_4\left(\frac{1}{2};\frac{2}{3};\frac{4}{3};-2^{10}3^3z\right) = \frac{q_{\rm D}}{\pi^2}$$

$\frac{\eta_{\text{D7}}}{\tau^2} \sqrt{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{1}{2}\right)^5}{\sqrt{\pi}\Gamma(k+1)\Gamma\left(k+\frac{2}{3}\right)^2 \Gamma\left(k+\frac{4}{3}\right)^2} (-2^{10}3^3 z)^k$

$$z = e^{2\pi i \tau}$$

D7-brane superpotential

Fourfold periods are known to encode open-string physics [Grimm-Ha-Klemm-Klevers '09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush '09; Jockers-Mayr-Walcher '09; Clinghler-Donagi-Wijnholt '12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

$$W_{\rm D7} = q_{\rm D7} \frac{\sqrt{z}}{\pi^2} {}_5F_4\left(\frac{1}{2};\frac{2}{3};\frac{4}{3};-2^{10}3^3z\right) = \frac{q_{\rm D}}{\pi^2}$$

$$=\frac{q_{\rm D7}}{\pi^2}\sqrt{z}\left(1-\frac{2187}{2}z+\frac{9298091736}{1225}z^2-\frac{423644}{2}z^2\right)$$

$\frac{\eta_{\text{D7}}}{\pi^2} \sqrt{z} \sum_{k=0}^{\infty} \frac{\Gamma\left(k+\frac{1}{2}\right)^5}{\sqrt{\pi}\Gamma(k+1)\Gamma\left(k+\frac{2}{3}\right)^2 \Gamma\left(k+\frac{4}{3}\right)^2} (-2^{10}3^3 z)^k$ $\frac{43047215}{49}z^3 + \mathcal{O}(z^4)$ $z = e^{2\pi i \tau}$

Conclusions & outlook

Monodromies give a powerful tool in charting the landscape

• New $\mathcal{N} = 1$ moduli spaces to be explored further

(e.g. in searching for flux vacua, cf. [Plauschinn, Schlechter '23; Lüst '24]

• Singularities at infinity \implies novel phases of $\mathcal{N} = 1$ string compactifications

