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Motivation

emergent string limit

decomp. limit

What phases can

Central question: arise here?

What are the global consistency conditions
for putting together asymptotic phases? see also: |Fitheredge, Heidenreich,

Rudelius, Ruiz, Valenzuela; to appear]|
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Monodromies

Circling a boundary point
iInduces a monodromy:

() —» (e™z) = M - I1(2)

M e SL(2,72),5p(4,72),50(3,2; 7))

Equivalent loops have same monodromy:

MOMI — (1‘400)_1

Side-remark: need at least three singular points for a non-trivial moduli space

(monodromy group must be infinite order and completely reducible [Griffiths, *70])
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F-theory on Calabi-Yau fourfolds

Kahler potential and flux superpotential:

oK = J Q) A Q) = I (QN(E)
¥y Q(z) € H*Y
W = J G, A Q(z) = G, 2II(z)
Yy

Dependence on complex structure moduli encoded in period vector:

[T(z :J Q(z This talk:
@ I, @ Hodge numbers h>! = h?? = 1

T~ I'; € Hy(Y,, Z)
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Large complex structure periods

Periods in LCS regime: 1
—1
| Gerhardus, Jonkers *16; 0l B 1.9 1, | ¢
Cota, Klemm, Schimannek *18; LGS — o §t T §t DYP
Marchesano, Prieto, Wiesner *21] Kgd 4 B2 4 By ) ic3¢(3) C2
6 47 ' 87 ' = 8m3 48
K t4 | C2 t2  tcst((3) C4 5
247 ' 487 ' 8m?3 3456 12
(covering coordinate: z = e*™) 1 0 0 0 O
—1 1 0 0 O
Monodromy under f — ¢ + 1: | -1 l 00
, 7 (02 + 131<) —g —x 1 0O
1 1
N (02 + K) —I (02 + K) 0 1 1

Encode topological data
of mirror Calabi-Yau
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Finiteness of monodromy groups

* (Non-effective) Finiteness theorem by [Deligne 81]

For a given moduli space with fixed singularity structure, there are only finitely many
monodromy groups possible.

» Effective method for enumerating Calabi-Yau threefolds with .Z.. = P'\{0,1,00}

| Doran, Morgan "05]

- Mirror symmetry constrains LCS and conifold monodromy

.. e 14 Calabi-Yau threefolds
- Quasi-unipotence of monodromy around infinity

apply to Calabi-Yau fourfold moduli spaces
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Quasi-unipotence of monodromies

Driving principle behind classification: quasi-unipotence

(M —

 Nilpotence degree d = 0,1,....4

e Finiteorder/ =1,2,3.4.5,6,8,10,12

)4 #£ 0,

(M —

)d—|—1 _ O,

geometric proof by [Landman, *73]
group-theoretic proof by [Schmid, 73]

(complex dimension of Calabi-Yau manifold)

(possible orders for a GL(5,0Q)) matrix)
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Argument for quasi-unipotence [Schmid, *73]

Jordan decomposition M = M, M, (M, semi-simple, M, — 1 nilpotent)

Quasi-unipotence <=  eigenvalues /1 of M, are roots of unity

-
Compute distance on group manifold SO(3,2)/(SO(2) x SO(2)) >
1 (analogue of SL(2)/SO(2))
d(ld, g;'Mg,) = d(iy, iy + 1) ~ —
y n< > u
—> Eigenvalues 4 of M must have |[A| =1 'y iy +1
L~ N\~

(roots to A"+ ¢,A" 1 + ... + ¢, = 0 for some ¢, € Z)

Also, eigenvalues must be algebraic integers — A are roots of unity
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» Monodromies in SL(2,7):
_ 1 O . l —«x . -1 _ l—x K
My = (1 1) M, = (O i ) My = (MyM,)"" = ( 1 1)

» Check quasi-unipotence condition for degree d = 0,1, finite order [ = 1,2,3,4,6,

Ve — 2 2
An example, d = 0, [ = 3: Mfo—lz(n—S)( voROR "‘):o,

1 —K K



Warm-up: T2 monodromies

» Monodromies in SL(2,7):

1 0 1 —k _ | —
M():(l 1) Ml:(O 1) Hee = (MY 1:(—1K ’1<>

» Check quasi-unipotence condition for degree d = 0,1, finite order [ = 1,2,3,4,6,

gl g2
Mg’o—lz(n—?))(zﬁ K K K):O’

1 —kK K

3 2 3 2
4 4 K° —OK“+ 90Kk —K’>+4Kk* —2k \
Mo —1=(x 2)< K? — 4K + 2 3k — K? )_O’
4 3 2 4 3 2
6 1 _ (. - K*— k> +14k" — Tk —K"+6K° —9k“"+2Kk \
Mo —1=(k-1)« 3)( K> — 6K* + 9k — 2 —Kk> 4+ 5Kk% — Bk =0,
3 2 2 3
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Warm-up: T2 monodromies

» Monodromies in SL(2,7):

1 0 1 —k _ | —
M():(l 1) Ml:(O 1) Hee = (MY 1:(—1K ’1<>

» Check quasi-unipotence condition for degree d = 0,1, finite order [ = 1,2,3,4,6,

Y
Mg’o—lz(h:—?))(ZK K K K):O’

1 —kK K

3 2 3 2
4 4 K° —OK“+ 90Kk —K’>+4Kk* —2k \
Mo —1=(x 2)< K? — 4K + 2 3k — K? )_O’
4 3 2 4 3 2
6 1 _ (. - K*— k> +14k" — Tk —K"+6K° —9k“"+2Kk \
Mo —1=(k-1)« 3)( K> — 6K* + 9k — 2 —Kk> 4+ 5Kk% — Bk =0,
3 2 2 3
2> N2 _ (. K> — 3k + K 2k — K B
(Moo 1) _(K: 4)( K,Q—QKJ /i—liQ )_Oa

—> solutions k = 3,2,1.4
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Warm-up: T2 periods

Periods are solutions to the hypergeometric differential operator

d
L=0%—puz(0+a)0+ ay) O:z@

—> L fixed by eigenvalues of M_: e*™%, >4

Periods are given by hypergeometric functions:

7
wo = 217 (01,@2;15NZ) ) w; = —= - ol (alaaz;l;l—ﬂz)

NG



Reverse-engineer geometries

[Hosono, Klemm, Theisen, Yau 93]

Expand fundamental period in large complex structure regime:

(example: k = 1)
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Reverse-engineer geometries

[Hosono, Klemm, Theisen, Yau 93]

Expand fundamental period in large complex structure regime:

_~ degree of hypersurface (example: k = 1)

2" =1+ 602z + 138602 + 40840802° + O(z*)

2n)1(3r)

weights of projective space

—> complete intersection Calabi-Yau X¢(1,2,3): sextic in | ’[1,2,3]



Warm-up: T2 landscape

(a1, ap) & @D G G
K 1 2 3 4
N 432 64 27 16
(d, 1) (0,6) 0,4)  (0,3)  (1,2)
Modular group ' (1) ' (2) 3 I'i(4)
Elliptic curve | Xg(1,2,3) X4(1%,2) X3(1°) Xao(1%)
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e e
cC O, OO
o = OO O
oo o o |

|Grimm, Ha, Klemm, Klevers "09]
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Back to Calabi-Yau fourfolds

M cs(x, ¢;)

OO OO = O
OO = OO
o = O O O
o O O O

|Grimm, Ha, Klemm, Klevers "09]

—> impose quasi-unipotence on M__(k, ¢,)

and solve for topo. data »
M (k, c;) = (M cs(K, c))M()
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Example

Impose a finite order monodromy of order [ = 6:

M_(k,¢c,))°=1=0

— polynomial set of equations for k and ¢,

Only 1 solution: Kk =6, ¢, =90

—> data of the sextic in |

5

, (without doing a geometrical computation)



Landscape of monodromy groups

| DvdH, "24]
(k,a) (6,4) | (4,4) | (2,3) | (10,5) | (2,4) | (4,3) | (12,5)
degree d 0
order [ 6 8 10 12
(a) Finite order monodromies. a = (k+c)/24
(K, a) (8,4) | (2,2) | (18,6) | (16,6) | (8,5) | (24,7) | (32,8)
degree d 1 2 4
order [ 4 6 4 6 2

(b) Infinite order monodromies.
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Computing the periods

* Periods solve the hypergeometric equation:
L=0°—uz(0+a)@ + a0+ a)(@ + a,)(0 + as) 0= 7—

Fundamental period solution:

[1°(2) = 5Fy(aa, . .., a5; 1% pz)

e Can determine the CICY from series expansion of this period

* Other 4 periods have similar expressions in hypergeometric functions



Calabi-Yau fourfold landscape

ai,as,as,aq,as | Lype Mirror L (k,a) | ¢ C3 Cq
132134 F X2,5(17) 225° | (10,5) | 110 | —420 | 2190
L3119 | F X10(15,5) 21055 | (2,3) | 70 | —580 | 5910
11111 1 LCS X5 (110) 210 | (32,8) | 160 | —320 | 960
1,4,1)2'2 1 CY3 Xy.3.3(1%) 2236 | (18,6) | 126 | —324 | 1206
14,4,1,2 C X5,223(1%) 203% | (24,7) | 144 | —336 | 1152
11113 C X3.2.4(1%) 212 | (16,6) | 128 | —384 | 1632
13151 F X25(15,4) 218 | (4,4) | 92 | —600 | 4908
NN F X(1%) 6° | (6,4) | 90 | —420 | 2610
Lo LU F | Xp010(15,4,6) | 2136 | (2,4) | 94 | —972 | 11814
1110303 1 QY3 | X44(15,2) 214 | (8,4) | 88 | —304 | 1464
11123 F X3,4(17) 2833 | (12,5) | 108 | —336 | 1476
11135 F X46(1%,2,3)* | 2123% | (4,3) | 68 | —320 | 2028
L1483 | CY3 | Xee(1%,2,3%)* | 21933 | (2,2) | 46 | —244 | 1734
11115 C Xo026(17,3)* | 21036 | (8,5) | 112 | —528 | 3264




Calabi-Yau fourfold landscape

ai,as, as,aq,as | lype Mirror U (n, a) Co C3 Cy
132134 F X2,5(17) 225° | (10,5) | 110 | —420 | 2190
i 311 2| F X10(1%,5) | 21055 | (2,3) | 70 | —580 | 5910
11111 1 LCS X5 (11°) 2101 (32,8) | 160 | —320 | 960
1,3,022 | CY3 X,3,3(1%) 2235 | (18,6) | 126 | —324 | 1206
14,4,1,2 C X5223(1%) 203° | (24,7) | 144 | —336 | 1152
11118 C X2.24(1%) 212 | (16,6) | 128 | —384 | 1632

F

F

F

672727276

108

* 9 CY4 already known

[Cabo-Bizet, Klemm, Lopes ’14]

e 5CY4 are new
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Phases at infinity

» LCS point: another maximally unipotent point, d = 4

 Conifold-point: finite distance point, but infinite order monodromy, d = 2

» Landau-Ginzburg point: finite order monodromy, d = 0O

—> for each phase an example worked out in [DvdH, 24 ]



CY3-point of X, (1%,2,3°)

Period expansion around the CY3-point:

I 0
/3
cReenll IV Y I
[(7) = 0 | , | + O(e*™) t = log[z]/2xi
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CY3-point of X, (1%,2,3°)

Period expansion around the CY3-point:

T = log|z]/2ni

. Rigid Calabi-Yau threefold with period vector (1 + i)

 Complex structure coordinate parametrizes the strlng coupling



D7-brane superpotential
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vz (15. 22 42._210332>

WD7ZQD7_7Z_2 5F4 REREE
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D7-brane superpotential

Fourfold periods are known to encode open-string physics

|Grimm-Ha-Klemm-Klevers "09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush *09;
Jockers-Mayr-Walcher *09; Clinghler-Donagi-Winholt *12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

k+ =

5
\/z 15 22 42 _21033Z> _ QD7\/zi F< 2)

2 2 4
k=0 /2T (k + D) (k+§> F(k+§>

. ( 21033Z)k

7 = eZim'



D7-brane superpotential

Fourfold periods are known to encode open-string physics

|Grimm-Ha-Klemm-Klevers "09; Alim-Hecht-Jockers-Mayr-Mertens-Soroush *09;
Jockers-Mayr-Walcher *09; Clinghler-Donagi-Winholt *12]

Remaining period: superpotential induced by worldvolume flux of D7-branes

2 73737

5
| 1

Wb7 = dpr—5 5t > ~(=2193%)"
? > 4
k= nF(k+1)F(k+§> F(k+§>

Yivy, 2187 _, 9298091736 o 4236443047215 3 4 .
= — ' —|— —_ 27T
2 e\ == ¢ 49 27+ 0@ =€



Conclusions & outlook

 Monodromies give a powerful tool in charting the landscape

 New /4 = 1 moduli spaces to be explored further
(e.g. 1n searching for flux vacua, ct. [Plauschinn, Schlechter ’23; Liist *24]

» Singularities at infinity = novel phases of ./ = 1 string compactifications



