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• Recently, non-supersymmetric p-branes constructed in heterotic string:
    0-brane and 6-brane in 𝑆𝑝𝑖𝑛(32)/𝑍2 string 
    4-brane and 7-brane in 𝐸8 × 𝐸8 string 
magnetically charged under 𝜋7−𝑝 𝐺 .

[Kaidi, Ohmori, Tachikawa, Yonekura‘23]
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• Recently, non-supersymmetric p-branes constructed in heterotic string:
    0-brane and 6-brane in 𝑆𝑝𝑖𝑛(32)/𝑍2 string 
    4-brane and 7-brane in 𝐸8 × 𝐸8 string 
magnetically charged under 𝜋7−𝑝 𝐺 .

6-brane charged under 𝜋1 𝐺 = 𝑍2     → 𝑍2-valued 𝐹2 flux through 𝑆2

4-brane charged under 𝜋3 𝐺 = 𝑍 × 𝑍 → inst./anti-inst. pair on 𝑆4

[Kaidi, Ohmori, Tachikawa, Yonekura‘23]
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• Recently, non-supersymmetric p-branes constructed in heterotic string:
    0-brane and 6-brane in 𝑆𝑝𝑖𝑛(32)/𝑍2 string 
    4-brane and 7-brane in 𝐸8 × 𝐸8 string 
magnetically charged under 𝜋7−𝑝 𝐺 .

6-brane charged under 𝜋1 𝐺 = 𝑍2     → 𝑍2-valued 𝐹2 flux through 𝑆2

4-brane charged under 𝜋3 𝐺 = 𝑍 × 𝑍 → inst./anti-inst. pair on 𝑆4

• Described at near-horizon by linear dilaton background given by tachyon-free subcritical 
heterotic strings:

𝑝 = 0: 𝑆𝑝𝑖𝑛(24)/𝑍2  𝐷 = 2  
   𝑝 = 4 :  𝐸7 × 𝐸7/𝑍2  𝐷 = 6  

𝑝 = 6 :  𝑆𝑈(16)/𝑍2  𝐷 = 8
   𝑝 = 7 : 𝐸8   𝐷 = 9

[Kaidi ‘21]

[Kaidi, Ohmori, Tachikawa, Yonekura‘23]



Overview

5

• Heterotic strings in different dimensions are connected through tachyon condensation 
processes.

Roughly:  each tachyonic state annihilates one spacelike dimension.

      

[Hellerman, Swanson ‘06]
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• Heterotic strings in different dimensions are connected through tachyon condensation 
processes.

Roughly:  each tachyonic state annihilates one spacelike dimension.

E.g.  Critical 𝐸8 string (1 tachyon)          →       tachyon-free 𝐸8 string in 𝐷 = 9

      

[Hellerman, Swanson ‘06]

[Hellerman, Swanson ‘07]



Overview

7

• Heterotic strings in different dimensions are connected through tachyon condensation 
processes.

Roughly:  each tachyonic state annihilates one spacelike dimension.

E.g.  Critical 𝐸8 string (1 tachyon)          →       tachyon-free 𝐸8 string in 𝐷 = 9

  Critical 𝑆𝑈(16)/𝑍2 × 𝑈(1) string  (2 tachyons)        
              →        tachyon-free 𝑆𝑈(16)/𝑍2 string in 𝐷 = 8

      

[Hellerman, Swanson ‘06]

(Tachyons charged under 𝑈(1) , condensation gives them a VEV and Higgses the 𝑈(1))

[Hellerman, Swanson ‘07]

[Kaidi ‘21]



Overview

8

• Heterotic strings in different dimensions are connected through tachyon condensation 
processes.

Roughly:  each tachyonic state annihilates one spacelike dimension.

E.g.  Critical 𝐸8 string (1 tachyon)          →       tachyon-free 𝐸8 string in 𝐷 = 9

  Critical 𝑆𝑈(16)/𝑍2 × 𝑈(1) string  (2 tachyons)        
              →        tachyon-free 𝑆𝑈(16)/𝑍2 string in 𝐷 = 8

  𝐷 > 10 strings (𝑁 tachyons)           →        Critical strings (𝑁 − (𝐷 − 10)  tachyons) 
      

[Hellerman, Swanson ‘06]

(Tachyons charged under 𝑈(1) , condensation gives them a VEV and Higgses the 𝑈(1))

[Hellerman, Swanson ‘07]

[Kaidi ‘21]
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We wish to study circle compactifications of non-critical heterotic strings:

Why?
• Critical SUSY and nonSUSY theories on 𝑆1 are well studied. We wish 

to extend formalism to noncritical strings: T-duality groups and 
global structure of moduli spaces*.
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We wish to study circle compactifications of non-critical heterotic strings:

Why?
• Critical SUSY and nonSUSY theories on 𝑆1 are well studied. We wish 

to extend formalism to noncritical strings: T-duality groups and 
global structure of moduli spaces*.

• Regions of moduli space of critical nonSUSY on 𝑆1 have tree-level tachyons. 
Where do they condense to?  

      

[Fraiman, Graña, HPF, Sethi ‘23]
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We wish to study circle compactifications of non-critical heterotic strings:

Why?
• Critical SUSY and nonSUSY theories on 𝑆1 are well studied. We wish 

to extend formalism to noncritical strings: T-duality groups and 
global structure of moduli spaces*.

• Regions of moduli space of critical nonSUSY on 𝑆1 have tree-level tachyons. 
Where do they condense to?  

 Example: Scherk-Schwarz reduction of SUSY 

 theories leads to a pair of tachyons as the circle shrinks.  
 Result: At self-dual radius, condense to linear dilaton 

 background of 2 coincident NS5’s.     

[Fraiman, Graña, HPF, Sethi ‘23]
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We wish to study circle compactifications of non-critical heterotic strings:

Why?
• Critical SUSY and nonSUSY theories on 𝑆1 are well studied. We wish 

to extend formalism to noncritical strings: T-duality groups and 
global structure of moduli spaces*.

• Regions of moduli space of critical nonSUSY on 𝑆1 have tree-level tachyons. 
Where do they condense to?  

 Example: Scherk-Schwarz reduction of SUSY 

 theories leads to a pair of tachyons as the circle shrinks.  
 Result: At self-dual radius, condense to linear dilaton 
 background of 2 coincident NS5’s.

• More generally: why are nonSUSY compactifications plagued with tree-level tachyons? Perhaps we can 

learn something…      

[Fraiman, Graña, HPF, Sethi ‘23]
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Heterotic strings on 𝑆1 have radius and Wilson line moduli thanks to the gauge bundle.
Locally, they span the coset 

  

𝑀𝑙𝑜𝑐𝑎𝑙 = 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),          𝑟 = 𝑟𝑎𝑛𝑘(𝐺)     



Moduli spaces: Basics

14

Heterotic strings on 𝑆1 have radius and Wilson line moduli thanks to the gauge bundle.
Locally, they span the coset 

Globally, the coset is quotiented by the T-duality group 𝛤

  

𝑀𝑙𝑜𝑐𝑎𝑙 = 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),          𝑟 = 𝑟𝑎𝑛𝑘(𝐺)     

𝑀 = Γ ∖ 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),
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Heterotic strings on 𝑆1 have radius and Wilson line moduli thanks to the gauge bundle.
Locally, they span the coset 

Globally, the coset is quotiented by the T-duality group 𝛤

Critical strings have 𝑟 = 16, Γ = 𝑂(𝐼𝐼1,17) for SUSY and Γ = 𝑂 𝐼1,17  for nonSUSY.

𝐼𝐼1,17 = lattice of all electric charges in the SUSY theory.

 𝐼1,17   = lattice of electric charges for bosons in the nonSUSY theory.
  

𝑀𝑙𝑜𝑐𝑎𝑙 = 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),          𝑟 = 𝑟𝑎𝑛𝑘(𝐺)     

𝑀 = Γ ∖ 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),

(Automorphisms of even self-dual lattice)

[Fraiman, Graña, HPF, Sethi ‘23]
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The duality group decomposes into

 

Γ = Γ𝑟𝑒𝑓 ⋊ Γ𝑜𝑢𝑡𝑒𝑟
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The duality group decomposes into

The subgroup Γ𝑟𝑒𝑓 is generated by reflections, and defines the Coxeter polytope

The symmetries of P correspond (in most cases) to Γ𝑜𝑢𝑡𝑒𝑟 .

Γ = Γ𝑟𝑒𝑓 ⋊ Γ𝑜𝑢𝑡𝑒𝑟

P = Γ𝑟𝑒𝑓 ∖ 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),
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The duality group decomposes into

The subgroup Γ𝑟𝑒𝑓 is generated by reflections, and defines the Coxeter polytope

The symmetries of P correspond (in most cases) to Γ𝑜𝑢𝑡𝑒𝑟 .

For illustration consider the bosonic string on 𝑇2 ,
and the fundamental domain of 𝑆𝐿 2, 𝑍 × 𝑍2.

Finite distance cusps ≈ Symmetry enhancement
Infinite distance cusps ≈ Decompactification

 

Γ = Γ𝑟𝑒𝑓 ⋊ Γ𝑜𝑢𝑡𝑒𝑟

P = Γ𝑟𝑒𝑓 ∖ 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),



Moduli spaces: Basics

19

The duality group decomposes into

The subgroup Γ𝑟𝑒𝑓 is generated by reflections, and defines the Coxeter polytope

The symmetries of P correspond (in most cases) to Γ𝑜𝑢𝑡𝑒𝑟 .

For illustration consider the bosonic string on 𝑇2 ,
and the fundamental domain of 𝑆𝐿 2, 𝑍 × 𝑍2.

Finite distance cusps ≈ Symmetry enhancement
Infinite distance cusps ≈ Decompactification

Represent walls as nodes in a Coxeter diagram 

Γ = Γ𝑟𝑒𝑓 ⋊ Γ𝑜𝑢𝑡𝑒𝑟

P = Γ𝑟𝑒𝑓 ∖ 𝑂(1,1 + 𝑟)/𝑂(1 + 𝑟),



Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

Slice of covering space in 9D

[Fraiman, Graña, Nuñez ‘18]



Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

𝐸8 × 𝐸8 string limit  
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

𝑆𝑝𝑖𝑛(32)/𝑍2 string limit  

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

𝑆𝑈(18)/𝑍3 enhancement

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

𝑆𝑝𝑖𝑛(34) enhancement

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

Not a vertex!

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

For 𝐼1,17 there are special walls where two tachyons saturate lower bound for 𝑚2.

Moduli spaces: Diagrams, Symmetries, Enhancements

[Fraiman, Graña, HPF, Sethi ‘23]
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

For 𝐼1,17 there are special walls where two tachyons saturate lower bound for 𝑚2.

𝑆𝑈(16)/𝑍2 × 𝑈(1) string limit  

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

For 𝐼1,17 there are special walls where two tachyons saturate lower bound for 𝑚2.

𝑂(16) × 𝑂(16)  string limit  

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

For 𝐼1,17 there are special walls where two tachyons saturate lower bound for 𝑚2.

𝐸8 × 𝐸8 string limit  

Moduli spaces: Diagrams, Symmetries, Enhancements
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Vinberg (1972) determined the Coxeter diagrams for 𝐼𝐼1,17 and 𝐼1,17
Application to heterotic strings done in [Cachazo, Vafa ‘00], [Fraiman, Graña, HPF, Sethi ‘23]

Scherk-Schwarz reductions also live in this moduli space.

𝐸8 × 𝐸8 string on Scherck-Schwarz 
circle at self-dual radius

Moduli spaces: Diagrams, Symmetries, Enhancements



Moduli spaces: Noncritical strings
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Just as critical non-supersymmetric heterotic strings, non-critical ones are related to odd 
self-dual lattices. We can show that for even dimension 𝐷,  

Γ = 𝑂 𝐼1,1+𝑟 = 𝑂 1,1 + 𝑟; 𝑍  ,             𝑟 = 11 + 𝐷/2      
(odd self-dual lattice)
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Just as critical non-supersymmetric heterotic strings, non-critical ones are related to odd 
self-dual lattices. We can show that for even dimension 𝐷,  

Vinberg (1972) also determined the Coxeter diagrams for 𝐼1,1+𝑟 with 𝑟 < 16, which are 
relevant for subcritical strings on 𝑆1. 

Γ = 𝑂 𝐼1,1+𝑟 = 𝑂 1,1 + 𝑟; 𝑍  ,             𝑟 = 11 + 𝐷/2      
(odd self-dual lattice)

             



Moduli spaces: Noncritical strings
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Just as critical non-supersymmetric heterotic strings, non-critical ones are related to odd 
self-dual lattices. We can show that for even dimension 𝐷,  

Vinberg (1972) also determined the Coxeter diagrams for 𝐼1,1+𝑟 with 𝑟 < 16, which are 
relevant for subcritical strings on 𝑆1. 

Γ = 𝑂 𝐼1,1+𝑟 = 𝑂 1,1 + 𝑟; 𝑍  ,             𝑟 = 11 + 𝐷/2      
(odd self-dual lattice)

             

Changing one diagram to another corresponds to condensing two tachyons. 
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Just as critical non-supersymmetric heterotic strings, non-critical ones are related to odd 
self-dual lattices. We can show that for even dimension 𝐷,  

Vinberg (1972) also determined the Coxeter diagrams for 𝐼1,1+𝑟 with 𝑟 < 16, which are 
relevant for subcritical strings on 𝑆1. 

Γ = 𝑂 𝐼1,1+𝑟 = 𝑂 1,1 + 𝑟; 𝑍  ,             𝑟 = 11 + 𝐷/2      
(odd self-dual lattice)

Moduli spaces: Noncritical strings

   

D = 2 theory cannot be compactified on spacelike circle 
due to linear dilaton.

Still, our results apply as well to thermal circles.

This case was anticipated in [Davis, Larsen, Seiberg ‘05]
using covariant lattice approach.
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Kaplinskaya and Vinberg (1978) worked out the diagrams relating to 𝐷 = 12,14 
supercritical heterotic strings: 

There are two kinds of “tachyonic” nodes. Condensation of the respective tachyons gives 
either a supersymmetric or a non-supersymmetric critical theory. Note also the outer 
automorphisms. 

        

Moduli spaces: Noncritical strings
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Kaplinskaya and Vinberg (1978) worked out the diagrams relating to 𝐷 = 12,14 
supercritical heterotic strings: 

There are two kinds of “tachyonic” nodes. Condensation of the respective tachyons gives 
either a supersymmetric or a non-supersymmetric critical theory. Note also the outer 
automorphisms. 

        

Moduli spaces: Noncritical strings
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Kaplinskaya and Vinberg (1978) worked out the diagrams relating to 𝐷 = 12,14 
supercritical heterotic strings: 

There are two kinds of “tachyonic” nodes. Condensation of the respective tachyons gives 
either a supersymmetric or a non-supersymmetric critical theory. Note also the outer 
automorphisms. 

        

𝐸6 × 𝑆𝑈(12)/𝑍3 string limit

Unique tachyon-free 𝐷 = 12 heterotic string
does not condense to 𝐷 = 10 theory, but 1-loop 
potential diverges due to timelike linear dilaton

Moduli spaces: Noncritical strings



Tachyon Condensation and Brane T-duality

38

• Any heterotic string on a Scherck-Schwarz circle with self-dual radius has a worldsheet 
CFT factor consisting of free Majorana-Weyl fermions

             2 × 𝜆𝐿    3 × 𝜓𝑅

𝑆𝑈(2)2Tachyons



Tachyon Condensation and Brane T-duality
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• Any heterotic string on a Scherck-Schwarz circle with self-dual radius has a worldsheet 
CFT factor consisting of free Majorana-Weyl fermions

             2 × 𝜆𝐿    3 × 𝜓𝑅

• Condensing the tachyons reduces the overall dimension by 3, introduces spacelike linear 
dilaton and preserves the 𝑆𝑈(2)2. 

𝑆𝑈(2)2Tachyons



Tachyon Condensation and Brane T-duality
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• Any heterotic string on a Scherck-Schwarz circle with self-dual radius has a worldsheet 
CFT factor consisting of free Majorana-Weyl fermions

             2 × 𝜆𝐿    3 × 𝜓𝑅

• Condensing the tachyons reduces the overall dimension by 3, introduces spacelike linear 
dilaton and preserves the 𝑆𝑈(2)2. 

• The result is the linear dilaton background describing two coincident NS5 branes in the 
original theory.

For 10D heterotic strings:  𝑅5,1 × 𝑅𝜙 × 𝑆𝑈(2)2 × 𝐺

𝑆𝑈(2)2Tachyons

For SUSY strings, 2NS5 is also SUSY 



Tachyon Condensation and Brane T-duality
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But Scherk-Schwarz reduction lies in moduli space of critical nonsusy on 𝑆1



Tachyon Condensation and Brane T-duality
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But Scherk-Schwarz reduction lies in moduli space of critical nonsusy on 𝑆1

Therefore:

• Eight 2NS5 backgrounds lie in moduli space of 8D 
subcritical on S1



Tachyon Condensation and Brane T-duality

43

But Scherk-Schwarz reduction lies in moduli space of critical nonsusy on 𝑆1

Therefore:

• Eight 2NS5 backgrounds lie in moduli space of 8D 
subcritical on S1

𝑆𝑈(16)/𝑍2

𝑆𝑝𝑖𝑛(32)/𝑍2 𝐸8 × 𝐸8 

𝑂(16) × 𝑂(16) 

= tachyonic



Tachyon Condensation and Brane T-duality
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But Scherk-Schwarz reduction lies in moduli space of critical nonsusy on 𝑆1

Therefore:

• Eight 2NS5 backgrounds lie in moduli space of 8D 
subcritical on S1

• 𝑆𝑈(16)/𝑍2 theory on S1 with particular radius 
and Wilson lines is supersymmetric and T-dual to 
the CHS model of 2 NS5’s in 𝑆𝑝𝑖𝑛(32)/𝑍2 string.

𝑆𝑈(16)/𝑍2

𝑆𝑝𝑖𝑛(32)/𝑍2 𝐸8 × 𝐸8 

𝑂(16) × 𝑂(16) 

= tachyonic



Tachyon Condensation and Brane T-duality
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But Scherk-Schwarz reduction lies in moduli space of critical nonsusy on 𝑆1

Therefore:

• Eight 2NS5 backgrounds lie in moduli space of 8D 
subcritical on S1

• 𝑆𝑈(16)/𝑍2 theory on S1 with particular radius 
and Wilson lines is supersymmetric and T-dual to 
the CHS model of 2 NS5’s in 𝑆𝑝𝑖𝑛(32)/𝑍2 string.

• Nonsupersymmetric 6-brane on S1 might be T-dual 
to 2NS5. Topology changing T-duality at the level 
of transverse spheres and fluxes verifies this.

𝑆𝑈(16)/𝑍2

𝑆𝑝𝑖𝑛(32)/𝑍2 𝐸8 × 𝐸8 

𝑂(16) × 𝑂(16) 

= tachyonic



Tachyon Condensation and Brane T-duality

46

• Two Scherck-Schwarz circles with self-dual radii similarly give rise to a worldsheet CFT 
factor consisting of free Majorana-Weyl fermions

             4 × 𝜆𝐿    6 × 𝜓𝑅

• Condensing the tachyons result in the linear dilaton background describing an 
intersection of two pairs of two coincident NS5 branes in the original theory. 

For 10D heterotic strings:  𝑅2,1 × 𝑅𝜙 × 𝑆𝑈(2)2 × 𝑆𝑈(2)2 × 𝐺

𝑆𝑈(2)2 × 𝑆𝑈(2)2Tachyons



Tachyon Condensation and Brane T-duality
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• Two Scherck-Schwarz circles with self-dual radii similarly give rise to a worldsheet CFT 
factor consisting of free Majorana-Weyl fermions

             4 × 𝜆𝐿    6 × 𝜓𝑅

• Condensing the tachyons result in the linear dilaton background describing an 
intersection of two pairs of two coincident NS5 branes in the original theory. 

For 10D heterotic strings:  𝑅2,1 × 𝑅𝜙 × 𝑆𝑈(2)2 × 𝑆𝑈(2)2 × 𝐺

• These points lie in moduli space of 6D subcritical heterotic on 𝑇2, equivalently torus 
compactification of 𝐸7 × 𝐸7/𝑍2 string with suitable radius and Wilson lines.
→ Suggests duality with non-supersymmetric 4-brane. 

𝑆𝑈(2)2 × 𝑆𝑈(2)2Tachyons



In conclusion...
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• Symmetry enhancement data for noncritical strings on a circle are encoded in Coxeter diagrams. Relations 
among the diagrams reflect effect of tachyon condensation.

• Subcritical case corresponds to compactification of a non-supersymmetric brane background. In a special 
case there are 2NS5 points. 

• Scherck-Schwarz tachyons may condense to 2NS5.

• Supercritical strings get progressively more complex, exhibiting interesting symmetries captured by the 
diagrams.

• Results suggest that 2NS5 is dual to nonsusy 6-brane on a circle. Similarly 2NS5 x 2NS5 may be dual to 
nonsusy 4-brane on a torus.



In conclusion...
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• Symmetry enhancement data for noncritical strings on a circle are encoded in Coxeter diagrams. Relations 
among the diagrams reflect effect of tachyon condensation.

• Subcritical case corresponds to compactification of a non-supersymmetric brane background. In a special 
case there are 2NS5 points. 

• Scherck-Schwarz tachyons may condense to 2NS5.

• Supercritical strings get progressively more complex, exhibiting interesting symmetries captured by the 
diagrams.

• Results suggest that 2NS5 is dual to nonsusy 6-brane on a circle. Similarly 2NS5 x 2NS5 may be dual to 
nonsusy 4-brane on a torus.

For the future: 
- Can these nonsupersymmetric linear dilaton backgrounds be regularized? 

 - Is the 1-loop potential a physically meaningful quantity?



Thanks for your attention!
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