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Definition

• Geometric: manifold with an inversion symmetry at any point 

Homogeneous and isotropic

• Algebraic: coset spaces

Examples: spheres, hyperbolic spaces, dSd ...

We will focus on symmetric spaces of non-compact type.

Explicit parametrization of the boundaries

• Geodesics

• Parabolic subgroups

Symmetric spaces

(Connected) group of isometries of 

Subgroup of isometries
fixing one point, 

[Link, ’08]
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The quotient by a discrete subgroup changes the structure
of the boundary.

boundary points given by equivalence classes of rational parabolics.

Eg.

• Only geodesics with rational compact moduli reach the boundary.

Accounting for dualities
[Borel, Ji ’06]

All the elements in the fiber belong
to the same equivalence class as

The boundary is just one point 

[Keurentjes, ’06]
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• For and from string theory: always one equivalence class
under the duality group.

• For , the number of equivalence classes of rational
parabolics under is finite, but not guaranteed to be 1.

Eg. Two decompactification limits from 9 to 10 dimensions in                  :

• Assuming a lattice of charges: explicit expression for the string spectum
along the geodesic fixing the duality frame                

SDC 

Accounting for dualities

[Cecotti ’15]

10D

10D
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10D10D

CHL string:
decompactification limit

Untwisted
Twisted

Heterotic in 9D CHL in 9D

CHL in 8D



Conclusions

• The boundaries of the symmetric moduli spaces can be explicitly
parametrized from the algebra.

• Assuming a charge lattice, the string spectrum in this limit is consistent
with the SDC.

• The physics of decompactification limits can be inferred from the current
algebras, which come in their affine version from the point of view of the
lower dimensional theory.

• Going from the CHL to the heterotic components of the moduli spaces
leads to twisted affine algebras.

[Cecotti ’15]

[Lee, Lerche, Weigand, ’21]

[Cvetic, Dierigl, Lin, Zhang ’22]



Thank you!
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