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Motivation

In EFT’s arising from string compactifications, are stabilized at
the minima of a

V (moduli, parameters) Landscape

This raises many questions:
= Finiteness?

= How many vacua?

= Flat directions?

= Complexity?
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Outline

. F-theory landscape

. Finiteness of the flux landscape
. Refining the flux landscape

. Conclusion
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D=4, N=1 from F-Theory

Consider F-theory compactified on an elliptically fibered Calabi-Yau fourfold with

1 Y.
CLLEIJZL(YQL,Z)7 5/ G4/\G4§X(244)
Yy
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D=4, N=1 from F-Theory
Consider F-theory compactified on an elliptically fibered Calabi-Yau fourfold with

x(Yy)
24

1
CLLEIJZL(YQL,Z)7 5/ Ga NGy <
Yy

This yields a D=4, N=1 supergravity theory:

1 . _ |
S:/§R*1—gijdzz/\*dzj—V(z7’,G4)*1+...
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F-Theory Flux Vacua

= Scalar potential: |
V(Zi,Ggl) — —2/ GiNxGyg— Gy NGy
Vb Yy
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F-Theory Flux Vacua |[«- 2w -1

= Scalar potential: |
V Zi G4 — 5
( ? ) VbQ

= Global (Minkowski) minima are given by

*G4 — G4
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F-Theory Flux Vacua |« 2w [

= Scalar potential: |
V Zi G4 — 5
( ? ) VbQ

= Global (Minkowski) minima are given by

*G4 — G4

= A special subset of vacua are

Gy € H*(Yy,Z) N H*? (Y, C)
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Overview of finiteness results

Locus of bounded Hodge classes is

Pr(xy,...,2) =0

Finiteness of self-dual vacua in

Locus of bounded self-dual classes is

Pr(xy,y ... 2k, f1(x), ..., fm(z),e*, ...
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Overview of finiteness results

Locus of bounded Hodge classes is

Pr(xy,...,2) =0 Finiteness of W=0 vacua
Finiteness of self-dual vacua in using asymptotic Hodge theory
Locus of bounded self-dual classes is [ Ep—

Pr(xy,..., x5, fi(x),..., fm(2), €™, ..., e"*) =0

Finiteness of general
self-dual vacua!
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Overview of finiteness results

Locus of bounded Hodge classes is

Pr(xy,...,2) =0 Finiteness of W=0 vacua
Finiteness of self-dual vacua in using asymptotic Hodge theory
Locus of bounded self-dual classes is [ Ep—

Pr(xy,..., x5, fi(x),..., fm(2), €™, ..., e"*) =0

Finiteness of general
self-dual vacua!
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Finiteness from i
ymptotic Hodge theory = -

= Goal: generalize one-parameter proof of
to arbitrary number of moduli, and
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Flnlteness fram

= Goal: generalize one-parameter proof of
to arbitrary number of moduli, and

= Prevent infinite tails approaching boundary of moduli space.
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Finiteness from .
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= Goal: generalize one-parameter proof of
to arbitrary number of moduli, and

= Prevent infinite tails approaching boundary of moduli space.

= Strategy: use asymptotic Hodge theory to analyze self-duality condition
and growth of the Hodge norm in
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Finiteness from .
asymptotic Hodge theory '

= Goal: generalize one-parameter proof of
to arbitrary number of moduli, and

= Prevent infinite tails approaching boundary of moduli space.

= Strategy: use asymptotic Hodge theory to analyze self-duality condition
and growth of the Hodge norm in

= Major technical advances in computation of Hodge norms
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Beyond leading order

= Crucial to go beyond leading order ‘Sl(2)-orbit’ approximation
->infinite series of corrections
-> multi-variable generalization of bulk reconstruction
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Beyond leading order

= Crucial to go beyond leading order ‘Sl(2)-orbit’ approximation
->infinite series of corrections
-> multi-variable generalization of bulk reconstruction

= Can use these methods to refine previous analyses
= Classification of F-theory scalar potentials

= Asymptotic accelerated expansion
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REFINING THE FLUX

Beyond finiteness & asymptotics
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Counting of W=0 vacua

= Due to additional constraint W=0, the system is

(theory of unlikely intersections, (Ax)-Schanuel conjecture)
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= After solving for the moduli in terms of the fluxes, the remaining W=0 equation can
be viewed as a equation over the
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Counting of W=0 vacua

= Due to additional constraint W=0, the system is -> solutions are
(theory of unlikely intersections, (Ax)-Schanuel conjecture)

= After solving for the moduli in terms of the fluxes, the remaining W=0 equation can
be viewed as a equation over the

= Pila-Wilkie counting theorem:

“The number of lattice points in the transcendental /’(—j
part of a tame set grows sub-polynomially //_\/\

b

in the |

#contained lattice points < C'(e)L¢ S
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= Generically, W is a highly transcendental function. But not always!
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= Generically, W is a highly transcendental function. But not always!

= Mathematically, this is captured by the ¢ of the variation of Hodge structure.
[Baldi, Klingler, Ullmo: 2021], [Grimm, van de Heisteeg: 2024]
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= Generically, W is a highly transcendental function. But not always!

= Mathematically, this is captured by the ¢ of the variation of Hodge structure.
[Baldi, Klingler, Ullmo: 2021], [Grimm, van de Heisteeg: 2024]

“algebraic” “transcendental”

EM = 0, ]., 2 EM Z 3
elliptic curve, K3

K3 x K3, CY5 x T2

CYs3, CYy,..
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= Generically, W is a highly transcendental function. But not always!

= Mathematically, this is captured by the ¢ of the variation of Hodge structure.
[Baldi, Klingler, Ullmo: 2021], [Grimm, van de Heisteeg: 2024]

“algebraic” “transcendental”

EM — 0, 1, 2 EM 2 3
elliptic curve, K3

K3 x K3, CY5 x T2

CYs3, CYy,...

= Expect counting of W=0 vacua to change drastically whenever {, > 3
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= Generically, W is a function. But not always!

= Mathematically, this is captured by the ¢ pm of the variation of Hodge structure.
“algebraic” “transcendental”
EM = 0, 1, 2 EM 2 3

elliptic curve, K3
K3 x K3, CY3 x T?

CYs, CYy,. ..

= Expect counting of W=0 vacua to change drastically whenever {x > 3
= Important: the level can locally reduce along special “symmetry” loci, on which W becomes
algebraic, due to appearance of additional

/4
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Conjecture 1: Counting W=0 vacua (simplified)

If /o > 3 the number of isolated™ points in the set

(2',G4): Gyq € H*(Yy,Z)NH?*?(Y4,C) GiNGy=L
Yy

grows sub-polynomially in L, i.e. for every € > 0 there exists a constant C'(e)
such that
number of W = 0 vacua < C(e)L°
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Conjecture 1: Counting W=0 vacua (simplified)

If /o > 3 the number of isolated™ points in the set
(2",G4): G4 € H* (Y4, Z) N H>*(Y,,C) , / GiANGy=L
Yy

grows sub-polynomially in L, i.e. for every € > 0 there exists a constant C'(e)
such that
number of W = 0 vacua < C(e)L°

*i.e. points which do not lie on a symmetry locus where higher Hodge tensors appear
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Yy

grows sub-polynomially in L, i.e. for every € > 0 there exists a constant C'(e)
such that
number of W = 0 vacua < C(e)L°

*i.e. points which do not lie on a symmetry locus where higher Hodge tensors appear

= Compare to counting of W=0 vacua in type IIB orientifold compactifications
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Conjecture 1: Counting W=0 vacua (simplified)

If /o > 3 the number of isolated™ points in the set
(2",G4): G4 € H* (Y4, Z) N H>*(Y,,C) , / GiNGy=1L
Yy

grows sub-polynomially in L, i.e. for every € > 0 there exists a constant C'(e)
such that
number of W = 0 vacua < C(e)L°

*i.e. points which do not lie on a symmetry locus where higher Hodge tensors appear

= Compare to counting of W=0 vacua in type IIB orientifold compactifications

= For positive-dimensional vacuum loci, there are even stronger finiteness theorems,
independent of L!
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The Tadpole Conjecture

1

Y,
Oéh3’1 < 5] G4/\G4 < X( 4)
Yy

all moduli stabilized 24

= If «¢ is too large -> cannot stabilize all moduli within bound!
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The Tadpole Conjecture

1

Odh3’1 < §f Ga NGy h3’1
Yy

- x(Yy) <

1
all moduli stabilized 24 4

= If v is too large -> cannot stabilize all moduli within bound!

= Spirit: fluxes with cannot stabilize a

= Formulate a version for general variation of Hodge structure (beyond Calabi-Yau)
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The Tadpole Conjecture

1

Odh3’1 < §f Ga NGy h3’1
Yy

- x(Yy) <

1
all moduli stabilized 24 4

= If v is too large -> cannot stabilize all moduli within bound!

= Spirit: fluxes with cannot stabilize a

= Formulate a version for general variation of Hodge structure (beyond Calabi-Yau)

= Restrict to Hodge classes (W=0) -> more tools for possible proof
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Conjecture 3: Generalized tadpole conjecture for the Hodge locus

Consider a variation of polarized Hodge structure of weight D. Fix a positive
integer L and write

Etodge(L) = {(z',v) :v e H"* N Hy ,(v,v) <L}, D=2k, (1)

We conjecture that for certain positive constants C', Cs5, which are independent
of L and dim M, the following holds: if

dim M > C} and dimM > Cs - L, (2)

then every connected component of Epoqdge(L) has strictly positive dimension.
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Conjecture 3: Generalized tadpole conjecture for the Hodge locus

Consider a variation of polarized Hodge structure of weight D. Fix a positive
integer L and write

EHoage(L) = {(2%,v) :v € H** N Hy ,(v,v) <L}, D=2k, (1)

We conjecture that for certain positive constants C', Cs5, which are independent
of L and dim M, the following holds: if

dim M > C} and dimM > Cs - L, (2)

then every connected component of Epoqdge(L) has strictly positive dimension.

= For Calabi-Yau fourfold case: expect Cy; ~ O(1)

= Gives a criterion for when the Hodge locus does not contain
= |nteresting for mathematicians
= Deep finiteness results for Hodge tensors
= Hodge conjecture + reduction theorems as possible testing ground
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Complexity and counting of
self-dual vacua

= Tameness/o-minimality is rather coarse, difficult to make quantitative statements

= Assigns a “sharp complexity” (F,D) to a definable set, reflecting its

# connected components < polyw (D)

= E.g. for polynomials: D = degree, F = number of variables

(see also for application in physics)
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. Ran,exp is not sharply o-minimal

= |t is conjectured that periods are definable in
a sharply o-minimal structure
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. Ran,exp is not sharply o-minimal

= |t is conjectured that periods are definable in
a sharply o-minimal structure [Binyamini, Novikov: 2022]
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» Ranexp is not sharply o-minimal o-minimal

= |t is conjectured that periods are definable in

a sharply o-minimal structure sharply o-minimal

Conjecture 2: Complexity of self-dual vacua

The locus of self-dual flux vacua is definable in a sharply o-minimal structure.
Furthermore, we expect that its associated sharp complexity (F, D) depends on
the tadpole bound L and the number of moduli 2%! in the following way:

D =poly(L), F=0(h*").
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» Ranexp is not sharply o-minimal o-minimal

= |t is conjectured that periods are definable in

a sharply o-minimal structure sharply o-minimal

Conjecture 2: Complexity of self-dual vacua

The locus of self-dual flux vacua is definable in a sharply o-minimal structure.
Furthermore, we expect that its associated sharp complexity (F, D) depends on
the tadpole bound L and the number of moduli 2%! in the following way:

D =poly(L), F=0(h*").

= Results in sharp o-minimality + (F,D) -> new
= Formalizes the counting result of Ashok-Denef-Douglas
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Conclusions

“Tameness of Hodge theory can help us understand the
enumeration, dimensionality, geometric complexity

of the flux landscape”
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Future questions:

= Test conjectures in scans of F-theory landscape?
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= Test conjectures in scans of F-theory landscape?

= Non-perturbative corrections? Kahler moduli?

= Applications of sub-leading corrections from asymptotic Hodge theory
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Conclusions

“Tameness of Hodge theory can help us understand the
enumeration, dimensionality, geometric complexity

of the flux landscape”

Future questions:

= Test conjectures in scans of F-theory landscape?

= Non-perturbative corrections? Kahler moduli?

= Applications of sub-leading corrections from asymptotic Hodge theory

Thank you!

Complexity of the Flux Landscape - Jeroen Monnee




	Slide 1: Complexity of the  Flux Landscape
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Motivation
	Slide 9: Motivation
	Slide 10: Motivation
	Slide 11: Outline 
	Slide 12: F-theory Landscape
	Slide 13: D=4, N=1 from F-Theory 
	Slide 14: D=4, N=1 from F-Theory 
	Slide 15: D=4, N=1 from F-Theory 
	Slide 16: D=4, N=1 from F-Theory 
	Slide 17: F-Theory Flux Vacua
	Slide 18: F-Theory Flux Vacua
	Slide 19: F-Theory Flux Vacua
	Slide 20: Finiteness of the flux landscape
	Slide 21: Overview of finiteness results
	Slide 22: Overview of finiteness results
	Slide 23: Overview of finiteness results
	Slide 24: Overview of finiteness results
	Slide 25: Overview of finiteness results
	Slide 26: Overview of finiteness results
	Slide 27: Overview of finiteness results
	Slide 28: Overview of finiteness results
	Slide 29: Overview of finiteness results
	Slide 30: Finiteness from  asymptotic Hodge theory
	Slide 31: Finiteness from  asymptotic Hodge theory
	Slide 32: Finiteness from  asymptotic Hodge theory
	Slide 33: Finiteness from  asymptotic Hodge theory
	Slide 34: Beyond leading order
	Slide 35: Beyond leading order
	Slide 36: Beyond leading order
	Slide 37: Refining the flux landscape
	Slide 38: Counting of W=0 vacua
	Slide 39: Counting of W=0 vacua
	Slide 40: Counting of W=0 vacua
	Slide 41: Counting of W=0 vacua
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: The Tadpole Conjecture
	Slide 52: The Tadpole Conjecture
	Slide 53: The Tadpole Conjecture
	Slide 54: The Tadpole Conjecture
	Slide 55
	Slide 56
	Slide 57: Complexity and counting of self-dual vacua
	Slide 58: Complexity and counting of self-dual vacua
	Slide 59: Complexity and counting of self-dual vacua
	Slide 60: Complexity and counting of self-dual vacua
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Conclusions
	Slide 66: Conclusions
	Slide 67: Conclusions
	Slide 68: Conclusions
	Slide 69: Conclusions

