
Non-minimal Elliptic Threefolds and the Distance Conjecture

Rafael Álvarez-García
work together with Seung-Joo Lee and Timo Weigand
arXiv:2310.07761, arXiv:2312.11611 and arXiv:240X.XXXXX

29th May 2024

Swamplandia 2024— in Bavaria— , Kloster Seeon, Germany

https://arxiv.org/abs/2310.07761
https://arxiv.org/abs/2312.11611


Introduction and motivation



Swampland Distance Conjecture

Swampland Distance Conjecture (SDC) [Ooguri, Vafa ’06]
An infinite tower of states becomes massless at infinite distance.

As a consequence, the effective description of the theory must break.

• What is the nature of the states that become light?

• What theories do we encounter at infinite distance?

A qualitatively different theory of quantum gravity?
Something that we already know?

Mtower

∆ϕ

Mϕ

Figure adapted from [Kläwer ’21].

Emergent String Conjecture: a refinement of the SDC statement.
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Emergent String Conjecture

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite-distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Emergent string limit: transition to a duality frame determined by a
unique emergent critical weakly coupled string.

KK string
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Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite-distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Emergent string limit: transition to a duality frame determined by a
unique emergent critical weakly coupled string.
If correct, very strong constraints on the asymptotic theory:
• Bounds on exponential decay rates

[Etheredge, Heidenreich, Kaya, Qiu, Rudelius ’22]

• Behaviour of the species scale
[van de Heisteeg, Vafa, Wiesner, (Wu) ’22/’23]4, [Cribiori, Lüst, Staudt ’22], [Cribiori, Lüst ’23],
[Cribiori, Lüst, Montella ’23], [Basile, Cribiori, Lüst, Montella ’24], [Marchesano, Melotti ’22]
• Studies of the Emergence Proposal

[Blumenhagen, (Cribiori), Gligovic, Paraskevopoulou ’23]3

KK string
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Infinite-distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Emergent string limit: transition to a duality frame determined by a
unique emergent critical weakly coupled string.
Confirmed in various non-trivial setups:
Kähler moduli F/M/IIA-theory in 6D/5D/4D [Lee, Lerche, Weigand ’18, ’19, ’20]

Complex structure of F-theory in 8D [Lee, (Lerche), Weigand ’21]

M-theory on G2 manifolds [Xu ’20]

4DN = 1 F-theory [Lee, Lerche, Weigand ’19] & [Kläwer, Lee, Weigand, Wiesner ’20]

4DN = 2 hypermultiplets [(Baume), Marchesano, Wiesner ’19]

Heterotic on Td [Collazuol, Graña, Herráez, Parra De Freitas ’22]

Non-supersymmetric settings [Basile ’22]

No emergent membrane limits [RAG, Kläwer, Weigand ’21]
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F-theory

F-theory [Vafa ’96]

Most general currently controllable framework for studying geometric string vacua incorporating
the regime non-perturbative in the string coupling gs.

Elliptic fibration:

E Y

B .

πell

• Elliptic fiber: τ profile.
• Base B: physical space-time.

y2 = x3 + fxz4 + gz6 ,

f ∈ H0
(
B, K⊗4

B

)
, g ∈ H0

(
B, K⊗6

B

)
.

E

B

Geometry & Physics:

• Singularities in codimension-one in Bxy
Gauge algebra associated with 7-branes

• Classification by Kodaira and Néron.

Algebra Kodaira ord(f) ord(g) ord(∆)

An In+1 0 0 n+ 1

Dn I∗n−4 2 3 n+ 2

E6 IV∗ ≥ 3 4 8

E7 III∗ 3 ≥ 5 9

E8 II∗ ≥ 4 5 10

— non-minimal ≥ 4 ≥ 6 ≥ 12
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Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.

• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand ’19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand ’21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 4



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:

• Spacetime degenerates into components at local
weak and strong coupling.
• 7-branes can extend between components,
leading to local enhancements.
• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:

• Spacetime degenerates into components at local
weak and strong coupling.
• 7-branes can extend between components,
leading to local enhancements.
• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:
• Spacetime degenerates into components.

• 7-branes can extend between components,
leading to local enhancements.
• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:
• Spacetime degenerates into components at local
weak and strong coupling.

• 7-branes can extend between components,
leading to local enhancements.
• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:
• Spacetime degenerates into components at local
weak and strong coupling.
• 7-branes can extend between components,
leading to local enhancements.

• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:
• Spacetime degenerates into components at local
weak and strong coupling.
• 7-branes can extend between components,
leading to local enhancements.
• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Condensed summary

Some core features discussed in [RAG, Lee, Weigand ’23]2:
• Spacetime degenerates into components at local
weak and strong coupling.
• 7-branes can extend between components,
leading to local enhancements.
• Decompactification limits can be complicated,
leading to defect theories.

Geometric approach complementary to the
asymptotic Hodge theory analysis initiated in [Grimm, Palti, Valenzuela ’18].

Y0 Y1 Y2Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v

Non-minimal Elliptic Threefolds and the Distance Conjecture | Rafael Álvarez-García 5



Part I: Log Calabi-Yau Resolutions



Degenerations and modifications

Let D := {u ∈ C : |u| < 1} and D∗ := D \ {0}.

Degeneration
A one-parameter family of varieties Ŷ together with a morphism ρ̂ : Ŷ → D and fibers Ŷu := ρ̂−1(u)
with u ∈ D in which we distinguish the central fiber Ŷ0 is called a degeneration. We say that the
elements Yu̸=0 of the family degenerate to Y0.

We are interested in non-minimal degenerations of elliptic threefolds, i.e.

{y2 = x3 + fuxz4 + guz6}P231(E) , u ∈ D

such that for some curve C we have

ordŶ(f, g,∆)C ≥ (4, 6, 12) .

Endpoint of the limit
The geometrical representative Y0 of the endpoint of the limit is not unique.
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with u ∈ D in which we distinguish the central fiber Ŷ0 is called a degeneration. We say that the
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Example

Consider the Weierstrass model

f = s3t3(sv+ tu)
(
suv8 + tuw7 + tv3w4 + tv2w5 + tvw6

)
,

g = s4t5vw5(sv+ tu)2
(
sw5 + tv4 + tv3w+ tv2w2 + tvw3

)
,

∆ = s8t9(sv+ tu)3p4,24([s : t], [v : w],u) .

E Ŷ

B̂

πell

B̂ = F1 × D

Non-minimal fibers over {s = u = 0}B̂ :

ordŶ (f, g,∆)s=u=0 = (4, 6, 12) .

Vertical line of D4 fibers in the central element:

ordŶ0 (f, g,∆)v=0 = (2, 3, 6) .

w = 0
(4, 5, 10)

t = 0
(4, 5, 10)

s = 0
(4, 6, 12)

v = 0
(2, 3, 6)

{u = 0}B̂
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Semi-stable degenerations

We will find convenient geometrical representatives of the central fiber Y0.

Semi-stable degenerations
A degeneration ρ̂ : Ŷ → D is called semi-stable if Ŷ is smooth and such that the central fiber Ŷ0 is
reduced with components crossing normally.

We are assured that we can always do it.

Semi-stable Reduction Theorem [Kempf, Knudsen, Mumford, Saint-Donat ’73]

After a base change
µ : D −→ D

u 7−→ uk
,

every degeneration admits a modification that is semi-stable.

The theorem is not constructive, but we give the appropriate
birational transformation for a variety of degeneration classes.

Y0 Y1 Y2Yu1 Yu2
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Example

“Semi-stable form” achieved for the example by:
• Base blow-up: s 7−→ se1, u 7−→ e0e1.
• Line bundle shift: (f, g,∆) 7−→ (e−4

1 f, e−6
1 g, e−12

1 ∆).

I0 I0

F1 F1

Left component {e0 = 0}B :

f0 = t4v2w4
(
v2 + vw+ w2

)
,

g0 = t5v3w5
(
e1w5 + tv4 + tv3w+ tv2w2 + tvw3

)
.

Right component {e1 = 0}B :

f1 = s3vw4
(
v2 + vw+ w2

)
(e0 + sv) ,

g1 = s4v2w5(v+ w)
(
v2 + w2

)
(e0 + sv) 2 .

w = 0
(4, 5, 10)

s = 0
(3, 4, 8)

t = 0
(4, 5, 10)

e0 + sv = 0
(1, 2, 3)

v = 0
(1, 2, 3)

v = 0
(2, 3, 6) = (1, 2, 3)+ (1, 2, 3)

{e0 = 0}B {e1 = 0}B
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Single infinite-distance limits

In [RAG, Lee, Weigand ’23] we are more general. Here, we focus on single infinite-distance limits.

Single infinite-distance limits
Roughly, those degenerations of elliptic threefolds with non-intersecting non-minimal curves.

• We prove that g(C) = 0 or g(C) = 1 (holds in general, we systematically study g(C) = 0).
• Remove non-minimal singularities via base blow-ups and line bundle shifts.
• The resulting central fiber is an open-chain of components: Y0 =

⋃P
p=0.

• The bases of the exceptional components are Hirzebruch surfaces
{
F|Cp·Bi Cp|

}
1≤p≤P

.

Fn1 Fn2 Fn3Fn4Fn5Fn6
B0

Calabi-Yau component:

L0 = KB0 .
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Log Calabi-Yau components:
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LP = KBP − CP−1 .
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7-brane content

Locally coincident discriminant components:

w = 0
(4, 5, 10)

s = 0
(3, 4, 8)

t = 0
(4, 5, 10)

e0 + sv = 0
(1, 2, 3)

v = 0
(1, 2, 3)

v = 0
(2, 3, 6) = (1, 2, 3)+ (1, 2, 3)

{e0 = 0}B {e1 = 0}B

Locally reducible discriminant components:

s = 0
(3, 4, 8)

v = 0
(4, 5, 10)

w = 0
(1, 2, 3)

t = 0
(4, 5, 10)

{e0 = 0}B {e1 = 0}B {e2 = 0}B

t(v− 2w)e1e20 + s(v− w)(v+ w) = 0
(1, 2, 3)
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Intermediate summary

{y2 = x3 + fuxz4 + guz6}P231(E) , u ∈ D Semi-stable form

Open-chain resolution Read off the physics

Y0 Y1 Y2Yu1 Yu2

Some aspects not discussed today:

• Base change can reveal obscured infinite-distance limits.
• Heterotic K3 non-minimal singularities←−−→ codimension-one non-minimal degenerations.
• Some codimension-one non-minimal degenerations are finite-distance limits.

Explicit analysis of strictly non-minimal degenerations: [RAG, Lee, Weigand (to appear)].
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Part II: Asymptotic Physics



Degenerations of Hirzebruch models

Genus-zero single infinite-distance
limit degenerations of Hirzebruch
models can be of four types.

We analyze their asymptotic
physics in Part II.

Here we focus on Case A
(horizontal models)

:

• They are relative versions of
the 8D models.
• Some of them have controlled
heterotic duals.

Non-minimal curves Central component structure Component line bundles and discriminants

Case A
(horizontal)

C1 = {h}
C1 = {h+ nf}
C2 = {h,h+ nf}

In0 · · · Inp · · · InP

Fn · · · Fn · · · Fn

L0 = S0 + (2+ n)V0
Lp = 2Vp
LP = SP + 2VP

∆′
0 = (12+ n0 − n1)S0 + (24+ 12n)V0

∆′
p = (2np − np−1 − np+1)Sp + (24+ n(np − np−1))Vp

∆′
P = (12+ nP − nP−1)SP + (24+ n(nP − nP−1))VP

Case B
(vertical)

C1 = {f}
In0 · · · Inp · · · InP

Fn · · · F0 · · · F0

L0 = 2S0 + (1+ n)W0

Lp = 2Sp
LP = 2SP +WP

∆′
0 = 24S0 + (12+ 12n+ n0 − n1)W0

∆′
p = 24Sp + (2np − np−1 − np+1)Wp

∆′
P = 24SP + (12+ nP − nP−1)WP

Case C
C1 = {h+ (n+ α)f}

α = 1 with n ≤ 6
α = 2 with n = 0

In0 · · · Inp · · · InP

Fn+2α · · · Fn+2α · · · Fn

L0 = S0 + (2+ (n+ 2α))V0
Lp = 2Vp
LP = SP + (2− α)VP

∆′
0 = (12+ n0 − n1)S0 + (24+ 12(n+ 2α))V0

∆′
p = (2np − np−1 − np+1)Sp + (24+ (n+ 2α)(np − np−1))Vp

∆′
P = (12+ nP − nP−1)SP + ((24− 12α) + (n+ α)(nP − nP−1))VP

Case D
C = 2h+ bf

(n, b) = (0, 1)
(n, b) = (1, 2)

In0 · · · Inp · · · InP

F4 · · · F4 · · · Fn

L0 = S0 + (2+ (n+ 4))V0
Lp = 2Vp
LP = VP

∆′
0 = (12+ n0 − n1)S0 + (24+ 12 · 4)V0

∆′
p = (2np − np−1 − np+1)Sp + (24+ 4(np − np−1))Vp

∆′
P = 2(nP − nP−1)SP + (12+ (n+ 1)(nP − nP−1))VP
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Kulikov Type II.a models

Geometry of the central fiber:

• All components have codimension-zero I0
type fibers; no local weak coupling.
• Intermediate components can be
blown-down, if present.
• End-components are rational elliptic
surfaces (dP9) with 12 singular fibers.

“Stable degeneration”, cf. [Morrison, Vafa ’96].

B0 B1
Σ

σ1

σ2

P

E

12 branes 12 branes

Physical interpretation of the limit:

• Σ cannot be slipped off due to the 7-branes⇒ σi fibered over Σ: γi ∈ H2(Y0,Z).
• M2-branes wrapped on the shrinking γi ⇒ 2 towers of asymptotically massless BPS particles.
• Dually interpreted as Kaluza-Klein towers⇒ Decompactification to 10D.
• Double loop enhancement G∞ =

(
Ê9 ⊕ Ê9

)
/ ∼ ⇒ After decompactification: G10D = E8 ⊕ E8.
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Ê9 ⊕ Ê9
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Horizontal Type II.a models: 7-brane types

s = 0
(3, 4, 8)

v = 0
(4, 5, 10)

w = 0
(1, 2, 3)

t = 0
(4, 5, 10)

{e0 = 0}B {e1 = 0}B {e2 = 0}B

t(v− 2w)e1e20 + s(v− w)(v+ w) = 0
(1, 2, 3)

• Horizontal branes
Localized in one of the base components Analogue of the 8D 7-branes

• Vertical branes
Lie in the full fiber over points in the base P1b No analogue in 8D

• Mixed branes
Recombination of the previous two types
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Horizontal Type II.a models: generic vertical slices

Horizontal Type II.a limits
Horizontal limits with I0 − · · · − I0 are the relative version of 8D Type II.a limits.

• The generic vertical slice gives a
Kulikov Type II.a model.

• Different generic vertical slicesxy
Different positions of 8D 7-branes
• Consistent bulk asymptotic physics
from the generic vertical slices.
• The picture fails at 24 points

∆′
0 · S0 = ∆′

1 · T1 = 24 ,

(the singular fibers of the het. K3).

{e0 = 0}B {e1 = 0}B
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Horizontal Type II.a models: asymptotic physics

Horizontal Type II.a limits
Horizontal limits with I0 − · · · − I0 are the relative version of 8D Type II.a limits.

Interpretation: 6D −→ 10D with defects, see also [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela ’23].

• Adiabatic regime: VP1b � VP1f .

• T2 towers: M2-branes on the local
2-cycles {γi}i=1,2 of the slices.
• Interpreted as 2 dual KK towers.
• Horizontal 7-branes + towers:

G10D = E8 × E8 .

• γi not defined at the location of
the vertical 7-branes: localized
algebra Gver in 6D defects.

{e0 = 0}B {e1 = 0}B
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Global weak coupling limits

We would like to determine when global weak coupling limits possible:

Global weak coupling limit ⇔ In0 − · · · − InP with np > 0, ∀p.

Horizontal weak coupling limits
Horizontal models admit global weak coupling iff they are constructed over Fn with 0 ≤ n ≤ 4.

As a consequence, horizontal models over Fn with n ≥ 5 cannot have a perturbative Type IIB
orientifold interpretation at the endpoint of the infinite-distance limit.

This can be argued for in several ways:
• a physical argument,
• the geometry of the central fiber,
• and the Sen-limits of Tate models.

From the physics:

• F-theory models over Fn≥3 have non-Higgs. clusters.
• For n ≥ 5 these are the exceptional groups E6, E7 and
E8, i.e. strongly coupled gauge dynamics.
• Hence, they should not be present in a global weak
coupling limit.
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Global weak coupling limits

Local weak coupling requires an accidental
cancellation structure

fp = −3h2p , gp = 2h3p , hp ∈ H0(Bp,L⊗2
p ) .

This will force non-minimal fibers if
• we work over Fn with n ≥ 5, or
• if we tune a very big vertical algebra.

The model then sheds a new component at
local strong coupling, destroying the global
weak coupling limit.

Cases B & C: n ≤ 2, Case D: n ≤ 1.

{eP−1 = 0}B {eP = 0}B

s = 0
En minimal

{eP−1 = 0}B {eP = 0}B

s = 0
non-minimal

{eP−1 = 0}B {eP = 0}B {eP+1 = 0}B

s = 0
En minimal

tune global weak coupling

resolve the new curve
of non-minimal fibers
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Summary



Summary

• Non-minimal singularities in F-theoryxy
Open-moduli infinite-distance limits

• Studied through a systematic
geometrical analysis, e.g.

• possible degeneration types,
• detailed resolutions (Class 1–5 analysis),
• existence of global weak coupling limits.

• Limits interpreted as

• decompactification limits with defects,
• emergent string limits (weak coupling).

{e0 = 0}B {e1 = 0}B {e2 = 0}B

I0 I1 I0

I0

I1

I0

I0

I1

I0

I0

I1
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Outlook

• Novel approach to studying the
non-perturbative open-moduli space.

• Many possible new directions:

1. Extend to codimension-two
infinite-distance non-minimal
singularities.

2. Extend the analysis to fourfolds.
3. Study the relation to the Hodge
theoretic approach initiated in
[Grimm, Palti, Valenzuela ’18].

• Constructive proof of the existence of
the birational transformations for
degenerations of Hirzebruch models
[RAG, Lee, Weigand (to appear)].
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Thank you!
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Obscured infinite-distance limits

The example presents a discrepancy between the family and component vanishing orders:

(1, 5, 3) = ordY(f, g,∆)w=e0=0 ≤ ordY0(f0, g0,∆′
0)w=0 = (4, 5, 10) ,

(2, 5, 6) = ordY(f, g,∆)w=e1=0 ≤ ordY1(f1, g1,∆′
1)w=0 = (4, 5, 10) .

This can also occur for non-minimal singularities

minimal ∼ ordŶ(f, g)C ≤ ordŶ0( f|u=0 , g|u=0)C ∼ non-minimal ,

leading to obscured infinite-distance limits. We cannot apply the resolution procedure.

The role of the base change transformation

δk : D −→ D
u 7−→ uk ,

∼ “taking the limit at a faster rate”

is to reveal these infinite-distance limits.
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Obscured infinite-distance limits

(a) Base change u 7→ u. (b) Base change u 7→ u2.

(c) Base change u 7→ u4. (d) Base change u 7→ u6.
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Heterotic non-minimal singularities

Heterotic K3 singularities and gauge groups
Heterotic K3 singularities do not lead to gnon-pert.

unless they are probed by singular gauge
bundle contributions. [Witten ’00]

Do non-minimal singularities of the heterotic K3
surface correspond to infinite-distance limits?

F-theory Heterotic

E Y0

Fn

πell
dual←−−−−−−−→

E K3

P1b

πK3

Base change makes them codimension-one
non-minimal singularities on the F-theory side.
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Non-minimal singularities at finite distance

Non-minimal singularities are associated to the vanishing orders:

ordŶ (f, g,∆)C = (4+ α, 6+ β, 12+ γ) , α, β, γ ≥ 0 .

We can subdivide them into 5 classes:

Class 1–4: α = 0 and/or β = 0 −−−−−−−−→ infinite distance

Class 5: α > 0 and β > 0 −−−−−−−−→ finite or infinite distance

For Class 5 models:

• Resolution procedure discussed earlier: does not lead to a semi-stable degeneration.
• Can be converted into finite-distance or Class 1–4 models (Part I: Semi-stable Reduction Thm.).

In [RAG, Lee, Weigand (to appear)] we explicitly study the composition of base change, blow-up and
blow-down transformations necessary to achieve this and improve on the K3 results of [Lee, Weigand ’21].
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For Class 5 models:

• Resolution procedure discussed earlier: does not lead to a semi-stable degeneration.
• Can be converted into finite-distance or Class 1–4 models (Part I: Semi-stable Reduction Thm.).

In [RAG, Lee, Weigand (to appear)] we explicitly study the composition of base change, blow-up and
blow-down transformations necessary to achieve this and improve on the K3 results of [Lee, Weigand ’21].
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Horizontal Type III.b limits

Let us recall that these are only possible for models constructed over Fn with 0 ≤ n ≤ 4.

Horizontal Type III.b limits
Horizontal limits with In0 − · · · − InP with np > 0, ∀p are the relative version of 8D Type III.b limits.

The double cover of Fn giving the Type IIB orientifold interpretation is a non-generic
P2112[4]-fibration over P1b, in other words, an elliptically fibered K3 surface.

Studying its branching locus, one sees that two O7-planes coalesce in the limit, which usually
produces strongly coupled dynamics. The coalescence and the weak coupling limit compete.

• If the O7-planes coalesce faster than we go to weak coupling⇒ Global weak coupling cannot
be maintained⇒ Horizontal Type III.a limit in F-theory.
• If we go to weak coupling faster than the O7-planes coalesce⇒ Global weak coupling can be
maintained⇒ Horizontal Type III.b limit in F-theory.
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