

An EFT for end-of-the-world branes and the creation of universes from nothing Björn Friedrich (Heidelberg)

Based on 2205.09772, 2310.06021, 2403.18892 and work in progress

Swamplandia in Bavaria, May 29, 2024

End-of-the-world branes

c.f. [Witten, 1982, García Etxebarria et al., 2020, Buratti et al., 2021],

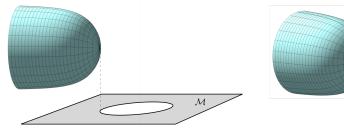
[Delgado, Makridou, Angius, Kneissl, Blumenhagen, Wang, Calderon-Infante, Huertas, Uranga, ...]

Cobordism conjecture [McNamara and Vafa, 2019] ETW branes generally exist in string theory

What is an ETW brane?

Take 1:[around 2000] Dynamical theory living on a spacetime boundary:

$$\int_{\partial \mathcal{M}} \sqrt{h} \left(\mathcal{K} + \mathcal{L}_{ETW} \right)$$


Take 2:[more recent] An ETW brane is defined by a scalar field running to infinite distance in field space over a finite distance in spacetime.

Connection?

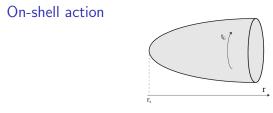
・ロト ・ 一下 ・ ト ・ 日 ・

Example: The Witten bubble [Witten, 1982]

Witten bubble of nothing (with defect)

Vacuum decay of $\mathbb{M}_4 \times S^1$ **5d Schwarzschild solution** (with deficit angle θ):

$$ds^2 = \left(1 - \frac{\alpha^2}{\tilde{r}^2}\right)^{-1} d\tilde{r}^2 + \tilde{r}^2 d\Omega_3^2 + \left(1 - \frac{\alpha^2}{\tilde{r}^2}\right) R_{KK}^2 dy^2 \,, \quad \alpha = \frac{R_{KK}}{1 - \theta/2\pi}$$


・ロト ・回ト ・ヨト ・ヨ

The 5d perspective

Action

$$S=-rac{1}{2}\int_{\mathcal{W}}\sqrt{g_5}\mathcal{R}_5-\int_{\partial\mathcal{W}}\sqrt{h}\mathcal{K}_5$$

ヘロト ヘロト ヘビト ヘビト

A single boundary at infinity

Since
$$\mathcal{R}_5 = 0$$
, $S = S_{\partial M}$

4d perspective

Dimensional reduction $R = \exp^{\sqrt{2/3}\phi}/2\pi$: Radius of internal S¹

$$S = \int_{\mathcal{M}} \sqrt{g_4} \left(-\frac{1}{2} \mathcal{R}_4 + \frac{(\partial \phi)^2}{2} + \frac{1}{\sqrt{6}} \Box \phi \right) - \int_{\partial \mathcal{M}} \sqrt{h} \left(\mathcal{K}_4 + \frac{1}{\sqrt{6}} n_\mu \partial^\mu \phi \right)$$

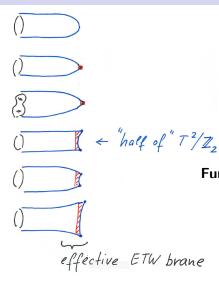
Bubble of nothing: $\phi \to -\infty$ in finite spacetime distance

The 4d perspective

- Proper EFT description: Boundaries at infinity and at the ETW brane
- \blacktriangleright Action should not contain total derivative terms such as $\Box \phi$

General Problem: Loss of control when $(\partial \phi)^2$ becomes large

EFT proposal


Introduce a **defect** of size η (at $\phi = \phi_{\eta}$) and tension T_4 :

$$S = \int_{\mathcal{M}} \sqrt{g_4} \left(-\frac{1}{2} \mathcal{R}_4 + \frac{(\partial \phi)^2}{2} \right) - \int_{\partial \mathcal{M}} \sqrt{h} \left(\mathcal{K}_4 - \mathcal{T}_4 \right)$$

The defect is generally **natural** from higher dimensional and **needed** from 4d perspective.

For the Witten bubble with deficit angle: $T_4 = -\left(1-rac{ heta}{2\pi}
ight)rac{1}{\sqrt{2\pi\eta^3}}$

The EFT for ETW branes

Simple EFT describes many different options for the ETW brane

Furthermore: Explicit construction of an ETW brane for IIB CY-orientifold compactifications [Friedrich et al., 2023b]

General Goal:

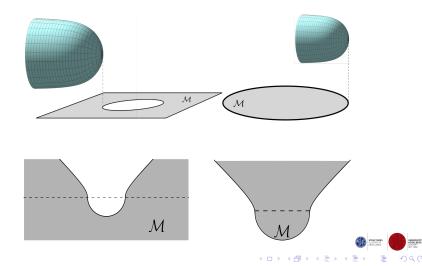
$$S = \int_{\mathcal{M}} \sqrt{g_4} \left(-\frac{1}{2} \mathcal{R}_4 + \frac{(\partial \phi)^2}{2} - V(\phi) \right) - \int_{\partial \mathcal{M}} \sqrt{h} \left(\mathcal{K}_4 + \mathcal{L}_{ETW} \right)$$

String theory question: Find \mathcal{L}_{ETW} for string theoretic ETW branes

Why a 4d EFT description is useful The Measure Problem

What universes are likely to be realized? [Friedrich et al., 2023a]

$$J_i = \sum_j (p_i \Gamma_{i
ightarrow j} - p_j \Gamma_{j
ightarrow i}) + p_i \sum_{y \in \textit{Terminals}} \Gamma_{i
ightarrow y}$$


- *p_i*: Probability of vacuum *i* being realized
 Γ_{i→i}: Vacuum decay rates
- ► J_i : Vacuum creation rates

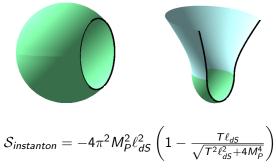
Vacuum creation/decay rates are essential for predictions in cosmology

Why is an EFT description of ETW branes useful? The Measure Problem

Generally study vacuum creation and vacuum decay

Vacuum creation: Generalities

[Vilenkin, 1982, Vilenkin, 1983, Hartle and Hawking, 1983, Linde, 1984, Vilenkin, 1984] Creation of universes with compact spherical topology

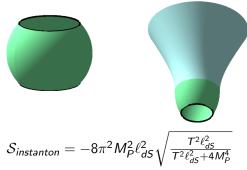

Hartle-Hawking: $\Gamma \sim \exp(-S_{instanton}) = \exp(8\pi^2 M_P^2 \ell_{dS}^2)$

Linde/Vilenkin: $\Gamma \sim \exp(+S_{instanton}) = \exp(-8\pi^2 M_P^2 \ell_{dS}^2)$

Bubbles of something

[Hawking and Turok, 1998, Turok and Hawking, 1998, Garriga, 1998, Blanco-Pillado et al., 2012, Friedrich et al., 2023b]

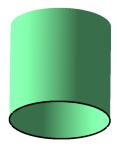
Creation of universes with boundary



Implications

- Linde/Vilenkin sign: More likely than creation of a sphere
- Especially dominant for $T\ell_{dS} \gg M_P^2$
- Minkowski/AdS can also be created

The boundary proposal [Friedrich and Hebecker, 2024] Creation of a spherical universe with ETW branes in the off-shell region



▶ Requires T ≤ 0

Linde/Vilenkin sign: More likely than creation of a sphere

• Especially dominant for $|T|\ell_{dS} \ll M_P^2$

The boundary proposal

- Consideration: Creation of toric universes (no spatial curvature) [Zeldovich and Starobinsky, 1984, Coule and Martin, 2000, Linde, 2004]
- To leading order: Toric universes can nucleate without any cost if T = 0
- ▶ Type IIA: O8+8D8 makes a T = 0 ETW brane

Implications for anthropic predictions [Friedrich, Hebecker, Westphal, Zell, to appear]

- Hartle-Hawking creation appears to be in conflict with observation
- For Linde/Vilenkin type creation: ETW brane creation from nothing dominates
- Observables like the scale of inflation are tight to properties of ETW branes
- Better understandings of available ETW branes and their EFT description are needed
- ETW branes are a useful tool to understand the structure of quantum gravity and play a major role in cosmology.

Conclusions

- \blacktriangleright Propsal for universally applicable EFT description for ETW branes arising from $\phi \to \infty$
- The ETW tension T₄ is an important ingredient to study vacuum decay/creation processes
- Predictions in cosmology depend on vacuum creation rates
- Proposal for the creation of universes with ETW branes in the off-shell region
- ETW branes have direct impact on physical predictions such as our scale of inflation

- \blacktriangleright Propsal for universally applicable EFT description for ETW branes arising from $\phi \to \infty$
- The ETW tension T₄ is an important ingredient to study vacuum decay/creation processes
- Predictions in cosmology depend on vacuum creation rates
- Proposal for the creation of universes with ETW branes in the off-shell region
- ETW branes have direct impact on physical predictions such as our scale of inflation

Thank you!

