# Tensionless Strings Limits in 4d Conformal Manifolds

José Calderón Infante

Based on ongoing work with Irene Valenzuela

Swamplandia 2024, Seeon Abbey, 29/05/2024







#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

 $M_{tower} \sim e^{-\alpha \Delta \phi}$  as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 



#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$_{ver} \sim e^{-\alpha \,\Delta \phi}$$
 as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 

Precise order one bounds on the exponential rates • Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] • Species scale  $\Lambda_{QG}$ : [van de Heisteeg, Vafa, Wiesner, Wu '23] [JCI, Castellano, Herráez, Ibáñez '23]

• A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]





#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$_{ver} \sim e^{-\alpha \,\Delta \phi}$$
 as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 

Precise order one bounds on the exponential rates • Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] • Species scale  $\Lambda_{OG}$ : [van de Heisteeg, Vafa, Wiesner, Wu '23] [JCI, Castellano, Herráez, Ibáñez '23] A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

#### **Progress:**





[Perlmutter, Rastelli, Vafa, Valenzuela '20]

#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$_{ver} \sim e^{-\alpha \,\Delta \phi}$$
 as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 

Precise order one bounds on the exponential rates • Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] • Species scale  $\Lambda_{OG}$ : [van de Heisteeg, Vafa, Wiesner, Wu '23] [JCI, Castellano, Herráez, Ibáñez '23] A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

#### **Progress:**





[Perlmutter, Rastelli, Vafa, Valenzuela '20]

#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$_{ver} \sim e^{-\alpha \, \Delta \phi}$$
 as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 

Precise order one bounds on the exponential rates • Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] • Species scale  $\Lambda_{OG}$ : [van de Heisteeg, Vafa, Wiesner, Wu '23] [JCI, Castellano, Herráez, Ibáñez '23] A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

#### **Progress:**

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22] [JCI, Castellano, Herráez, Ibáñez '23]





[Perlmutter, Rastelli, Vafa, Valenzuela '20]

#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$_{ver} \sim e^{-\alpha \, \Delta \phi}$$
 as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 

Precise order one bounds on the exponential rates • Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] • Species scale  $\Lambda_{OG}$ : [van de Heisteeg, Vafa, Wiesner, Wu '23] [JCI, Castellano, Herráez, Ibáñez '23] A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

#### **Progress:**

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22]

- [JCI, Castellano, Herráez, Ibáñez '23]
- + connections, pheno, ... ...





#### Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$_{ver} \sim e^{-\alpha \, \Delta \phi}$$
 as  $\Delta \phi \to \infty$   $(M_{Pl} = 1)$ 

Precise order one bounds on the exponential rates • Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] • Species scale  $\Lambda_{OG}$ : [van de Heisteeg, Vafa, Wiesner, Wu '23] [JCI, Castellano, Herráez, Ibáñez '23] A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

#### **Progress:**

+ Bottom-up motivations

[Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22]

- [JCI, Castellano, Herráez, Ibáñez '23]
- + connections, pheno, ... ...



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

#### AdS/CFT basics: AdS CFT $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

#### AdS/CFT basics: CFT AdS $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

AdS/CFT basics: CFT AdS  $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$ 

 $(\mathcal{M}, G_{ii}) \longleftrightarrow (\mathcal{M}_{CFT}, \chi_{ii})$ 



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

AdS/CFT basics: CFT AdS  $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$ 

 $(\mathcal{M}_{CFT},\chi_{ii})$ 

Moduli space metric

$$\mathcal{L} \supset M_{Pl}^{d-1} \frac{1}{2} G_{ij} \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}$$



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 





Moduli space metric

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT ?

AdS/CFT basics: AdS CFT  $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$ At infinite distance: Tower of operators with  $\Delta - \Delta_{unitarity} \sim e^{-\alpha_{CFT}t}$ 



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

AdS/CFT basics: AdS CFT  $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$ 

At infinite distance: Tower of operators with

 $\Delta - \Delta_{unitarity} \sim e^{-\alpha_{CFT}t}$ 

**Question:** Which operators? (e.g. unitarity bound depend on spin!)



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

AdS/CFT basics: AdS CFT  $(\phi, m) \longleftrightarrow (\mathcal{O}, \Delta)$ At infinite distance: Tower of operators with  $\Delta - \Delta_{unitarity} \sim e^{-\alpha_{CFT}t}$ **Question:** Which operators? (e.g. unitarity bound depend on spin!)

Higher-spin operators



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2





[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2



Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:**

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

[Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** 

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

■. Infinite distance → HS point

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

[Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** 

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

■. Infinite distance → HS point

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

[Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** 

Conformal manifold of local CFT in d>2

I. HS point → Infinite distance

II. Infinite distance → HS point

 $\Pi \cdot \gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$ 

Zamolodchikov distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** Conformal manifold of local CFT in d>2 **I.** HS point $\longrightarrow$ Infinite distance II. Infinite distance → HS point

$$\prod \gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$$

#### Zamolodchikov distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



+ existence of stress tensor is crucial!

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** Conformal manifold of local CFT in d>2 I. HS point → Infinite distance II. Infinite distance → HS point

$$\prod \gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$$

#### Zamolodchikov distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



**Moreover:** 

Analogous statement for 2d CFTs



[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT **?** 

### [Perlmutter, Rastelli, Vafa, Valenzuela '20] **CFT Distance Conjecture:** Conformal manifold of local CFT in d>2 I. HS point → Infinite distance II. Infinite distance → HS point

$$\prod \gamma_{\ell} = \Delta_{\ell} - (\ell + d - 2) \sim e^{-\alpha_{\ell} t}$$

#### Zamolodchikov distance

Local CFT: Posses stress tensor

Dynamical gravity in the bulk!



**Today:** Stringy origin of HS points **?** [JCI, Valenzuela '24]



## Strings in the Conformal Manifold



- Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]
  - KK modes  $\rightarrow$  Decompactification
  - Excitations of weakly-coupled string

## Strings in the Conformal Manifold



KK tower  $\rightarrow$  No HS fields



- Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]
  - KK modes  $\rightarrow$  Decompactification
  - Excitations of weakly-coupled string
    - String tower  $\rightarrow$  HS fields
  - **Expectation:** HS point  $\leftrightarrow$  tensionless string

## Strings in the Conformal Manifold



KK tower  $\rightarrow$  No HS fields



### **Problem:** $T_s \lesssim R_{AdS}^{-2} \longrightarrow$ String in a highly-curved background... hard to study!



- Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]

  - ✓ KK modes → Decompactification
    ✓ Excitations of weakly-coupled string
    - String tower  $\rightarrow$  HS fields
  - **Expectation:** HS point  $\leftrightarrow$  tensionless string

- Rely on CFT results and extract clues

### A Distance Conjecture Approach

**In flat space:** Value of  $\alpha \rightarrow$  Nature of the tower

### A Distance Conjecture Approach

**In flat space:** Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \begin{array}{l} \text{Decompactific} \\ n \text{ extra dime} \end{array}$$


In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow \frac{\text{Decc}}{n \text{ ex}}$$



**Caveat:** Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow$$

Decompactification of *n* extra dimensions

- $\alpha = \frac{1}{\sqrt{d-2}} \longrightarrow$ Emergent string limit
- **Caveat:** Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]
- From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

- Decompactification of  $\alpha = \frac{1}{\sqrt{d-2}} \rightarrow \frac{1}{\text{string limit}}$
- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

Three different values:  $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}} \right\}$  [Perlmutter, Rastelli, Vafa, Valenzuela '20]

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N



- Decompactification of  $\alpha = \frac{1}{\sqrt{d-2}} \rightarrow \frac{1}{\text{string limit}}$
- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N



- Decompactification of  $\alpha = \frac{1}{\sqrt{d-2}} \rightarrow \frac{1}{\text{string limit}}$
- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N



**But...** 
$$\alpha \neq \frac{1}{\sqrt{3}}$$
 for all of them?

- Decompactification of  $\alpha = \frac{1}{\sqrt{d-2}} \rightarrow \frac{1}{\text{string limit}}$
- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

**In flat space:** Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow$$

Decompactificant *n* extra dimer

Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: 
$$\alpha = \begin{cases} \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \end{cases}$$
  
Out of 19 theories!

**But...**  $\alpha \neq \frac{1}{\sqrt{3}}$  for all of them?

ation of 
$$\alpha = \frac{1}{\sqrt{d-2}} \longrightarrow \frac{1}{\text{string limit}}$$

 $\left\{\frac{7}{12}, \frac{1}{\sqrt{2}}\right\}$  [Perlmutter, Rastelli, Vafa, Valenzuela '20] Suggests three different strings in AdS

Actually... Match  $n = \{3,4,6\}$  $\rightarrow$  Decompactification to  $D = \{8,9,11\}$ ?

**In flat space:** Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \longrightarrow$$

Decompactificant *n* extra dimer

Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

Three different values: 
$$\alpha = \begin{cases} \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} \end{cases}$$
  
Out of 19 theories!

**But...**  $\alpha \neq \frac{1}{\sqrt{3}}$  for all of them?

ation of 
$$\alpha = \frac{1}{\sqrt{d-2}} \longrightarrow \frac{1}{\text{string limit}}$$

 $\left\{\frac{7}{12}, \frac{1}{\sqrt{2}}\right\}$  [Perlmutter, Rastelli, Vafa, Valenzuela '20] Suggests three different strings in AdS

Actually... Match  $n = \{3,4,6\}$  $\rightarrow$  Decompactification to  $D = \{8,9,11\}$ ?

So... What is going on?!

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

- Decompactification of  $\alpha = \frac{1}{\sqrt{d-2}} \rightarrow \frac{1}{\text{string limit}}$
- Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

Three different values:  $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}} \right\}$  [Perlmutter, Rastelli, Vafa, Valenzuela '20]

In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N Three different values:  $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \sqrt{\frac{1}{\sqrt{2}}} \right\}$  [Perlmutter, Rastelli, Vafa, Valenzuela '20]  $\int \frac{1}{\sqrt{1-1}} E.g. \ \mathcal{N} = 4 \text{ SYM}$ 



In flat space: Value of  $\alpha \rightarrow$  Nature of the tower

$$\alpha = \sqrt{\frac{d-2+n}{n(d-2)}} \quad \blacksquare$$

- **Caveat:** Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N Three different values:  $\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\}$  [Perlmutter, Rastelli, Vafa, Valenzuela '20] → E.g.  $\mathcal{N} = 4$  SYM  $\checkmark$  Type IIB on AdS<sub>5</sub> × S<sup>5</sup>



**Goal:** Understand this case!

Type IIB on an 5-sphere

 $S = \frac{M_{Pl}^3}{2} \left[ d^5 x \sqrt{-g} \left( R - (\partial \hat{\Phi})^2 - (\partial \hat{R})^2 - V(\hat{\Phi}, \hat{R}) \right) \right]$ 

Type IIB on an 5-sphere  $S = \frac{M_{Pl}^3}{2} \int d^5x \sqrt{-g} \left( R - (\partial \hat{\Phi})^2 - (\partial \hat{R})^2 - V(\hat{\Phi}, \hat{R}) \right)$ Controls string coupling

Type IIB on an 5-sphere Controls 5-sphere radius  $S = \frac{M_{Pl}^3}{2} \int d^5x \sqrt{-g} \left( R - (\partial \hat{\Phi})^2 - (\partial \hat{R})^2 - V(\hat{\Phi}, \hat{R}) \right)$ Controls string coupling

Type IIB on an 5-sphere Controls 5-sphere radius  $S = \frac{M_{Pl}^3}{2} \int d^5x \sqrt{-g} \left( R - (\partial \hat{\Phi})^2 - (\partial \hat{R})^2 - V(\hat{\Phi}, \hat{R}) \right)$ Controls string coupling

#### **KK tower**

 $\frac{M_{KK}}{M_{Pl}} \sim e^{-\sqrt{\frac{8}{15}}\hat{R}}$ 

Type IIB on an 5-sphere Controls 5-sphere radius  $S = \frac{M_{Pl}^3}{2} \int d^5x \sqrt{-g} \left( R - (\partial \hat{\Phi})^2 - (\partial \hat{R})^2 - V(\hat{\Phi}, \hat{R}) \right)$ Controls string coupling

#### **KK tower**

 $\frac{M_{KK}}{M_{Pl}} \sim e^{-\sqrt{\frac{8}{15}}\hat{R}}$ 

$$R - (\partial \hat{\Phi})^2 - (\partial \hat{R})^2 - V(\hat{\Phi}, \hat{R})$$

#### **String tower**







► Â











### Convex Hull for N=4 SYM

 $\mathcal{N} = 4$  SU(N) gauge theory in 4d

## **Convex Hull for N=4 SYM**

 $\mathcal{N} = 4$  SU(N) gauge theory in 4d



## Convex Hull for N = 4 SYM

 $\mathcal{N} = 4$  SU(N) gauge theory in 4d





## Convex Hull for N = 4 SYM

 $\mathcal{N} = 4$  SU(N) gauge theory in 4d









#### **Problem:**

No CFT distance in the N-direction :





#### Notice:

Convex hulls for AdS and CFT glue nicely together! (see later)



#### **Notice:**

Convex hulls for AdS and CFT glue nicely together! (see later)





**KK tower**  $\leftrightarrow$  **BPS operators** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

KK tower ↔ BPS operators

Relax condition

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

 $M_{KK} \sim R_{AdS}^{-2\beta}$ • Weird  $S^5$  stabilization

KK tower ↔ BPS operators

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

Weird BPS  $\frac{M_{KK} \sim R_{AdS}^{-2\beta} \longleftrightarrow \Delta_{BPS} \sim N^{\frac{2}{3}(1-2\beta)}}{\text{Weird } S^{5} \text{ stabilization}}$ spectrum



KK tower ↔ BPS operators

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 







KK tower ↔ BPS operators

Relax condition

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!

R

KK

AdS

#### Notice:

Convex hulls for AdS and CFT do not glue nicely together!



Anti-separation of scales:  $\beta > 1/2 \rightarrow M_{KK} \ll R_{AdS}^{-1}$ 

't Hooft limit (fixed λ)



KK tower ↔ BPS operators

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!

 $\hat{R}$ 

KK

AdS

#### **Notice:**

Convex hulls for AdS and CFT do not glue nicely together!

Weird BPS  $M_{KK} \sim R_{AdS}^{-2\beta} \longleftrightarrow \Delta_{BPS} \sim N^{\frac{2}{3}(1-2\beta)}$ spectrum • Weird  $S^5$  stabilization Long story short

Anti-separation of scales:  $\beta > 1/2 \rightarrow M_{KK} \ll R_{AdS}^{-1}$ 

HS

't Hooft limit (fixed  $\lambda$ )

CFT




KK tower ↔ BPS operators

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!



Weird BPS  $M_{KK} \sim R_{AdS}^{-2\beta} \longleftrightarrow \Delta_{BPS} \sim N^{\frac{2}{3}(1-2\beta)}$ spectrum → Weird  $S^5$  stabilization



**KK tower**  $\leftrightarrow$  **BPS operators** 

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!



R

KK

### Notice:

Convex hulls for AdS and CFT do not glue nicely together!

Weird BPS  $M_{KK} \sim R_{AdS}^{-2\beta} \longleftrightarrow \Delta_{BPS} \sim N^{\frac{2}{3}(1-2\beta)}$ spectrum • Weird  $S^5$  stabilization Long story short

Separation of scales:  $\beta < 1/2 \rightarrow M_{KK} \gg R_{AdS}^{-1}$ 







**KK tower**  $\leftrightarrow$  **BPS operators** 

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!



### Notice:

Convex hulls for AdS and CFT do not glue nicely together!



**KK tower**  $\leftrightarrow$  **BPS operators** 

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!



### Notice:

Convex hulls for AdS and CFT do not glue nicely together!

KK tower ↔ BPS operators

**Relax condition** 

 $\Delta_{BPS} \sim \mathcal{O}(1) \longleftrightarrow M_{KK} \sim R_{AdS}^{-1}$ 

No scale separation from the CFT!

R

KK

### Notice:

Convex hulls for AdS and CFT do not glue nicely together!









Why  $\alpha = \frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}}$  in  $\mathcal{N} = 4$  SYM  $\mathbf{?}$ 





$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

Reason 1:





Flat space emergent string: 
$$\frac{M_s}{M_{Pl}} \rightarrow 0 + M_s \sim M_{KK}$$
 Here:  $\frac{M_s}{M_{Pl}} \rightarrow 0 + M_s \ll M_{KK} \sim O(1)$ 

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### Reason 1:





$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$





$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$





$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

![](_page_83_Picture_0.jpeg)

Why  $\alpha = \frac{1}{\sqrt{2}} \neq$ 

 $M_s \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!

![](_page_83_Picture_3.jpeg)

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### Reason 2:

![](_page_84_Picture_0.jpeg)

Why  $\alpha = \frac{1}{\sqrt{2}} \neq$ 

What goes wrong when computing  $\alpha$ ?

## Recap

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### Reason 2:

 $M_s \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!

![](_page_85_Picture_0.jpeg)

![](_page_85_Picture_1.jpeg)

![](_page_85_Picture_3.jpeg)

1. Moduli space metric for  $g_s$ 

![](_page_85_Picture_6.jpeg)

![](_page_85_Picture_7.jpeg)

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### **Reason 2:**

 $M_s \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!

What goes wrong when computing  $\alpha$ ?

![](_page_85_Picture_12.jpeg)

![](_page_86_Picture_0.jpeg)

![](_page_86_Picture_1.jpeg)

![](_page_86_Picture_3.jpeg)

![](_page_86_Picture_6.jpeg)

![](_page_86_Picture_7.jpeg)

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### **Reason 2:**

- $M_s \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!
  - What goes wrong when computing  $\alpha$ ?

![](_page_86_Picture_12.jpeg)

![](_page_86_Picture_13.jpeg)

![](_page_87_Picture_0.jpeg)

![](_page_87_Figure_1.jpeg)

### **Reason 2:**

![](_page_87_Picture_3.jpeg)

## Recap

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

- $M_{S} \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!
  - What goes wrong when computing  $\alpha$ ?
- 1. Moduli space metric for  $g_s$  2. String excitation modes with  $g_s$

![](_page_87_Picture_12.jpeg)

Weakly curved:  $M_s \sim \sqrt{T_s} \sim M_{Pl} g_s^{1/4}$ 

![](_page_88_Picture_0.jpeg)

![](_page_88_Figure_1.jpeg)

![](_page_88_Picture_3.jpeg)

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### **Reason 2:**

- $M_{s} \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!
  - What goes wrong when computing  $\alpha$ ?

1. Moduli space metric for  $g_s$  2. String excitation modes with  $g_s$ 

![](_page_88_Picture_14.jpeg)

Weakly curved:  $M_s \sim \sqrt{T_s} \sim M_{Pl} g_s^{1/4}$ CFT:  $M_s \sim M_{Pl} g_s^{1/2} \checkmark \neq$ 

![](_page_89_Picture_0.jpeg)

![](_page_89_Figure_1.jpeg)

![](_page_89_Picture_3.jpeg)

![](_page_89_Picture_8.jpeg)

CFT prediction for part of string spectrum in highly-curved AdS

## Recap

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### **Reason 2:**

- $M_{s} \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!
  - What goes wrong when computing  $\alpha$ ?

1. Moduli space metric for  $g_s$  2. String excitation modes with  $g_s$ 

![](_page_89_Picture_16.jpeg)

Weakly curved:  $M_s \sim \sqrt{T_s} \sim M_{Pl} g_s^{1/4}$ CFT:  $M_s \sim M_{Pl} g_s^{1/2} \checkmark \neq$ 

![](_page_90_Picture_0.jpeg)

![](_page_90_Figure_1.jpeg)

![](_page_90_Picture_3.jpeg)

### Weakly curved

CFT:

![](_page_90_Picture_8.jpeg)

**CFT** predictio spectrum in highly-curved AdS

## Recap

$$\neq \frac{1}{\sqrt{3}} \text{ in } \mathcal{N} = 4 \text{ SYM }$$

### **Reason 2:**

- $M_{s} \ll R_{AdS}^{-1} \rightarrow$  Weakly curved approximation breaks down!
  - What goes wrong when computing  $\alpha$ ?

1. Moduli space metric for  $g_s$  2. String excitation modes with  $g_s$ 

$$: M_{s} \sim \sqrt{T_{s}} \sim M_{Pl} g_{s}^{1/4}$$

$$M_{s} \sim M_{Pl} g_{s}^{1/2} \xrightarrow{4}$$

$$M_{s} \sim T_{s} R_{AdS}$$
Food for thought!
The string is a str

**Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

erlmutter, Rastelli, Vafa, Valenzuela '20]

![](_page_91_Picture_4.jpeg)

**Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

New strings? Or same string, weirder background?

erlmutter, Rastelli, Vafa, Valenzuela '20]

![](_page_92_Picture_5.jpeg)

**Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

New strings? Or same string, weirder background?

**Problem:** How to detect a string from the CFT?

erlmutter, Rastelli, Vafa, Valenzuela '20]

![](_page_93_Picture_6.jpeg)

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

New strings? Or same string, weirder background?

- **Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N
  - erlmutter, Rastelli, Vafa, Valenzuela '20]
  - g.  $\mathcal{N} = 4$  SYM  $\checkmark$  Type IIB on AdS<sub>5</sub> × S<sup>5</sup>  $\checkmark$

  - **Problem:** How to detect a string from the CFT?
  - Instead, look for physical properties that are controlled only by  $\alpha$

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

New strings? Or same string, weirder background?

- **Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N
  - erlmutter, Rastelli, Vafa, Valenzuela '20]
  - g.  $\mathcal{N} = 4$  SYM  $\checkmark$  Type IIB on AdS<sub>5</sub> × S<sup>5</sup>

  - **Problem:** How to detect a string from the CFT?
  - Instead, look for physical properties that are controlled only by  $\alpha$ 
    - **1.** Ratio between *a* and *c* central charges

$$\alpha = \left\{ \sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}} \left( \frac{1}{\sqrt{2}} \right) \right\} \quad \text{[Pe}$$

New strings? Or same string, weirder background?

- **Recap:** 4d SCFTs with simple gauge group (Lagrangian) admitting large N
  - erlmutter, Rastelli, Vafa, Valenzuela '20]
  - g.  $\mathcal{N} = 4$  SYM  $\checkmark$  Type IIB on AdS<sub>5</sub> × S<sup>5</sup>  $\checkmark$
  - **Problem:** How to detect a string from the CFT?
  - Instead, look for physical properties that are controlled only by  $\alpha$ 
    - **1.** Ratio between *a* and *c* central charges
      - 2. Hagedorn temperature at large N

$$\alpha = \sqrt{\frac{2c}{\dim G}}$$

$$\alpha = \sqrt{\frac{2c}{\dim G}} \quad \stackrel{\dim G = f(a,c)}{\longrightarrow} \alpha = \frac{1}{\sqrt{4\frac{a}{c} - 2}}$$

![](_page_99_Picture_2.jpeg)

![](_page_100_Figure_1.jpeg)

\* Relevant for various aspects of low energy EFT!

![](_page_101_Figure_1.jpeg)

\* Relevant for various aspects of low energy EFT!

[Henningson, Skenderis '98]

Most notably:  $a \neq c$  (at large N)  $\leftrightarrow$  No weakly-coupled Einstein gravity at low energies

![](_page_102_Figure_1.jpeg)

$$m G = f(a, c)$$

$$\alpha = \frac{1}{\sqrt{4 \frac{a}{c} - 2}}$$

$$+ \frac{1}{4\alpha^2}$$
Depends
on  $\alpha$  only

\* Relevant for various aspects of low energy EFT!

```
[Henningson, Skenderis '98]
```

Most notably:  $a \neq c$  (at large N)  $\leftrightarrow$  No weakly-coupled Einstein gravity at low energies

![](_page_102_Picture_8.jpeg)

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE$$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

 $\xrightarrow{T \to T_H} \infty \longleftarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ 

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

**Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!

![](_page_105_Picture_3.jpeg)

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

**Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!  $\rightarrow$  **Expectation:** Hagedorn temperature should only depend on  $\alpha$ 

![](_page_106_Picture_4.jpeg)

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

 $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ **Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!  $\rightarrow$  **Expectation:** Hagedorn temperature should only depend on  $\alpha$ # chiral multiplets 4d  $\mathcal{N} = 1$  SU(N) gauge theory  $\rightarrow$  7 parameters:  $\{n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_{\bar{S}}, n_{\bar{S}}\}$
$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$$
gedorn temperature:  $T_H \longrightarrow$  Controls exponential density of states at high energies!
$$\longrightarrow \text{Expectation: Hagedorn temperature should only depend on } \alpha \text{ !}$$

$$4d \mathcal{N} = 1 \text{ SU(N) gauge theory} \longrightarrow 7 \text{ parameters: } \left\{ n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}} \right\}$$
short...  $Z(T) \to \infty \leftrightarrow \text{Hagedorn condition: } z_V(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_{\Phi}(T_H) = 1$ 

Hag

Long story

S

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$$
gedorn temperature:  $T_H \longrightarrow$  Controls exponential density of states at high energies!
$$\implies \text{Expectation: Hagedorn temperature should only depend on } \alpha \text{ !}$$

$$= \text{I SU(N) gauge theory} \longrightarrow 7 \text{ parameters: } \left\{ n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}} \right\}$$
short...  $Z(T) \to \infty \leftrightarrow \text{Hagedorn condition: } z_V(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_{\Phi}(T_H) = 1$ 

$$\mathcal{N} = 1 \text{ vector } \qquad \text{Nice... But not enough!}$$

Hag

#### Long story



$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$$
gedorn temperature:  $T_H \longrightarrow$  Controls exponential density of states at high energies!
$$\implies \text{Expectation: Hagedorn temperature should only depend on } \alpha \text{ !}$$

$$= 1 \text{ SU(N) gauge theory} \longrightarrow 7 \text{ parameters: } \left\{ n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}} \right\}$$
short...  $Z(T) \to \infty \leftrightarrow \text{Hagedorn condition: } z_V(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_{\Phi}(T_H) = 1$ 

$$\mathcal{N} = 1 \text{ vector} \qquad \text{Nice... But not enough!} \qquad \mathcal{N} = 1$$

Ha

#### Long story

(+) Anomaly cancellation +  $\beta_{1-loop} = 0$ : {  $\cdots$  } =  $\beta - n_F$  Only 1 parameter!



$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$$
gedorn temperature:  $T_H \longrightarrow$  Controls exponential density of states at high energies!
$$\implies \text{Expectation: Hagedorn temperature should only depend on } \alpha \text{ } \text{!}$$

$$4d \ \mathcal{N} = 1 \ \text{SU(N) gauge theory} \longrightarrow 7 \text{ parameters: } \left\{ n_{Ad}, n_F, n_{\bar{F}}, n_A, n_{\bar{A}}, n_S, n_{\bar{S}} \right\}$$
short...  $Z(T) \to \infty \leftrightarrow \text{Hagedorn condition: } z_V(T_H) + \left\{ n_{Ad} + \frac{1}{2}(n_S + n_{\bar{S}} + n_A + n_{\bar{A}}) \right\} z_{\Phi}(T_H) = 1$ 

$$\mathcal{N} = 1 \text{ vector } \text{Nice... But not enough!} \qquad \mathcal{N} = 1$$

Ha

Long story

+ Anomaly cancellation +  $p_{1-loop} = 0$ : { · · · } =  $3 - n_F$  Only 1 parameter!

Hagedorn condition:  $z_V(T_H) + 3(3 - 4\alpha^2) z_{\Phi}(T_H) = 1$  Only depends on  $\alpha$ !



Ha

Long story

 $n_F(\alpha)$ 

Expectation Hagedorn condition:  $z_V(T_H) + 3(3 - 4\alpha^2) z_{\Phi}(T_H) = 1$  Only depends on  $\alpha$ ! (magically) confirmed



$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

- $\xrightarrow{T \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ **Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!
  - $\rightarrow$  **Expectation:** Hagedorn temperature should only depend on  $\alpha$ 
    - # chiral multiplets
  - 4d  $\mathcal{N} = 1$  USp(2N)/SO(2N) gauge theory  $\rightarrow$  3 parameters:  $\{n_F, n_A, n_S\}$

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

**Expectation:** Hagedorn temperature should only depend on  $\alpha$ 

4d  $\mathcal{N} = 1$  USp(2N)/SO(2N) gauge theory  $\rightarrow$  3 parameters:  $\{n_F, n_A, n_S\}$ 

Long story short...  $Z(T) \to \infty \leftrightarrow$  Hagedorn condition:  $z_V(T_H) + \{n_S + n_A\} z_{\Phi}(T_H) = 1$  $\mathcal{N} = 1$  vector  $\checkmark$   $\mathcal{N} = 1$  chirals

 $\xrightarrow{I' \to T_H} \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ 

**Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!

# chiral multiplets

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

$$\bigoplus \beta_{1-loop} = 0: \{\cdots\}$$

 $\xrightarrow{I} \to T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ 

- **Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!  $\rightarrow$  **Expectation:** Hagedorn temperature should only depend on  $\alpha$ # chiral multiplets 4d  $\mathcal{N} = 1$  USp(2N)/SO(2N) gauge theory  $\rightarrow$  3 parameters:  $\{n_F, n_A, n_S\}$ 
  - Long story short...  $Z(T) \to \infty \leftrightarrow$  Hagedorn condition:  $z_V(T_H) + \{n_S + n_A\} z_{\Phi}(T_H) = 1$  $\mathcal{N} = 1$  vector  $\checkmark$   $\mathcal{N} = 1$  chirals
    - $= f(n_F)$  Only 1 parameter!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

Hagedorn temperature:  $T_H \longrightarrow$  Controls exponential density of states at high energies!  $\rightarrow$  **Expectation:** Hagedorn temperature should only depend on  $\alpha$ # chiral multiplets 4d  $\mathcal{N} = 1$  USp(2N)/SO(2N) gauge theory  $\rightarrow$  3 parameters:  $\{n_F, n_A, n_S\}$ 

$$\bigoplus \beta_{1-loop} = 0: \{\cdots\}$$



 $\xrightarrow{I} \to T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ 

Long story short...  $Z(T) \to \infty \leftrightarrow$  Hagedorn condition:  $z_V(T_H) + \{n_S + n_A\} z_{\Phi}(T_H) = 1$  $\mathcal{N} = 1$  vector  $\checkmark$   $\mathcal{N} = 1$  chirals

 $= f(n_F)$  Only 1 parameter!

Hagedorn condition:  $z_V(T_H) + 3(3 - 4\alpha^2) z_{\Phi}(T_H) = 1$  Only depends on  $\alpha$ !

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

 $\rightarrow$  **Expectation:** Hagedorn temperature should only depend on  $\alpha$ 

Long story short...  $Z(T) \to \infty \leftrightarrow$  Hagedorn condition:  $z_V(T_H) + \{n_S + n_A\} z_{\Phi}(T_H) = 1$  $\mathcal{N} = 1$  vector  $\checkmark$   $\mathcal{N} = 1$  chirals

$$( \mathbf{f} ) \beta_{1-loop} = 0: \{ \cdots \}$$

 $n_F(\alpha)$ 

 $\xrightarrow{I} \to T_H \longrightarrow \infty \longrightarrow \rho(E) \sim e^{E/T_H} \text{ Stringy!}$ 

**Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!

# chiral multiplets 4d  $\mathcal{N} = 1$  USp(2N)/SO(2N) gauge theory  $\rightarrow$  3 parameters:  $\{n_F, n_A, n_S\}$ 

 $= f(n_F)$  Only 1 parameter!

Expectation Hagedorn condition:  $z_V(T_H) + 3(3 - 4\alpha^2) z_{\Phi}(T_H) = 1$  Only depends on  $\alpha$ ! (magically) confirmed Same as for SU(N)



$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

**Expectation:** Hagedorn temperature should only depend on  $\alpha$  **Confirmed** 



**Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

**Expectation:** Hagedorn temperature should only depend on  $\alpha$  **Confirmed** 

**Caveat:** Trouble with large numbers of flavors at large N



**Hagedorn temperature:**  $T_H \longrightarrow$  Controls exponential density of states at high energies!

$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$

[Gadde, Pomoni, Rastelli '09]  $\rightarrow$  Restrict to flavor singlets!



$$Z(T) = \sum_{states} e^{-E/T} = \int \rho(E) e^{-E/T} dE \quad -$$



**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers



 $s \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $\rightarrow$  S<sup>1</sup> of orbifold singularities



**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $S^1$  of orbifold singularities

### A very peculiar limit:

Driven by only axions  $\rightarrow$  Typically finite distance



**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $S^1$  of orbifold singularities

### A very peculiar limit:

- Driven by only axions  $\rightarrow$  Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]



**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $S^1$  of orbifold singularities

### A very peculiar limit:

- Driven by only axions  $\rightarrow$  Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

## **Stringy origin?**

Fundamental string remains tensionful...



**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $S^1$  of orbifold singularities

### A very peculiar limit:

- Driven by only axions  $\rightarrow$  Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

## **Stringy origin?**

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]



String propagating in  $AdS_5 \times S^1$ !

**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $S^1$  of orbifold singularities

### A very peculiar limit:

- Driven by only axions  $\rightarrow$  Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

## **Stringy origin?**

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]



String propagating in AdS<sub>5</sub> × S<sup>1</sup>! Candidate for new emergent string in AdS  $\mathbf{Z}$  [Baume, JCI '20]

**Setup:**  $AdS_5 \times S^5/Z_k \leftrightarrow \mathcal{N} = 2$  necklace quivers

 $S^1$  of orbifold singularities

### A very peculiar limit:

- Driven by only axions  $\rightarrow$  Typically finite distance
- **But!** CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

### **Stringy origin?**

- Fundamental string remains tensionful...
- D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]

There is much to learn about/from the Distance Conjecture in AdS/CFT

There is much to learn about/from the Distance Conjecture in AdS/CFT

**CFT** side

There is much to learn about/from the Distance Conjecture in AdS/CFT

#### **CFT** side



There is much to learn about/from the Distance Conjecture in AdS/CFT

#### **CFT side**

Prove rest of CFT Distance Conjecture **?** 

Distance in N-direction **?** 

There is much to learn about/from the Distance Conjecture in AdS/CFT

#### **CFT side**

Prove rest of CFT Distance Conjecture **?** 

Distance in N-direction **?** 

Stringy side

There is much to learn about/from the Distance Conjecture in AdS/CFT

#### **CFT side**

Prove rest of CFT Distance Conjecture **?** 

Distance in N-direction **?** 

Stringy side



There is much to learn about/from the Distance Conjecture in AdS/CFT

#### **CFT** side

Prove rest of CFT Distance Conjecture **?** 

Distance in N-direction **?** 

### Stringy side

## New strings in AdS **?**

Building them: D3 wrapping blow-ups in AdS **?** 

There is much to learn about/from the Distance Conjecture in AdS/CFT

**CFT side** 

Prove rest of CFT Distance Conjecture **?** 

Distance in N-direction **?** 

# **Chank you for your attention!**

### Stringy side

New strings in AdS **?** 

Building them: D3 wrapping blow-ups in AdS **?**