Tensionless Strings Limits in 4d Conformal Manifolds

José Calderón Infante

Based on ongoing work with Irene Valenzuela
Swamplandia 2024, Seeon Abbey, 29/05/2024

The Swampland Distance Conjecture

The Swampland Distance Conjecture

Parametrized by massless scalars

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]
There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha \Delta \phi} \text { as } \Delta \phi \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{t o w e r} \sim e^{-\alpha \Delta \phi} \text { as } \Delta \phi \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

Precise order one bounds on the exponential rates

- Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
- Species scale $\Lambda_{Q G}$: [van de Heisteeg, Vafa, Wiesner, Wu '23]
[JCI, Castellano, Herráez, Ibáñez '23]
- A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha \Delta \phi} \text { as } \Delta \phi \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

Precise order one bounds on the exponential rates

- Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
- Species scale $\Lambda_{Q G}$: [van de Heisteeg, Vafa, Wiesner, Wu '23]
[JCI, Castellano, Herráez, Ibáñez '23]
- A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

The Swampland Distance Conjecture

Parametrized by massless scalars

Lots of top-down evidence!

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{t o w e r} \sim e^{-\alpha \Delta \phi} \text { as } \Delta \phi \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

Precise order one bounds on the exponential rates

- Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
- Species scale $\Lambda_{Q G}$: [van de Heisteeg, Vafa, Wiesner, Wu '23]
[JCI, Castellano, Herráez, Ibáñez '23]
- A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

Progress:

- String theory:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]
+ many many more!
- AdS/CFT: [Baume, JCI '20+'23] [Ooguri, Wang '24]
[Perlmutter, Rastelli, Vafa, Valenzuela '20]

The Swampland Distance Conjecture

Parametrized by massless scalars

Lots of top-down evidence!

- String theory:

Progress:

[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19] + many many more!

- AdS/CFT: [Baume, JCI '20+'23] [Ooguri, Wang '24]
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
many many more!

[^0]Precise order one bounds on the exponential rates

- Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
- Species scale $\Lambda_{Q G}$: [van de Heisteeg, Vafa, Wiesner, Wu '23]
[JCI, Castellano, Herráez, Ibáñez '23]
- A pattern connecting them: [Castellano, Ruiz, Valenzuela '23]

The Swampland Distance Conjecture

Parametrized by massless scalars

Lots of top-down evidence!

- String theory:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19] + many many more!
- AdS/CFT: [Baume, JCI '20+'23] [Ooguri, Wang '24]
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
+ Bottom-up motivations
[Hamada, Montero, Vafa, Valenzuela '21]
[Stout '21+'22]
[JCI, Castellano, Herráez, Ibáñez '23]
+ connections, pheno,

The Swampland Distance Conjecture

Parametrized by massless scalars

Lots of top-down evidence!

- String theory:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]
+ many many more!
AdS/CFT: [Baume, JCl '20+'23] [Ooguri, Wang '24]
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
+ Bottom-up motivations
[Hamada, Montero, Vafa, Valenzuela '21]
[Stout '21+'22]
[JCI, Castellano, Herráez, Ibáñez '23]
+ connections, pheno,

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

$$
\begin{array}{lc}
\text { AdS } & \text { CFT } \\
(\phi, m) \longleftrightarrow(0, \Delta)
\end{array}
$$

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

AdS CFT Moduli space \longleftrightarrow Conformal manifold:
$(\phi, m) \longleftrightarrow(\mathcal{O}, \Delta)$

$$
\left(\left(\mathscr{M}, G_{i j}\right) \longleftrightarrow\left(\mathscr{M}_{C F T}, \chi_{i j}\right)\right.
$$

The Distance Conjecture in AdS/CFT

[Baume, SCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

Moduli space metric
$\mathscr{L} \supset M_{P l}^{d-1} \frac{1}{2} G_{i j} \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}$
Parametrized by exactly marginal couplings

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

Moduli space metric

$$
\mathscr{L} \supset M_{P l}^{d-1} \frac{1}{2} G_{i j} \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}\left\langle\mathcal{O}_{i} \mathcal{O}_{j}\right\rangle=\frac{\chi_{i j}}{|x-y|^{2 d}}
$$

Zamolodchikov metric
$\mathscr{M}_{\text {CFT }}$
Parametrized by exactly marginal couplings

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

AdS
CFT

Moduli space \longleftrightarrow Conformal manifold:
$(\phi, m) \longleftrightarrow(\mathcal{O}, \Delta)$

At infinite distance:
Tower of operators with

$$
\Delta-\Delta_{\text {unitarity }} \sim e^{-\alpha_{C F T} t}
$$

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

AdS CFT Modulispace \longleftrightarrow Conformal manifold: $(\phi, m) \longleftrightarrow(\mathcal{O}, \Delta)$

At infinite distance:
Tower of operators with
$\Delta-\Delta_{\text {unitarity }} \sim e^{-\alpha_{C F T} t}$
Question: Which operators?
(e.g. unitarity bound depend on spin!)

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

AdS/CFT basics:

AdS CFT Modulispace \longleftrightarrow Conformal manifold: $(\phi, m) \longleftrightarrow(\mathcal{O}, \Delta)$

At infinite distance:
Tower of operators with

$$
\Delta-\Delta_{\text {unitarity }} \sim e^{-\alpha_{C F T} t}
$$

Question: Which operators?
(e.g. unitarity bound depend on spin!)

Higher-spin operators!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2

Conformal manifold:

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$

Local CFT: Posses stress tensor
\rightarrow Dynamical gravity in the bulk!

Conformal manifold: $\mathscr{M}_{\text {CFT }}$

Parametrized by exactly marginal couplings

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses stress tensor
\rightarrow Dynamical gravity in the bulk!

Conformal manifold: $\mathscr{M}_{\text {CFT }}$

Parametrized by exactly marginal couplings

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses stress tensor

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses stress tensor
\rightarrow Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses stress tensor
\rightarrow Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point

Local CFT: Posses stress tensor
Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point

Local CFT: Posses stress tensor
Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance
Local CFT: Posses stress tensor
Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2 \longrightarrow$ Proven \downarrow [Baume, JCI '23]
I. HS point \longrightarrow Infinite distance
(!)
No extra assumption, e.g., no supersymmetry

+ existence of stress tensor is crucial!
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance
Local CFT: Posses stress tensor
\rightarrow Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $d>2 \longrightarrow$ Proven $\sqrt{ }$ [Baume, JCl '23]
I. HS point \longrightarrow Infinite distance
(1)

No extra assumption, e.g., no supersymmetry

+ existence of stress tensor is crucial!
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance

Local CFT: Posses stress tensor
Dynamical gravity in the bulk!

The Distance Conjecture in AdS/CFT

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]
How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $d>2 \longrightarrow$ Proven \downarrow [Baume, JCl '23]
I. HS point \longrightarrow Infinite distance
$(1)^{N}$
No extra assumption, e.g., no supersymmetry

+ existence of stress tensor is crucial!
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance

Local CFT: Posses stress tensor
Dynamical gravity in the bulk!

Moreover:

Analogous statement for 2d CFTs

Today: Stringy origin of HS points? [JCl, Valenzuela '24]

Strings in the Conformal Manifold

Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]

Strings in the Conformal Manifold

Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]

KK tower \rightarrow No HS fields \quad String tower \rightarrow HS fields

\rightarrow Expectation: HS point \leftrightarrow tensionless string

Strings in the Conformal Manifold

```
Inspiration: Emergent String Conjecture [Lee, Lerche, Weigand '19]
```


Problem: $T_{s} \lesssim R_{A d S}^{-2} \longrightarrow$ String in a highly-curved background... hard to study!
\rightarrow Rely on CFT results and extract clues!

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\text { Emergent }}{\text { string limit }}
$$

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower
$\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}\text { Decompactification of } \\ n \text { extra dimensions }\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \begin{gathered}\text { Emergent } \\ \text { string limit }\end{gathered}$
\longrightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\text { Emergent }}{\text { Eming limit }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { End }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}
\rightarrow Three different values: $\alpha=\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { End }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N
$\rightarrow \underset{\rightarrow \text { Out of } 19 \text { theories! }}{\text { Three different values: } \alpha}=\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { Em }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { Em }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N
$\rightarrow \frac{\text { Three different values: }}{\rightarrow \text { Out of } 19 \text { theories! }} \underset{\rightarrow \text { Suggests three different strings in AdS! }}{ } \quad\left\{\begin{array}{l}\left.\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right\}\end{array}\right.$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]
But... $\alpha \neq \frac{1}{\sqrt{3}}$ for all of them?

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { Em }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N
$\rightarrow \frac{\text { Three different values: }}{\rightarrow \text { Out of } 19 \text { theories! }} \boldsymbol{\rightarrow}=\frac{\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right\}}{\longrightarrow \text { Suggests three different strings in AdS! }}$
But... $\alpha \neq \frac{1}{\sqrt{3}}$ for all of them?
Actually... Match $n=\{3,4,6\}$
\rightarrow Decompactification to $D=\{8,9,11\} ?$

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { Em }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N
$\rightarrow \frac{\text { Three different values: }}{\rightarrow \text { Out of } 19 \text { theories! }} \boldsymbol{\rightarrow}=\frac{\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right\}}{\longrightarrow \text { Suggests three different strings in AdS! }}$
But... $\alpha \neq \frac{1}{\sqrt{3}}$ for all of them?
Actually... Match $n=\{3,4,6\}$
\rightarrow Decompactification to $D=\{8,9,11\} ?$

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { End }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}
\rightarrow Three different values: $\alpha=\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \quad \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { End }}
$$

\longrightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N
\rightarrow Three different values: $\left.\alpha=\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right)\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]
\longrightarrow E.g. $\mathcal{N}=4$ SYM

A Distance Conjecture Approach

In flat space: Value of $\alpha \rightarrow$ Nature of the tower

$$
\alpha=\sqrt{\frac{d-2+n}{n(d-2)}} \rightarrow \begin{gathered}
\text { Decompactification of } \\
n \text { extra dimensions }
\end{gathered} \alpha=\frac{1}{\sqrt{d-2}} \rightarrow \underset{\substack{\text { Emergent } \\
\text { string limit }}}{\text { Em }}
$$

\rightarrow Caveat: Different values found for decompactification to running solution [Etheredge, Heidenreich, McNamara, Rudelius, Ruiz, Valenzuela '23]

From the CFT: Restrict to zoo of 4d SCFTs with simple gauge group (Lagrangian) admitting large N
\rightarrow Three different values: $\left.\alpha=\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}, \frac{1}{\sqrt{2}}\right)\right\}$ [Perlmutter, Rastelli, Vafa, Valenzuela '20]
\longrightarrow E.g. $\mathcal{N}=4$ SYM \longrightarrow Type IIB on $\mathrm{AdS}_{5} \times S^{5}$

Convex Hull for AdS5xS5

Convex Hull for AdS5xS5

Type IIB on an 5-sphere

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{-g}\left(R-(\partial \hat{\Phi})^{2}-(\partial \hat{R})^{2}-V(\hat{\Phi}, \hat{R})\right)
$$

Convex Hull for AdS5xS5

Type IIB on an 5-sphere

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{-g}\left(R-(\partial \hat{\Phi})^{2}-(\partial \hat{R})^{2}-V(\hat{\Phi}, \hat{R})\right)
$$

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{\text { Type IIB on an 5-sphere }} \begin{gathered}
\text { Controls 5-sphere radius } \\
\text { Controls string coupling }
\end{gathered}
$$

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{\text { Type IIB on an 5-sphere }} \begin{gathered}
\text { Controls 5-sphere radius } \\
\text { Controls string coupling }
\end{gathered}
$$

KK tower

$$
\frac{M_{K K}}{M_{P l}} \sim e^{-\sqrt{\frac{8}{15}} \hat{R}}
$$

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{-g}\left(R-(\partial \hat{\Phi})^{2}-(\partial \hat{R})^{2}-V(\hat{\Phi}, \hat{R})\right)
$$

KK tower

$$
\frac{M_{K K}}{M_{P l}} \sim e^{-\sqrt{\frac{8}{15}} \hat{R}}
$$

String tower

$$
\frac{M_{s}}{M_{P l}} \sim e^{-\frac{1}{2 \sqrt{2}} \hat{\Phi}-\sqrt{\frac{5}{24}} \hat{R}}
$$

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{-g}\left(R-(\partial \hat{\Phi})^{2}-(\partial \hat{R})^{2}-V(\hat{\Phi}, \hat{R})\right)
$$

Controls 5 -sphere radius

$$
\begin{gathered}
\text { String tower } \\
\frac{M_{S}}{M_{P l}} \sim e^{-\frac{1}{2 \sqrt{2}} \hat{\Phi}-\sqrt{\frac{5}{24}} \hat{R}}
\end{gathered}
$$

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{\text { Type IIB on an 5-sphere }}\left(R-(\partial \hat{\Phi})^{2}-(\partial \hat{R})^{2}-V(\hat{\Phi}, \hat{R})\right)
$$

Controls string coupling

Convex Hull SDC

[JCI, Uranga, Valenzuela '20]

Sharpened SDC
[Etheredge, Heidenreich,
Kaya, Qiu, Rudelius '22]
Violated!?

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{\text { Type IIB on an 5-sphere }}\left(R-(\partial \hat{\Phi})^{2}-(\partial \widehat{R})^{2}-V(\hat{\Phi}, \hat{R})\right)
$$

Controls string coupling
KK tower
$\frac{M_{K K}}{M_{P l}} \sim e^{-\sqrt{\frac{8}{15}} \hat{R}}$

Convex Hull SDC

[JCI, Uranga, Valenzuela '20]

Sharpened SDC
[Etheredge, Heidenreich,
Kaya, Qiu, Rudelius '22]
Violated!?

AdS $_{5} \times \mathbf{S}^{5}$ moduli space

$$
\alpha=\frac{1}{2 \sqrt{2}} \neq \frac{1}{\sqrt{2}}(\operatorname{fix} \hat{R})
$$

CFT value not reproduced!

Convex Hull for AdS5xS5

$$
S=\frac{M_{P l}^{3}}{2} \int d^{5} x \sqrt{\text { Type IIB on an 5-sphere }} \text { Controls 5-sp }
$$

Controls string coupling

Convex Hull SDC

[JCI, Uranga, Valenzuela '20]

Sharpened SDC
[Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] Violated!?

String tower

$$
\frac{M_{s}}{M_{P l}} \sim e^{-\frac{1}{2 \sqrt{2}} \hat{\Phi}-\sqrt{\frac{5}{24}} \hat{R}}
$$

AdS ${ }_{5} \times \mathbf{S}^{5}$ moduli space

$$
\alpha=\frac{1}{2 \sqrt{2}} \neq \frac{1}{\sqrt{2}}(\text { fix } \hat{R})
$$

CFT value not reproduced!

Convex Hull for N=4 SYM

$\mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ gauge theory in 4 d

Convex Hull for N=4 SYM

$$
\mathcal{N}=4 \mathrm{SU}(\mathrm{~N}) \text { gauge theory in } 4 \mathrm{~d}
$$

KK tower \leftrightarrow BPS operators

Convex Hull for N=4 SYM

$\mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ gauge theory in 4 d

KK tower \leftrightarrow BPS operators
$\frac{M_{B S S}}{M_{P l}} \sim \frac{\mathcal{O}(1)}{R_{A d S} M_{P l}} \sim N^{-2 / 3} \int_{\substack{\text { Supergravity } \\ \text { input! }}}^{\sim}$

String tower \leftrightarrow HS conserved currents

$$
\begin{gathered}
\gamma_{H S} \sim \lambda=g_{Y M}^{2} N \text { (valid for } \lambda \ll 1 \text {) } \\
\frac{M_{s}}{M_{P l}} \sim \frac{\sqrt{\gamma_{H S}}}{R_{A d S} M_{P l}} \sim N^{-1 / 6} g_{Y M} \sim e^{-\frac{1}{\sqrt{2}} \hat{\Phi}-\frac{1}{\sqrt{30}} \hat{R}} \\
\begin{array}{c}
\text { Supergravity } \\
\text { input! }
\end{array}
\end{gathered}
$$

Convex Hull for N=4 SYM

$$
\mathcal{N}=4 \mathrm{SU}(\mathrm{~N}) \text { gauge theory in } 4 \mathrm{~d}
$$

KK tower \leftrightarrow BPS operators

$\frac{M_{K K}}{M_{P l}} \sim \frac{\mathcal{O}(1)}{R_{A d S} M_{P l}} \sim N^{-2 / 3} \sim e^{-\sqrt{\frac{8}{15}} \hat{R}}$ input!

String tower \leftrightarrow HS conserved currents

$$
\begin{gathered}
\left.\gamma_{H S} \sim \lambda=g_{Y M}^{2} N \text { (valid for } \lambda \ll 1\right) \\
\frac{M_{s}}{M_{P l}} \sim \frac{\sqrt{\gamma_{H S}}}{R_{A d S} M_{P l}} \sim N^{-1 / 6} g_{Y M} \sim e^{-\frac{1}{\sqrt{2}} \hat{\Phi}-\frac{1}{\sqrt{30}} \hat{R}} \\
\begin{array}{c}
\text { Supergravity } \\
\text { input! }
\end{array}
\end{gathered}
$$

Problem:

No CFT distance in the N -direction :(
Need supergravity input!

$$
N \sim e^{\frac{\sqrt{30}}{5}} \hat{R}
$$

Convex Hulls Comparison

Convex Hulls Comparison

Convex Hulls Comparison

Notice:

Convex hulls for AdS and CFT glue nicely together!
(see later)

Convex Hulls Comparison

Notice:

Convex hulls for AdS and CFT glue nicely together! (see later)

Summary

A Detour: Scale Separation vs Sharpened SDC

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators Relax condition
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

$$
\text { BPD } \quad \text { K } A d S
$$

$\frac{M_{K K} \sim R_{A d S}^{-2 \beta}}{\square \text { Weird } S^{5} \text { stabilization }}$

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition
$\sim \begin{gathered}\frac{M_{K K} \sim R_{A d S}^{-2 \beta}}{\searrow \text { Weird } S^{5} \text { stabilization }} 4 \Delta_{B P S} \sim N^{\frac{2}{3}(1-2 \beta)} \text { Weird BPS } \\ \text { spectrum }\end{gathered}$

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition
$\simeq \frac{M_{K K} \sim R_{A d S}^{-2 \beta}}{\text { Weird }^{5} S^{5} \text { stabilization }}$

Long story short

Anti-separation of scales: $\beta>1 / 2 \rightarrow M_{K K} \ll R_{\text {AdS }}^{-1}$

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition
$\sim M_{K K} \sim R_{A d S}^{-2 \beta} \longleftrightarrow \Delta_{B P S} \sim N^{\frac{2}{3}(1-2 \beta)} \begin{aligned} & \text { Weird BPS } \\ & \text { spectrum }\end{aligned}$

Long story short

Anti-separation of scales: $\beta>1 / 2 \rightarrow M_{K K} \ll R_{A d S}^{-1}$

Notice:

Convex hulls for AdS and CFT do not glue nicely together!

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition
$\simeq \begin{gathered}\frac{M_{K K} \sim R_{A d S}^{-2 \beta}}{\searrow \text { Weird } S^{5} \text { stabilization }} 4 \Delta_{B P S} \sim N^{\frac{2}{3}(1-2 \beta)} \begin{array}{l}\text { Weird BPS } \\ \text { spectrum }\end{array}\end{gathered}$

Long story short

Anti-separation of scales: $\beta>1 / 2 \rightarrow M_{K K} \ll R_{A d S}^{-1}$

Convex hulls for AdS and CFT do not glue nicely together!

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators Relax condition
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Long story short

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition

$$
\begin{array}{l}M_{K K} \sim R_{A d S}^{-2 \beta}\end{array} \Delta_{B P S} \sim N^{\frac{2}{3}(1-2 \beta)} \begin{array}{l}\text { Weird BPS } \\ \text { spectrum }\end{array}
$$

Long story short
Separation of scales: $\beta<1 / 2 \rightarrow M_{K K} \gg R_{A d S}^{-1}$
\hat{R}

Notice:

Convex hulls for AdS and CFT do not glue nicely together!

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition

Separation of scales: $\beta<1 / 2 \rightarrow M_{K K} \gg R_{A d S}^{-1}$

Sharpened SDC violation in the AdS -

Convex hulls for AdS and CFT do not glue nicely together!

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition

Separation of scales: $\beta<1 / 2 \rightarrow M_{K K} \gg R_{A d S}^{-1}$

Sharpened SDC violation in the AdS -

Convex hulls for AdS and CFT do not glue nicely together!

Caveat:

$$
R_{A d S}^{-1} \ll M_{s} \ll R_{S^{5}}^{-1}
$$ Can we trust quantization of the string in this regime?

A Detour: Scale Separation vs Sharpened SDC

KK tower \leftrightarrow BPS operators
$\Delta_{B P S} \sim \mathcal{O}(1) \longleftrightarrow M_{K K} \sim R_{A d S}^{-1}$
No scale separation from the CFT!

Relax condition

Separation of scales: $\beta<1 / 2 \rightarrow M_{K K} \gg R_{A d S}^{-1}$

Notice:

Convex hulls for AdS and CFT do not glue nicely together!

Link between

Sharpened SDC and no scale separation

Sharpened SDC violation in the AdS -
't Hooft limit (fixed λ)

Caveat:

$$
R_{A d S}^{-1} \ll M_{s} \ll R_{S^{5}}^{-1}
$$ Can we trust quantization of the string in this regime?

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \mathrm{SYM} ?
$$

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \mathrm{SYM} ?
$$

Reason 1:

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \mathrm{SYM} ?
$$

Reason 1:

$$
\underset{\text { nergent string }}{\text { Flat space }}: \frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \sim M_{K K} \quad \text { Here: } \frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \ll M_{K K} \sim O(1)
$$

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \text { SYM ? }
$$

Reason 1:
$\underset{\text { emergent string }}{\text { Flat space }}: \frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \sim M_{K K} \quad$ Here: $\frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \ll M_{K K} \sim O(1)$

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \text { SYM ? }
$$

Reason 1:
$\begin{array}{r}\text { Flat space } \\ \text { emergent string }\end{array}: \frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \sim M_{K K} \quad$ Here: $\frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \ll M_{K K} \sim O(1)$

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \mathrm{SYM} ?
$$

Reason 1:
$\underset{\text { emergent string }}{\text { Flat space }}: \frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \sim M_{K K} \quad$ Here: $\frac{M_{s}}{M_{P l}} \rightarrow 0+M_{s} \ll M_{K K} \sim O(1)$

Why $\alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}}$ in $\mathcal{N}=4$ SYM ?
Reason 2:
$M_{s} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \text { SYM ? }
$$

Reason 2:

$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \text { SYM ? }
$$

Reason 2:

$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

1. Moduli space metric for g_{s}

Recap

$$
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathcal{N}=4 \text { SYM ? }
$$

Reason 2:
$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

1. Moduli space metric for g_{s}
2. String excitation modes with g_{s} K

Recap

$$
\begin{gathered}
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathscr{N}=4 \mathrm{SYM} ? \\
\text { Reason 2: }
\end{gathered}
$$

$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

1. Moduli space metric for $g_{s} \ \quad$ 2. String excitation modes with g_{s} K

Weakly curved: $M_{s} \sim \sqrt{T_{s}} \sim M_{P l} g_{s}^{1 / 4}$

Recap

$$
\begin{gathered}
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathscr{N}=4 \mathrm{SYM} ? \\
\text { Reason 2: }
\end{gathered}
$$

$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

1. Moduli space metric for $g_{s} \ \quad$ 2. String excitation modes with g_{s} K

Weakly curved: $M_{s} \sim \sqrt{T_{s}} \sim M_{P l} g_{s}^{1 / 4}$
CFT: $M_{s} \sim M_{P l} g_{s}^{1 / 2}$

Recap

$$
\begin{gathered}
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathscr{N}=4 \text { SYM } ? \\
\text { Reason 2: }
\end{gathered}
$$

$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

1. Moduli space metric for g_{s} \qquad 2. String excitation modes with g_{s} K

Weakly curved: $M_{s} \sim \sqrt{T_{s}} \sim M_{P l} g_{s}^{1 / 4}$
CFT: $M_{s} \sim M_{P l} g_{s}^{1 / 2}$
$-\left\{M_{s} \sim T_{s} R_{A d S}\right\}$
CFT prediction for part of string spectrum in highly-curved AdS !

Recap

$$
\begin{gathered}
\text { Why } \alpha=\frac{1}{\sqrt{2}} \neq \frac{1}{\sqrt{3}} \text { in } \mathscr{N}=4 \text { SYM } ? \\
\text { Reason 2: }
\end{gathered}
$$

$M_{S} \ll R_{A d S}^{-1} \rightarrow$ Weakly curved approximation breaks down!
What goes wrong when computing α ?

1. Moduli space metric for g_{s}
2. String excitation modes with $g_{s} \$

Weakly curved: $M_{s} \sim \sqrt{T_{s}} \sim M_{P l} g_{s}^{1 / 4}$
CFT: $M_{s} \sim M_{P l} g_{s}^{1 / 2}$
$\Rightarrow\left[M_{s} \sim T_{s} R_{A d S}\right] \quad$ Universal? $\begin{aligned} & \text { Food for } \\ & \text { thought! }\end{aligned}$
CFT prediction for part of string spectrum in highly-curved AdS !

What about the others?

Recap: 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}

$$
\alpha=\left\{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}\left(\frac{1}{\sqrt{2}}\right)\right\} \begin{aligned}
& \text { [Perlmutter, Rastelli, Vafa, Valenzuela '20] } \\
& \\
& \text { E.g. } \mathcal{N}=4 \mathrm{SYM} \longrightarrow \text { Type IIB on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}
\end{aligned}
$$

What about the others?

Recap: 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}

$$
\alpha=\left\{\begin{array}{l}
\left\{\frac{\left.\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}\left(\frac{1}{\sqrt{2}}\right)\right\}}{?} \text { E.g. } \mathcal{N}=4 \text { SYM } \longrightarrow \text { Typerlmutter, Rastelli, Vafa, Valenzuela '20] on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}\right. \text { Typ }
\end{array}\right.
$$

New strings? Or same string, weirder background?

What about the others?

Recap: 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}

$$
\alpha=\left\{\begin{array}{l}
\left\{\frac{\left.\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}\left(\frac{1}{\sqrt{2}}\right)\right\}}{?} \text { E.g. } \mathcal{N}=4 \text { SYM } \longrightarrow \text { Typerlmutter, Rastelli, Vafa, Valenzuela '20] on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}\right. \text { Typ }
\end{array}\right.
$$

New strings? Or same string, weirder background?

Problem: How to detect a string from the CFT?

What about the others?

Recap: 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}

$$
\begin{gathered}
\alpha=\left\{\frac{\left.\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}\left(\frac{1}{\sqrt{2}}\right)\right\}}{?} \text { E.g. } \mathcal{N}=4 \mathrm{SYM} \longrightarrow{\text { Type IIB on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}}_{\text {[Perlmutter, Rastelli, Vafa, Valenzuela '20] }}\right.
\end{gathered}
$$

New strings? Or same string, weirder background?

Problem: How to detect a string from the CFT?
Instead, look for physical properties that are controlled only by α !

What about the others?

Recap: 4d SCFTs with simple gauge group (Lagrangian) admitting large \mathbf{N}

$$
\begin{gathered}
\alpha=\left\{\frac{\left.\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}\left(\frac{1}{\sqrt{2}}\right)\right\}}{?} \text { E.g. } \mathcal{N}=4 \mathrm{SYM} \longrightarrow{\text { Type IIB on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}}_{\text {[Perlmutter, Rastelli, Vafa, Valenzuela '20] }}\right.
\end{gathered}
$$

New strings? Or same string, weirder background?

Problem: How to detect a string from the CFT?
Instead, look for physical properties that are controlled only by α !

1. Ratio between a and c central charges

What about the others?

Recap: 4d SCFTs with simple gauge group (Lagrangian) admitting large N

$$
\alpha=\left\{\begin{array}{l}
\left\{\frac{\sqrt{\frac{2}{3}}, \sqrt{\frac{7}{12}}}{?}\left(\frac{1}{\sqrt{2}}\right)\right\} \text { [Perlmutter, Rastelli, Vafa, Valenzuela '20] } \\
? \text { E.g. } \mathcal{N}=4 \text { SYM } \longrightarrow \text { Type IIB on } \mathrm{AdS}_{5} \times \mathrm{S}^{5}
\end{array}\right.
$$

New strings? Or same string, weirder background?

Problem: How to detect a string from the CFT?
Instead, look for physical properties that are controlled only by α !

1. Ratio between a and c central charges
2. Hagedorn temperature at large N

CFT Distances vs Einstein Gravity

$$
\alpha=\sqrt{\frac{2 c}{\operatorname{dim} G}}
$$

CFT Distances vs Einstein Gravity

$$
\alpha=\sqrt{\frac{2 c}{\operatorname{dim} G}} \quad \xrightarrow{\operatorname{dim} G=f(a, c)} \alpha=\frac{1}{\sqrt{4 \frac{a}{c}-2}}
$$

CFT Distances vs Einstein Gravity

$$
\begin{aligned}
& \alpha=\sqrt{\frac{2 c}{\operatorname{dim} G}} \quad \xrightarrow{\operatorname{dim} G=f(a, c)} \alpha=\frac{1}{\sqrt{4 \frac{a}{c}-2}} \\
& \longrightarrow \int \frac{a}{c}=\frac{1}{2}+\frac{1}{4 \alpha^{2}} \quad \begin{array}{l}
\text { Depends } \\
\text { on } \alpha \text { only }!
\end{array}
\end{aligned}
$$

CFT Distances vs Einstein Gravity

$$
\alpha=\sqrt{\frac{2 c}{\operatorname{dim} G}} \quad \xrightarrow{\operatorname{dim} G=f(a, c)} \alpha=\frac{1}{\sqrt{4 \frac{a}{c}-2}}
$$

$$
\rightarrow \int \frac{a}{c}=\frac{1}{2}+\frac{1}{4 \alpha^{2}} \int \begin{aligned}
& \text { Depends } \text { on } \alpha \text { only }!~
\end{aligned}
$$

Physical meaning? Relevant for various aspects of low energy EFT!

CFT Distances vs Einstein Gravity

$$
\alpha=\sqrt{\frac{2 c}{\operatorname{dim} G}} \quad \xrightarrow{\operatorname{dim} G=f(a, c)} \alpha=\frac{1}{\sqrt{4 \frac{a}{c}-2}}
$$

$$
\rightarrow \int \frac{a}{c}=\frac{1}{2}+\frac{1}{4 \alpha^{2}} \int \begin{aligned}
& \text { Depends } \\
& \text { on } \alpha \text { only }
\end{aligned}
$$

Physical meaning? Relevant for various aspects of low energy EFT!
[Henningson, Skenderis '98]
Most notably: $a \neq c$ (at large N) \leftrightarrow No weakly-coupled Einstein gravity at low energies

CFT Distances vs Einstein Gravity

$$
\begin{aligned}
& \alpha=\sqrt{\frac{2 c}{\operatorname{dim} G}} \quad \xrightarrow{\operatorname{dim} G=f(a, c)} \alpha=\frac{1}{\sqrt{4 \frac{a}{c}-2}} \\
& \rightarrow \frac{a}{c}=\frac{1}{2}+\frac{1}{4 \alpha^{2}} \int \begin{array}{l}
\text { Depends } \\
\text { on } \alpha \text { only }
\end{array} \\
& \text { Physical meaning? Relevant for various aspects of low energy EFT! }
\end{aligned}
$$

[Henningson, Skenderis '98]
Most notably: $a \neq c$ (at large N) \leftrightarrow No weakly-coupled Einstein gravity at low energies
\rightarrow Only theories with $\alpha=\frac{1}{\sqrt{2}}$ have Einstein gravity duals !

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α !

- \# chiral multiplets

$$
4 \mathrm{~d} \mathcal{N}=1 \mathrm{SU}(\mathrm{~N}) \text { gauge theory } \longrightarrow 7 \text { parameters: }\left\{n_{A d}, n_{F}, n_{\bar{F}}, n_{A}, n_{\bar{A}}, n_{S}, n_{\bar{S}}\right\}
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α !
\# chiral multiplets $4 \mathrm{~d}: \mathcal{N}=1 \mathrm{SU}(\mathrm{N})$ gauge theory $\longrightarrow 7$ parameters: $\left\{n_{\text {Ad }}, n_{F}, n_{\bar{F}}, n_{A}, n_{\bar{A}}, n_{S}, n_{\bar{S}}\right\}$

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{A d}+\frac{1}{2}\left(n_{S}+n_{\bar{S}}+n_{A}+n_{\bar{A}}\right)\right\} z_{\Phi}\left(T_{H}\right)=1$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α !
\# chiral multiplets $4 \mathrm{~d} \mathscr{N}=1 \mathrm{SU}(\mathrm{N})$ gauge theory $\longrightarrow 7$ parameters: $\left\{n_{\text {Ad }}, n_{F}, n_{\bar{F}}, n_{A}, n_{\bar{A}}, n_{S}, n_{\bar{S}}\right\}$

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{A d}+\frac{1}{2}\left(n_{S}+n_{\bar{S}}+n_{A}+n_{\bar{A}}\right)\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector } \quad \quad \text { Nice... But not enough! } \bigcup_{\mathcal{N}=1 \text { chirals }}
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α !

- \# chiral multiplets

4d $\mathcal{N}=1 \mathrm{SU}(\mathrm{N})$ gauge theory $\longrightarrow 7$ parameters: $\left\{n_{\text {Ad }}, n_{F}, n_{\bar{F}}, n_{A}, n_{\bar{A}}, n_{S}, n_{\bar{S}}\right\}$
Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{A d}+\frac{1}{2}\left(n_{S}+n_{\bar{S}}+n_{A}+n_{\bar{A}}\right)\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector } \quad \begin{aligned}
& \text { Nice... But not enough! }
\end{aligned} \bigcup_{\mathcal{N}=1 \text { chirals }}
$$

Anomaly cancellation $+\beta_{1-\text { loop }}=0:\{\cdots\}=3-n_{F}$ Only 1 parameter!

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$

- \# chiral multiplets

4d $\mathcal{N}=1 \mathrm{SU}(\mathrm{N})$ gauge theory $\longrightarrow 7$ parameters: $\left\{n_{A d}, n_{F}, n_{\bar{F}}, n_{A}, n_{\bar{A}}, n_{S}, n_{\bar{S}}\right\}$
Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{A d}+\frac{1}{2}\left(n_{S}+n_{\bar{S}}+n_{A}+n_{\bar{A}}\right)\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector } \xlongequal{\text { Nice... But not enough }!~} \bigcup_{\mathcal{N}}=1 \text { chirals }
$$

Anomaly cancellation $+\beta_{1-\text { loop }}=0:\{\cdots\}=3-n_{F}$ Only 1 parameter!
$n_{F}(\alpha) \longrightarrow$ Hagedorn condition: $\left\{z_{V}\left(T_{H}\right)+3\left(3-4 \alpha^{2}\right) z_{\Phi}\left(T_{H}\right)=1\right.$ Only depends on α !

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$

- \# chiral multiplets

4d $\mathcal{N}=1 \mathrm{SU}(\mathrm{N})$ gauge theory $\longrightarrow 7$ parameters: $\left\{n_{A d}, n_{F}, n_{\bar{F}}, n_{A}, n_{\bar{A}}, n_{S}, n_{\bar{S}}\right\}$
Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{A d}+\frac{1}{2}\left(n_{S}+n_{\bar{S}}+n_{A}+n_{\bar{A}}\right)\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector } \xlongequal{\text { Nice... But not enough }!~} \bigcup_{\mathcal{N}}=1 \text { chirals }
$$

Anomaly cancellation $+\beta_{1-\text { loop }}=0:\{\cdots\}=3-n_{F}$ Only 1 parameter!
\rightarrow Hagedorn condition: $\left\{z_{n_{F}(\alpha)}\left(T_{H}\right)+3\left(3-4 \alpha^{2}\right) z_{\Phi}\left(T_{H}\right)=1\right.$ Only depends on α !

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$
— \# chiral multiplets

$$
4 \mathrm{~d} \mathscr{N}=1 \mathrm{USp}(2 \mathrm{~N}) / \mathrm{SO}(2 \mathrm{~N}) \text { gauge theory } \longrightarrow 3 \text { parameters: }\left\{n_{F}, n_{A}, n_{S}\right\}
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$
\# chiral multiplets

$$
4 \mathrm{~d} \mathscr{N}=1 \mathrm{USp}(2 \mathrm{~N}) / \mathrm{SO}(2 \mathrm{~N}) \text { gauge theory } \longrightarrow 3 \text { parameters: }\left\{n_{F}, n_{A}, n_{S}\right\}
$$

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{S}+n_{A}\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector }
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$
\# chiral multiplets

$$
4 \mathrm{~d} \mathscr{N}=1 \mathrm{USp}(2 \mathrm{~N}) / \mathrm{SO}(2 \mathrm{~N}) \text { gauge theory } \longrightarrow 3 \text { parameters: }\left\{n_{F}, n_{A}, n_{S}\right\}
$$

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{S}+n_{A}\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\text { (} \beta_{1-\text { loop }}=0:\{\cdots\}=f\left(n_{F}\right) \quad \text { Only } 1 \text { parameter! }
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α !

- \# chiral multiplets 4d $\mathcal{N}=1 \mathrm{USp}(2 \mathrm{~N}) / \mathrm{SO}(2 \mathrm{~N})$ gauge theory $\longrightarrow 3$ parameters: $\left\{n_{F}, n_{A}, n_{S}\right\}$

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{S}+n_{A}\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector }
$$

$$
\oplus \beta_{1-\text { loop }}=0:\{\cdots\}=f\left(n_{F}\right) \quad \text { Only } 1 \text { parameter! }
$$

$n_{F}(\alpha) \longrightarrow$ Hagedorn condition: $\left\{z_{V}\left(T_{H}\right)+3\left(3-4 \alpha^{2}\right) z_{\Phi}\left(T_{H}\right)=1\right]$ Only depends on α !

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α !

- \# chiral multiplets

$$
4 \mathrm{~d} \mathscr{N}=1 \mathrm{USp}(2 \mathrm{~N}) / \mathrm{SO}(2 \mathrm{~N}) \text { gauge theory } \longrightarrow 3 \text { parameters: }\left\{n_{F}, n_{A}, n_{S}\right\}
$$

Long story short... $Z(T) \rightarrow \infty \leftrightarrow$ Hagedorn condition: $z_{V}\left(T_{H}\right)+\left\{n_{S}+n_{A}\right\} z_{\Phi}\left(T_{H}\right)=1$

$$
\mathcal{N}=1 \text { vector }
$$

$$
\left(+\beta_{1-\text { loop }}=0:\{\cdots\}=f\left(n_{F}\right) \quad \text { Only } 1\right. \text { parameter! }
$$

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α ! Confirmed

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α ! Confirmed

Caveat: Trouble with large numbers of flavors at large N

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on α ! Confirmed

Caveat: Trouble with large numbers of flavors at large N
[Gadde, Pomoni, Rastelli '09] \rightarrow Restrict to flavor singlets!

CFT Distances vs Hagedorn Temperature

$$
Z(T)=\sum_{\text {states }} e^{-E / T}=\int \rho(E) e^{-E / T} d E \xrightarrow{T \rightarrow T_{H}} \infty \longleftrightarrow \rho(E) \sim e^{E / T_{H}} \text { Stringy! }
$$

Hagedorn temperature: $T_{H} \longrightarrow$ Controls exponential density of states at high energies!
\rightarrow Expectation: Hagedorn temperature should only depend on $\alpha!$ Confirmed

Caveat: Trouble with large numbers of flavors at large N
[Gadde, Pomoni, Rastelli '09] \rightarrow Restrict to flavor singlets!

Preliminary result!

Hagedorn condition: $\left\{z_{V}\left(T_{H}\right)+3\left(3-4 \alpha^{2}\right) z_{\Phi}\left(T_{H}\right)+\frac{1}{2} z_{\Phi}^{2}=1\right\}$ Still works

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance
But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance
But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]
Stringy origin?
Fundamental string remains tensionful...

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance
But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]
Stringy origin?
Fundamental string remains tensionful...
D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance
But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]
Stringy origin?
Fundamental string remains tensionful...
D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]
String propagating in $\mathrm{AdS}_{5} \times \mathrm{S}^{1}$!

Bonus Track: A New AdS String from Top-down?

Setup: $\mathrm{AdS}_{5} \times \mathrm{S}^{5} / \mathrm{Z}_{k} \leftrightarrow \mathcal{N}=2$ necklace quivers

A very peculiar limit:

Driven by only axions \rightarrow Typically finite distance
But! CFT predicts infinite distance + HS conserved currents [Aharony, Berkooz, Rey '15]
Stringy origin?
Fundamental string remains tensionful...
D3 wrapping blow-up 2-cycle become tensionless! [Aharony, Berkooz, Rey '15]
String propagating in $\mathrm{AdS}_{5} \times \mathrm{S}^{1}$! Candidate for new emergent string in AdS ? [Baume, $\mathrm{JCl}^{\prime} 20$]

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT !

CFT side

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

CFT side

Prove rest of CFT Distance Conjecture?

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

CFT side

Prove rest of CFT Distance Conjecture?
Distance in N-direction?

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

CFT side

Stringy side

Prove rest of CFT Distance Conjecture?
Distance in N-direction?

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

CFT side

Prove rest of CFT Distance Conjecture?
Distance in N-direction?

Stringy side

New strings in AdS ?

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

CFT side

Prove rest of CFT Distance Conjecture?
Distance in N-direction?

Stringy side

New strings in AdS ?
Building them: D3 wrapping blow-ups in AdS?

Conclusions and More Questions

There is much to learn about/from the Distance Conjecture in AdS/CFT!

CFT side

Prove rest of CFT Distance Conjecture?
Distance in N-direction?

Stringy side

New strings in AdS ?

Building them: D3 wrapping blow-ups in AdS?

Thank you for your attention!

[^0]: + Bottom-up motivations
 [Hamada, Montero, Vafa, Valenzuela '21] [Stout '21+'22]
 [JCI, Castellano, Herráez, Ibáñez '23]

