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Motivation

•Moduli Stabilization remains a major obstacle to string model building.  

•Swampland criteria provide concrete characterizations of the obstacles.  

•In this work, we will not build models viable for phenomenology. 

•Expanding the String Landscape is an interesting problem in its own right. 
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Motivation
• GKP described stabilization of complex structure moduli in type IIB 

compactifications. 

• Potential issues were noticed in explicit constructions.           

Tadpole Conjecture  (Type IIB) -  The number of moduli 
stabilized by fluxes is constrained by, 

                                                                                      Nflux > 1
3 nstab

Becker, Bena, Blåbäck, Brodie, Coudarchet, Gonzalo, Gra a, Grimm, van de Heisteeg, Herraez, 
Lüst, Marchesano, Monnee, Plauschinn, Prieto, Tsagkaris, Walcher, Wiesner, Wrase …

ñ

[Bena, Blåbäck, Graña, Lüst ’20]

[Giddings, Kachru, Polchinski ’01]

[Braun, Valandro ’20]
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Review of Non-Geometric LG Models 
• DGKT showed that it is possible to stabilize all moduli in type IIA 

compactified on a rigid Calabi-Yau ( ).                             

•   Motivated by these results in type IIA, BBVW constructed the mirror dual       
in type IIB.                                                                                                       

•  The mirror manifold admits no geometric interpretation, but there exists a 
LG description.                                                                                                  

• This provides a way out of the problem of volume stabilization in type IIB!

h2,1 = 0 [De Wolfe, Giryvayets, Kachru, Taylor ’05]

[Becker, Becker, Vafa, Walcher ’06]

[Vafa ’89, Witten ’93, Hori, Iqbal, Vafa ’00]
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Review of Non-Geometric LG Models
• A 2d  theory as shown below admits a Landau-Ginzburg description, 

                                 

• Under RG flow, the theory flows to an IR fixed point.  

• For a superpotential given by , the CFT at the fixed point has a central 
charge of,  

𝒩 = (2,2)

S = ∫ d2zd4θ𝒦{xi, x̄i} + ∫ d2zd2θ𝒲(xi) + c . c

𝒲 = xk+2

c =
3k

k + 2
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Review of Non-Geometric LG Models
• For the  model we have  chiral fields with the following world sheet superpotential, 

                                                                       

                                                                      

• The rings formed by the chiral and anti-chiral fields correspond to the Ramond ground 
states by spectral flow.  

                                                                     

19 9

𝒲({xi}) =
9

∑
i=1

x3
i

g : xi ↦ ω xi , ω = e
2πi
3

(c, c) ring ↦ ℛ = [ ℂ[x1, …, x9]
∂xi

𝒲(x1, …, x9) ]
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• The above ring is spanned by,        

                                                                       

    with  such that . 

• The monomials of the kind  form a basis of the allowed 
marginal deformations of the superpotential. 

(c, c) ring ↦ ℛ = [ ℂ[x1, …, x9]
∂xi

𝒲(x1, …, x9) ]

xk = xk1
1 ⋅ xk2

2 ⋯xk9
9

k = (k1, …, k9) ki ∈ {0,1} and ∑
i

ki = 0 mod 3

xixjxk with i ≠ j ≠ k ≠ i
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There are 84 complex structure moduli arising from the (c, c) ring

There are 0 Kähler moduli arising from the (a, c) ring



Review of Non-Geometric LG Models
• The cycles wrapped by fluxes and orientifolds are represented by A-branes         

and B-branes respectively.      

• For concreteness let us look at the single variable building block of the  model, 

                                                                     

•The A-branes of this model are the contours in the complex-  plane given by 
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Review of Non-Geometric LG Models
• The cycles wrapped by fluxes and orientifolds are represented by A-branes         

and B-branes respectively.      

• For concreteness let us look at the single variable building block of the  model, 

                                                                     

•The A-branes of this model are the contours in the complex-  plane given by 
 

      

19

𝒲 = x3, g : x e
2πi
3 x

x
Im(𝒲) = 0

V0 + V1 + V2 = 0
[Hori, Iqbal, Vafa ’00]
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• When the worldsheet superpotential is deformed as,   

                 

              

                                   

𝒲 = x3 x3 − t x

( ∂
∂t )r

t=0

⟨Vn | l⟩ = ∫Vn

xr+l−1e−x3dx =
1
3

Γ ( r + l
3 )(1 − ωr+l)ω(r+l)n
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l

AlΩl

G3 = ∑
n

(Nn − τMn)γn



Review of Non-Geometric LG Models
• The  model has  and .  

• We would like to study orientifolds of these models. In particular, we will 
restrict to, 

                                       

      which has an orientifold charge of 12 that has to be cancelled by fluxes.     

                                                        

19/ℤ3 h(2,1) = 84 h(1,1) = 0
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[Becker, Becker, Vafa Walcher ’06]



Review of Non-Geometric LG Models
• The  model has  and .  

• We would like to study orientifolds of these models. In particular, we will 
restrict to, 

                                       

      which has an orientifold charge of 12 that has to be cancelled by fluxes.     

                                                        

19/ℤ3 h(2,1) = 84 h(1,1) = 0

σ : (x1, x2 . . . , x9) − (x2, x1 . . . , x9)
[Becker, Becker, Vafa Walcher ’06]



Review of Non-Geometric LG Models
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restrict to, 

                                       

      which has an orientifold charge of 12 that has to be cancelled by fluxes.     

                                                          

19/ℤ3 h(2,1) = 84 h(1,1) = 0

σ : (x1, x2 . . . , x9) − (x2, x1 . . . , x9)

h(2,1) = 63 h(1,1) = 0

[Becker, Becker, Vafa Walcher ’06]
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• GVW superpotential exists in these LG orbifold models as well.  

                                                                                           

• The superpotential is in fact exact!                                                           

                                

WGVW = ∫M
G3 ∧ Ω

1
τ − τ̄ ∫ G3 ∧ Ḡ3 = ∫ F3 ∧ H3 = 12 − ND3

[Becker, Becker, Vafa Walcher ’06]

[Gukov, Vafa, Witten ’99]
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• Solving the SUSY equations,        ISD fluxes 

                                                                     

• SUSY equations do not require ISD fluxes unlike in GKP.       

• For SUSY Minkowski solutions GKP and BBVW are almost identical. 

KGKP = KCS − 3log[ − (T − T̄)] − log[ − (τ − τ̄)]

DτW = DiW = 0 ⟹

KBBVW = KCS − 4log[ − (τ − τ̄)]
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Moduli Stabilization and the Swampland
• Finding SUSY Minkowski vacua -  

1. Pick fluxes     

2. Ensure flux quantization and tadpole cancellation 

• They generically have massless directions (maximal mass matrix rank of 26).                                                                                                                                                                   

                                                                                                                            

•  A vast classification of these possible flux choices was pursed recently.      

•  The fluxes are classified in terms of the number of ’s “turned on”.                     

Ωl1,l2...l9 ∈ H(2,1) (∑
i

li = 12)

Ω

[Becker, Gonzalo, Walcher, Wrase ’22]

[Becker, Brady, Sengupta ’23]
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• This function clearly has one flat direction along . 

• Let us apply our algorithm for stabilizing moduli order by order to this function, 

• At quadratic order in the fields, . Solving the critical point equations 
gives us one non-trivial constraint , 

                                                               

W =
1
2

(ϕ − ψ2)2

ϕ = ψ2

W2 =
1
2

ϕ2

∂ϕW2 = ϕ = 0
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• We would like to expand the superpotential around the critical points, 

                                       

      are the deformations around the critical point. 

• To determine the stabilized fields we solve the set of polynomial constraints arising from 
 for  order by order. 

• The linear constraints from the quadratic terms fix the massive fields.  

• The subsequent non-trivial constraints from the higher order terms can potentially fix the 
massless fields. 

Wexpand =
1
2!

∂i∂jW (titj) +
1
3!

∂i∂j∂kW (titjtk) + . . .

ti , i = 1,2...,64

∂aW = 0 a = 1,2...,64
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( ∂
∂t )r

t=0

⟨Vn | l⟩ = ∫Vn

xr+l−1e−x3dx =
1
3

Γ ( r + l
3 )(1 − ωr+l)ω(r+l)n
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∂

∂tk1

∂
∂tk2

…
∂

∂tkr ∫ Ωl ∧ Ω
tk=0

= δl+L
1
39

9

∏
i=1

(1 − ωLi)Γ( Li

3 ) .

( ∂
∂t )r

t=0

⟨Vn | l⟩ = ∫Vn

xr+l−1e−x3dx =
1
3

Γ ( r + l
3 )(1 − ωr+l)ω(r+l)n

L =
r

∑
α=1

kα + 1where,
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Moduli Stabilization and the Swampland

• The  orientifold with tadpole charge 40 could give a way out.  

• This model has 91 moduli including the axio-dilation.  

• The tadpole conjecture does not imply that all 91 moduli cannot be 
stabilized ( ). 

• For example, we find solutions with mass matrix rank of 84 (out of 91) 
moduli.

26/ℤ4

40 × 3 = 120 > 91
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Summary

• Non-geometric LG Models are promising tools for the Swampland program. 

• Moduli stabilization is possible with higher order terms in the 
superpotential. 

• Tadpole Conjecture appears to hold in non-geometric models (for now) in 
the interiors of moduli space. 

• Stay tuned!



Thank you!
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• Mass matrix rank = 16                                                                                              [Becker et al ‘22] 

• The already massive fields can be fixed order by order with no ambiguity. That is, 

                                                                       

      where  runs over the 16 massive fields can be solved to get, 

                                                       

G3 =
i

3 3
(Ω1,1,1,1,2,1,2,1,2 − Ω1,1,1,1,2,1,2,2,1 − Ω1,1,1,1,2,2,1,1,2 − Ω1,1,1,1,2,2,1,2,1)

∂ãW = 0

ã

ta = ta(1) + ta(2) + ta(3) + . . .



Moduli Stabilization and the Swampland
• Solving the quadratic order constraints from the cubic order terms for the 

massless fields leads to six new stabilized directions. 

                                                    

• Several branches of solutions. Need to be careful to not overfix.  

• An exhaustive search is cumbersome and maybe even impossible.  

• Progress towards classifying the various solutions.                                   [Becker et al ‘23] 

• General patterns and symmetry arguments?

t20 = t20(1) + t20(2) + . . .



Review of Non-Geometric LG Models
• Similarly we can indentify the cohomology and homology bases starting from the 

building block of the  model,  .                      

• A cohomology basis is given by the RR ground states of the minimal model with 
. A homology basis is given by  with . 

• The overlap integral between the cycles and RR ground states is then calculable, 

                                           [Hori et al ’00] 

                                                     with   ,   and 

26/ℤ4 Wws = x4

| l⟩
l = 1,2,3 V0, V1, V2, V3 V0 + V1 + V2 + V3 = 0

⟨Vn | l⟩ = ∫Vn

xl−1e−x4dx =
1
4

Γ ( l
4 )(1 − ωl)ωln

l = 1,2,3 n = 0,1,2,3 ω = e
2πi
4



Review of Non-Geometric LG Models
• The  model has  and .  

• The RR ground states of the model are labelled by  where  with   - 

1. For    , .  

2. For   ,   

• The orientifold involution we will work with is, 

                                                            

      which has an orientifold charge of 40 that has to be canceled by fluxes.                               [Becker et al ’06]

26/ℤ4 h(2,1) = 90 h(1,1) = 0

Ωl l = (l1, l2 . . . , l6) li = 1,2,3

Ωl1,l2,....,l6 ∈ H(2,1) ∑
i

li = 10

Ωl1,l2,....,l6 ∈ H(3,0) ∑
i

li = 6

σ : (x1, x2 . . . , x6) e
2πi
4 (x1, x2 . . . , x6)

 (W26 =
6

∑
i=1

x4
i , g : xi e

2πi
4 xi)



Moduli Stabilization and the Swampland
• A flux choice that gives 84 massive fields, 


