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® Moduli Stabilization remains a major obstacle to string model building.
[Grana 05, McAllister, Quevedo 23]
e Swampland criteria provide concrete characterizations of the obstacles.

® |n this work, we will not build models viable for phenomenology.

o [ixpanding the String Landscape is an interesting problem in its own right.
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1 adpole Conjecture (1vpe [IB) - 1he number of moduli
stabilized by fluxes is constrained by;

1 [Bena, Blabéck, Grafa, Liist '20]

A/}lux > 3 'Ustab

Becker, Bena, Blabéack, Brodie, Coudarchet, Gonzalo, Grana, Grimm, van de Heisteeg, Herraez,
Lust, Marchesano, Monnee, Plauschinn, Prieto, Tsagkaris, Walcher, Wiesner, Wrase ...
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Review of Non-Geometric LG Models

* DGKT showed thatitis possible to stabilize all moduli in type 11A
compactified on a rigid Calabi-Yau (h*! = 0). e wore, Giyvayets, Kachr, Tayior 05

® Mouvated by these results in type lIA, BBVW constructed the mirror dual
in type LIB.

[Becker, Becker, Vafa, Walcher '06]

® The mirror manifold admits no geometric interpretation, but there exists a
.G de SCl’iptiOIl. [Vafa ’89, Witten "93, Hori, Iqbal, Vafa '00]

® This provides a way out of the problem of volume stabilization in type 11B!
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o A2dd /N = (2,2) theory as shown below admits a LLandau-Ginzburg description,
S = szzd49%{xi, X} + [dzdeHW(xi) +c.c

e Under RG flow, the theory flows to an IR fixed point.

k+2

® Forasuperpotential given by 77" = x*7<, the CF'T at the fixed point has a central

charge of,
3k

C — ——

k+ 2
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e For the 17 model we have 9 chiral fields with the following world sheet superpotential,

9
W({x}) =) x
=1

21

g x> wx,, w=e3

® T'he rings formed by the chiral and ant-chiral fields correspond to the Ramond ground
states by spectral flow.

(¢, ¢) ring — R = [ Cl, X ]

OxiW(xl, cees Xg)
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Clxy, ..., Xo]
axiW(xl, oo XQ)

(c,c)ring — R = [

® T'he above ring is spanned by,

k kl, kz,,, kg
X —)Cl X2 X9

withk = (k, ..., kg) such thatk; € {0,1} and Z k; = O mod 3.

¢ |['he monomials of the kind XXX, withi # j # k # i form a basis of the allowed
marginal deformations of the superpotential.
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9 9
V)= )5 — WD = ) 50— ), ™
=1 i=1 K

9 9
W({(x)) = ), x5 — WMD) = ) P — (t"x0x; + 2xxsx...)
i=1 =1
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* The cycles wrapped by fluxes and orientifolds are represented by A-branes
and B-branes respectively.

e For concretencess let us look at the single variable building block of the 17 model,
3 27l

W =x", g:x—e3Xx

* The A-branes of this model are the contours in the complex-x plane given by

Im(#) =0 .
\ ) Vs V() + Vl + Vz — O
//// [Hori, Igbal, Vafa 00]
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® ‘T'he chiral ring of the minimal model 1s
R = Clx]/x* = {1,x)
e |1=1,2)

® The overlap integral between the cycles and RR ground states is then calculable,

1 [
(V. |1) = J xHle™dx = =T (—)(1 — oo™
v 3 3

271

with [ =12, n=0,1.2 andw = ¢35
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® The RR ground states of the model are labelled by €2; where
| = (ll’ lz .oy l9)Wlthll — 1,2 -

> 9 12 15 18
Hpa) | gB0) | g2y “ 12 | f(03)
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e The 19/Z, model has h®V = 84 and KD = 0.

 We would like to study orientifolds of these models. In particular, we will
restrict to,
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which has an orientifold charge of 12 that has to be cancelled by fluxes.
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® The 1°/Z; model has h*V) = 84 and h1:V) = 0.

® We would like to study orientifolds of these models. In particular, we will
restrict to,

O:. (X, X ....Xg) > — (X, X;...,X
( [>42 ? 9) ( 2> ’ 9) [Becker, Becker, VVafa Walcher ’06]

which has an orientifold charge of 12 that has to be cancelled by fluxes.

h>D = 63 hD =0
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o VW superpotental exists in these LG orbifold models as well.

WGVW — J G3 A £ [Gukov, Vafa, Witten '99]
M
® The superpotenual is in fact exact! [Becker, Becker, Vafa Walcher ‘06]
1 _
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e How is this different from GKP? [Giddings, Kachru, Polchinski ‘01]
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® Solving the SUSY equations, D.W =DW =0 = ISD fluxes
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o SUSY equations do not require ISD fluxes unlike in GKP.

o For SUSY Minkowski solutions GKP and BBVW are almost identical.
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* Finding SUSY Minkowski vacua -
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2. Ensure flux quantization and tadpole cancellation

* They generically have massless directions (maximal mass matrix rank of 26).
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o Avast classification of these possible flux choices was pursed recently. [Becker, Brady, Sengupta 23]

e The fluxes are classified in terms of the number of €2’s “turned on”.



Moduli Stabilization and the Swampland

* Finding SUSY Minkowski vacua -

I. PickfluxesQ, ;, , € H*Y (Z | = 12)

2. Ensure flux quantization and tadpole cancellation

* They generically have massless directions (maximal mass matrix rank of 26).

[Becker, Gonzalo, Walcher, Wrase '22]

o Avast classification of these possible flux choices was pursed recently. [Becker, Brady, Sengupta 23]

e The fluxes are classified in terms of the number of €2’s “turned on”.



Moduli Stabilization and the Swampland

* Finding SUSY Minkowski vacua -

1. PiCkﬂUX@S Qll,lz...lg < H(z’l) ( Z li p— 12)

2. Ensure flux quantization and tadpole cancellation



Moduli Stabilization and the Swampland

* Finding SUSY Minkowski vacua -

1. PiCkﬂUXGS Qll,lz...lg < H(z’l) ( Z li p— 12)

2. Ensure flux quantization and tadpole cancellation

* They generically have massless directions (maximal mass matrix rank of 26).

[Becker, Gonzalo, Walcher, Wrase ’22]



Moduli Stabilization and the Swampland

Tadpole conjecture target = 12 X 3 = 36 moduli



Moduli Stabilization and the Swampland

* Finding SUSY Minkowski vacua -

1. PiCkﬂUXGS Qll,lz...lg < H(z’l) ( Z li p— 12)

2. Ensure flux quantization and tadpole cancellation

* They generically have massless directions (maximal mass matrix rank of 26).

[Becker, Gonzalo, Walcher, Wrase ’22]

® Avast classification of these possible flux choices was pursed recently. [Becker, Brady, Sengupta 23]



Moduli Stabilization and the Swampland

* Finding SUSY Minkowski vacua -

1. PiCkﬂUXGS Qll,lz...lg < H(z’l) ( Z li p— 12)

2. Ensure flux quantization and tadpole cancellation

* They generically have massless directions (maximal mass matrix rank of 26).

[Becker, Gonzalo, Walcher, Wrase ’22]

® Avast classification of these possible flux choices was pursed recently. [Becker, Brady, Sengupta 23]

e The fluxes are classified in terms of the number of €2°s “turned on”.



Moduli Stabilization and the Swampland

1
o Consider the simple example of W = E(gb — )~

e This function clearly has one flat direction along ¢ = .

® [ etusapply our algorithm for stabilizing moduli order by order to this function,

o At quadratic order in the fields, W, = 5¢2 Solving the critical point equations

gives us one non-trivial constraint,



Moduli Stabilization and the Swampland

1
o Consider the simple example of W = E(qb — y°)°.

e This function clearly has one flat direction along ¢p = .



Moduli Stabilization and the Swampland

1
o Consider the simple example of W = E(qb — y°)°.

e This function clearly has one flat direction along ¢p = .

® [ .etusapply our algorithm for stabilizing moduli order by order to this function,



Moduli Stabilization and the Swampland

1
o Consider the simple example of W = E(qb — y°)°.

e This function clearly has one flat direction along ¢p = .

® [ .etusapply our algorithm for stabilizing moduli order by order to this function,

o At quadratic order in the fields, W, = 5¢2. Solving the critical point equations

gives us one non-trivial constraint ,



Moduli Stabilization and the Swampland

1
o Consider the simple example of W = 5(¢ — )~

e This function clearly has one flat direction along ¢ = .

® [ .etusapply our algorithm for stabilizing moduli order by order to this function,

o At quadratic order in the fields, W, = 5¢2. Solving the critical point equations

gives us one non-trivial constraint ,



Moduli Stabilization and the Swampland

1
o Now going upto cubic order in the fields, W, + W; = 5¢2 — -



Moduli Stabilization and the Swampland

]
e Now going upto cubic order in the fields, W, + W; = 5¢2 — -

a¢<W2+W3> =¢—l//2=0,0w(W2+W3> — —2¢l//:()



Moduli Stabilization and the Swampland

]
e Now going upto cubic order in the fields, W, + W; = 5¢2 — -

a¢<W2+W3) :¢_l//2=0901//<W2+W3) — —2¢l//:()



Moduli Stabilization and the Swampland

o Now going upto cubic ordetp the fields, Ws™+ W; = 59’5 P =y



Moduli Stabilization and the Swampland

1
e Now going upto cubic order in the fields, W, + W, = _¢2 _ ¢l//2

.“ .\
N
5
PP D
! -
h Nis,
- 4 ) 5
I I S~
W
I I

® T'he correct thing to do would be,

45:45(1):0



Moduli Stabilization and the Swampland

1
e Now going upto cubic order in the fields, W, + W, = _¢2 _ ¢l//2

.“ .\
N
.
PP )
," _ .
N
- 4 ) 5
— — NS
L.
— —

® T'he correct thing to do would be,




Moduli Stabilization and the Swampland

1
e Now going upto cubic order in the fields, W, + W, = _¢2 _ ¢l//2

.“ .\
N
.
PP )
- : _ .
N
- 4 ) 5
— — NS
L.
— —

® T'he correct thing to do would be,

6¢W2 —+ (8¢W3> — ¢ — l//z — O awW2 + <awW3) — O
45:45(1):0 ¢=¢(1)=O
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i = 1.2....64 are the deformations around the critical point.
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e We would like to expand the superpotential around the critical points,

1 1
W pand = Eala W (') + ;0 OOW (') + .

i = 1.2....64 are the deformations around the critical point.

® [0 determine the stabilized fields we solve the set of polynomial constraints arising from
0, W = 0fora = 1,2...,64 order by order.

® The linear constraints from the quadratic terms fix the massive fields.

® The subsequent non-trivial constraints from the higher order terms can potenaally fix the
massless fields.
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Model | massive | 3rd power | 4th power | 5th power | 6th power
Gl 14 0 0 0 0
Gy 22 0 0 0 0
Go' 2| 26 0 0 0 0
G| 26 0 0 0 0
G| 22 0 0 0 0
Goy | 26 0 0 0 0
G | 16 6 0 0 0
16 6 0 0 ?
16 6 4 0 0
16 7 1 0 0
16 7 4 0 0
G | 20 2 0 4 1
20 2 0 0 0




Moduli Stabilization and the Swampland

 The 2°/Z, orientifold with tadpole charge 40 could give a way out.
® This model has 91 moduli including the axio-dilation.

® ‘T'he tadpole conjecture does not imply that all 91 moduli cannot be
stabilized (40 X 3 = 120 > 91).

® For example, we find solutions with mass matrix rank of 84 (out of 91)
moduli.
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Summary

® Non-geometric LG Models are promising tools for the Swampland program.

® Moduli stabilization 1s possible with higher order terms in the
superpotential.

® Tadpole Conjecture appears to hold in non-geometric models (for now) in
the interiors of moduli space.

® Stay tuned!



T'hank you!
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1
G3 = 3\/§ (Q1,1,1,1,2,1,2,1,2 _ Q1,1,1,1,2,1,2,2,1 _ Q1,1,1,1,2,2,1,1,2 o Q1,1,1,1,2,2,1,2,1)

e Mass matrixrank =16 [Becker et al ‘22]
® The already massive fields can be fixed order by order with no ambiguity. Thatis,
;W =20
where d runs over the 16 massive fields can be solved to get,

la = Ta(1) T la) T la@) T -



Moduli Stabilization and the Swampland

® Solving the quadratic order constraints from the cubic order terms for the
massless fields leads to six new stabilized directions.

bo = Ty T hop) T - -
® Several branches of solutions. Need to be careful to not overfix.
® An exhaustve search is cumbersome and maybe even impossible.
® Progress towards classifying the various solutions. [Becker et al 23]

® (eneral patterns and symmetry arguments?



Review of Non-Geometric LG Models

o Similarly we can indentity the cohomology and homology bases starting from the
building block of the 2°/Z, model, W, . = x*.

* A cohomology basis is given by the RR ground states of the minimal model | /)with
[ = 1,2,3. Ahomology basis is given by V,,, V|, V,, Vawith Vy + V, + V, + V, = 0.

® T'he overlap integral between the cycles and RR ground states is then calculable,

1 [
(V, 1) = J xle ™ dx = ZF (Z)(l — D™ [Hori et al *00]
V.

211

with [=1,23,n=0,1,23andw = e+



Review of Non-Geometric LG Models

6
® The 2°/Z, model has A%V = 90 and A1V = 0. ( =) xhgix et )
=1

l

* The RR ground states of the model are labelled by €, wherel = (1,1, ..., ) with . = 1,2,3 -

1. FOI' Qllalz ...... l6 E H(z’l) o Z ll — 10
2. ForQ,, , €H®O Y 1=6

® 'The orientifold involution we will work with 1s,

27l

0. (X[, Xy...,X) > €4 (X1,%...,X)

which has an orientfold charge of 40 that has to be canceled by fluxes. [Becker et al ‘06]
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® A flux choice that gives 84 massive fields,

1 1 1 1 I 1
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- (i -T i) Ql,:s,l,l,z,z + %i91,2,1,1,3,2 — (}1 + i) 91,15,2,1,1,2 T (i — i) Q1,3,2,2,1,1
+ (% — %) 331,11+ (% + i) 011,132 — %Qz,l.‘z,:i,l,l — (% T ;1) 221,31,1,2
— (i + i) (213211 + (i + i) (09921,122 + 3192,2,1.1,3.1 — (3 - i) Q22,1,3,1,1
— (i -1- i) Q2,2,2,1,1,2 T (% — i) Q2,2,3,1,1,1 T %iQZ,S,l,l,‘z,l + (}1 — i) Q2,3,1,2,1,1
— (% — %) Qo390111 + (% + ;1) 2311122+ %iQ; 111,31 — %Qs 1,1,3,1,1

— (% + i) Q312112 — (i + i) Q312211 — %iﬂli,l.li,l,l,l + %'915.2,1.1,2.1

— (% - i) (3099111 + %Q.s 31,1,1,1



