Stabilizing Massless Fields in LandauGinzburg Models

Muthusamy Rajaguru

Contents

- Motivation
- Review of Non-Geometric Landau Ginzburg Models
- Moduli Stabilization and the Swampland
- Summary

Contents

- Motivation
- Review of Non-Geometric Landau Ginzburg Models
- Moduli Stabilization and the Swampland
- Summary

Motivation

- Moduli Stabilization remains a major obstacle to string model building.
[Graña 05, McAllister, Quevedo '23]
- Swampland criteria provide concrete characterizations of the obstacles.
- In this work, we will not build models viable for phenomenology.
- Expanding the String Landscape is an interesting problem in its own right.

Motivation

- Moduli Stabilization remains a major obstacle to string model building.
[Graña 05, McAllister, Quevedo '23]
- Swampland criteria provide concrete characterizations of the obstacles.
- In this work, we will not build models viable for phenomenology.
- Expanding the String Landscape is an interesting problem in its own right.

Motivation

- Moduli Stabilization remains a major obstacle to string model building.
[Graña 05, McAllister, Quevedo '23]
- Swampland criteria provide concrete characterizations of the obstacles.
- In this work, we will not build models viable for phenomenology.
- Expanding the String Landscape is an interesting problem in its own right.

Motivation

- Moduli Stabilization remains a major obstacle to string model building.
[Graña 05, McAllister, Quevedo '23]
- Swampland criteria provide concrete characterizations of the obstacles.
- In this work, we will not build models viable for phenomenology.
- Expanding the String Landscape is an interesting problem in its own right.

Motivation

- Non-geometric models provide novel testing grounds -

1. AdS Distance conjecture.
2. Asymptotic Acceleration.
3. Tadpole Conjecture.
[Bardzell, Gonzalo, MR, Smith, Wrase '22]
[Cremonini, Gonzalo, MR, Tang, Wrase' 23]
[Becker, Gonzalo, Walcher, Wrase '22]
[Becker, MR, Sengupta, Walcher, Wrase]

Motivation

- Non-geometric models provide novel testing grounds -

1. AdS Distance conjecture.
2. Asymptotic Acceleration.
3. Tadpole Conjecture.
[Bardzell, Gonzalo, MR, Smith, Wrase '22]
[Cremonini, Gonzalo, MR, Tang, Wrase' 23]

[Becker, Gonzalo, Walcher, Wrase '22]

[Becker, MR, Sengupta, Walcher, Wrase]

Motivation

- Non-geometric models provide novel testing grounds -

1. AdS Distance conjecture.
2. Asymptotic Acceleration.
3. Tadpole Conjecture.
[Bardzell, Gonzalo, MR, Smith, Wrase '22]
[Cremonini, Gonzalo, MR, Tang, Wrase' 23]
[Becker, Gonzalo, Walcher, Wrase '22]
[Becker, MR, Sengupta, Walcher, Wrase]

Motivation

- Non-geometric models provide novel testing grounds -

1. AdS Distance conjecture.
2. Asymptotic Acceleration.
3. Tadpole Conjecture.
[Bardzell, Gonzalo, MR, Smith, Wrase '22]
[Cremonini, Gonzalo, MR, Tang, Wrase' 23]
[Becker, Gonzalo, Walcher, Wrase '22]
[Becker, MR, Sengupta, Walcher, Wrase]

Motivation

- GKP described stabilization of complex structure moduli in type IIB compactifications.
[Giddings, Kachru, Polchinski '01]
- Potential issues were noticed in explicit constructions.

Motivation

- GKP described stabilization of complex structure moduli in type IIB compactifications.
[Giddings, Kachru, Polchinski '01]
- Potential issues were noticed in explicit constructions.

Motivation

- GKP described stabilization of complex structure moduli in type IIB compactifications.
- Potential issues were noticed in explicit constructions.

Tadpole Conjecture (Type IIB)- The number of moduli stabilized by fluxes is constrained by,

$$
N_{\text {flux }}>\frac{1}{3} n_{\text {stab }}
$$

[Bena, Blåbäck, Graña, Lüst '20]

Becker, Bena, Blåbäck, Brodie, Coudarchet, Gonzalo, Graña, Grimm, van de Heisteeg, Herraez, Lüst, Marchesano, Monnee, Plauschinn, Prieto, Tsagkaris, Walcher, Wiesner, Wrase ...

Motivation

- We need to clarify what we mean by $n_{\text {stab }}{ }^{-}$

$$
\begin{aligned}
& \text { - } n_{\text {stab }}:=\operatorname{rank}\left(\partial_{i} \partial_{j} W_{\text {flux }}\right) \\
& \text { - } n_{\text {stab }}:=\operatorname{codim}\left\{\partial_{i} W_{\text {flux }}=0\right\}
\end{aligned}
$$

$$
\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right) \leq \operatorname{codim}\left\{\partial_{i} W_{f l u x}=0\right\}
$$

Motivation

- We need to clarify what we mean by $n_{s t a b}{ }^{-}$
- $n_{\text {stab }}:=\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right)$
- $n_{\text {stab }}:=\operatorname{codim}\left\{\partial_{i} W_{\text {flux }}=0\right\}$

$$
\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right) \leq \operatorname{codim}\left\{\partial_{i} W_{f l u x}=0\right\}
$$

Motivation

- We need to clarify what we mean by $n_{s t a b}{ }^{-}$
- $n_{\text {stab }}:=\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right)$
- $n_{\text {stab }}:=\operatorname{codim}\left\{\partial_{i} W_{\text {flux }}=0\right\}$

$$
\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right) \leq \operatorname{codim}\left\{\partial_{i} W_{f l u x}=0\right\}
$$

Motivation

- We need to clarify what we mean by $n_{s t a b}{ }^{-}$
- $n_{\text {stab }}:=\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right)$
- $n_{\text {stab }}:=\operatorname{codim}\left\{\partial_{i} W_{f l u x}=0\right\}$

$$
\operatorname{rank}\left(\partial_{i} \partial_{j} W_{f l u x}\right) \leq \operatorname{codim}\left\{\partial_{i} W_{f l u x}=0\right\}
$$

Motivation

- Conjecture has been studied extensively in the asymptotic limits of moduli space.
[Grimm, Plauschinn, van de Heisteeg '21, Graña, Grimm, van de Heisteeg, Herraez, Plauschinn '22]
- Does it continue to hold in the interior?
- Even if it continues to hold, are there models where all moduli can be stabilized?
- Fully Stabilized $\mathcal{N}=1$ SUSY Minkowski vacua?

Motivation

- Conjecture has been studied extensively in the asymptotic limits of moduli space.
[Grimm, Plauschinn, van de Heisteeg '21, Graña, Grimm, van de Heisteeg, Herraez, Plauschinn '22]
- Does it continue to hold in the interior?
- Even if it continues to hold, are there models where all moduli can be stabilized?
- Fully Stabilized $\mathcal{N}=1$ SUSY Minkowski vacua?

Motivation

- Conjecture has been studied extensively in the asymptotic limits of moduli space.
[Grimm, Plauschinn, van de Heisteeg '21, Graña, Grimm, van de Heisteeg, Herraez, Plauschinn '22]
- Does it continue to hold in the interior?
- Even if it continues to hold, are there models where all moduli can be stabilized?
- Fully Stabilized $\mathcal{N}=1$ SUSY Minkowski vacua?

Motivation

- Conjecture has been studied extensively in the asymptotic limits of moduli space.
[Grimm, Plauschinn, van de Heisteeg '21, Graña, Grimm, van de Heisteeg, Herraez, Plauschinn '22]
- Does it continue to hold in the interior?
- Even if it continues to hold, are there models where all moduli can be stabilized?
- Fully Stabilized $\mathcal{N}=1$ SUSY Minkowski vacua?

Contents

- Introduction
- Review of Non-Geometric Landau Ginzburg Models
- Moduli Stabilization and the Swampland
- Summary

Review of Non-Geometric LG Models

- DGKT showed that it is possible to stabilize all moduli in type IIA compactified on a rigid Calabi-Yau $\left(h^{2,1}=0\right)$. [De Wofte, Givvayets, Kachru, Tavor o5s]
- Motivated by these results in type IIA, BBVW constructed the mirror dual in type IIB.
- The mirror manifold admits no geometric interpretation, but there exists a LG description.
- This provides a way out of the problem of volume stabilization in type IIB!

Review of Non-Geometric LG Models

- DGKT showed that it is possible to stabilize all moduli in type IIA compactified on a rigid Calabi-Yau $\left(h^{2,1}=0\right)$. [De Wofte, Givvayets, Kachru, Tavor o5s]
- Motivated by these results in type IIA, BBVW constructed the mirror dual in type IIB.
- The mirror manifold admits no geometric interpretation, but there exists a LG description.
- This provides a way out of the problem of volume stabilization in type IIB!

Review of Non-Geometric LG Models

- DGKT showed that it is possible to stabilize all moduli in type IIA compactified on a rigid Calabi-Yau $\left(h^{2,1}=0\right)$. [De Wotefe, Givvayets, Kachru, Tavor o5s]
- Motivated by these results in type IIA, BBVW constructed the mirror dual in type IIB.
[Becker, Becker, Vafa, Walcher '06]
- The mirror manifold admits no geometric interpretation, but there exists a LG description.
- This provides a way out of the problem of volume stabilization in type IIB!

Review of Non-Geometric LG Models

- DGKT showed that it is possible to stabilize all moduli in type IIA compactified on a rigid Calabi-Yau $\left(h^{2,1}=0\right)$. [De Woffe, Givvayets, , кachru, Tayor o5]
- Motivated by these results in type IIA, BBVW constructed the mirror dual in type IIB.
[Becker, Becker, Vafa, Walcher '06]
- The mirror manifold admits no geometric interpretation, but there exists a LG description.
- This provides a way out of the problem of volume stabilization in type IIB!

Review of Non-Geometric LG Models

- A $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory as shown below admits a Landau-Ginzburg description,

$$
S=\int d^{2} z d^{4} \theta \mathscr{K}\left\{x_{i}, \bar{x}_{i}\right\}+\int d^{2} z d^{2} \theta \mathscr{W}\left(x_{i}\right)+c . c
$$

- Under RG flow, the theory flows to an IR fixed point.
- For a superpotential given by $\mathscr{W}=x^{k+2}$, the CFT at the fixed point has a central charge of,

$$
c=\frac{3 k}{k+2}
$$

Review of Non-Geometric LG Models

- A $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory as shown below admits a Landau-Ginzburg description,

$$
S=\int d^{2} z d^{4} \theta \mathscr{K}\left\{x_{i}, \bar{x}_{i}\right\}+\int d^{2} z d^{2} \theta \mathscr{W}\left(x_{i}\right)+c \cdot c
$$

- Under RG flow, the theory flows to an IR fixed point.
- For a superpotential given by $\mathscr{W}=x^{k+2}$, the CFT at the fixed point has a central charge of,

$$
c=\frac{3 k}{k+2}
$$

Review of Non-Geometric LG Models

- A $2 \mathrm{~d} \mathcal{N}=(2,2)$ theory as shown below admits a Landau-Ginzburg description,

$$
S=\int d^{2} z d^{4} \theta \mathscr{K}\left\{x_{i}, \bar{x}_{i}\right\}+\int d^{2} z d^{2} \theta \mathscr{W}\left(x_{i}\right)+c \cdot c
$$

- Under RG flow, the theory flows to an IR fixed point.
- For a superpotential given by $\mathscr{W}=x^{k+2}$, the CFT at the fixed point has a central charge of,

$$
c=\frac{3 k}{k+2}
$$

Review of Non-Geometric LG Models

- For the 1^{9} model we have 9 chiral fields with the following world sheet superpotential,

$$
\begin{aligned}
& \mathscr{W}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3} \\
& g: x_{i} \mapsto \omega x_{i}, \omega=e^{\frac{2 \pi i}{3}}
\end{aligned}
$$

- The rings formed by the chiral and anti-chiral fields correspond to the Ramond ground states by spectral flow.

$$
(c, c) \text { ring } \quad \mapsto \quad \mathscr{R}=\left[\frac{\mathbb{C}\left[x_{1}, \ldots, x_{9}\right]}{\partial_{x_{i}} \mathscr{W}\left(x_{1}, \ldots, x_{9}\right)}\right]
$$

Review of Non-Geometric LG Models

- For the 1^{9} model we have 9 chiral fields with the following world sheet superpotential,

$$
\begin{aligned}
& \mathscr{W}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3} \\
& g: x_{i} \mapsto \omega x_{i}, \omega=e^{\frac{2 \pi i}{3}}
\end{aligned}
$$

- The rings formed by the chiral and anti-chiral fields correspond to the Ramond ground states by spectral flow.

$$
(c, c) \text { ring } \quad \mapsto \quad \mathscr{R}=\left[\frac{\mathbb{C}\left[x_{1}, \ldots, x_{9}\right]}{\partial_{x_{i}} \mathscr{W}\left(x_{1}, \ldots, x_{9}\right)}\right]
$$

Review of Non-Geometric LG Models

- For the 1^{9} model we have 9 chiral fields with the following world sheet superpotential,

$$
\begin{aligned}
& \mathscr{W}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3} \\
& g: x_{i} \mapsto \omega x_{i}, \omega=e^{\frac{2 \pi i}{3}}
\end{aligned}
$$

- The rings formed by the chiral and anti-chiral fields correspond to the Ramond ground states by spectral flow.

$$
(c, c) \text { ring } \quad \mapsto \quad \mathscr{R}=\left[\frac{\mathbb{C}\left[x_{1}, \ldots, x_{9}\right]}{\partial_{x_{i}} \mathscr{W}\left(x_{1}, \ldots, x_{9}\right)}\right]
$$

Review of Non-Geometric LG Models

$$
(c, c) \text { ring } \quad \mapsto \quad \mathscr{R}=\left[\frac{\mathbb{C}\left[x_{1}, \ldots, x_{9}\right]}{\partial_{x_{i}} \mathscr{W}\left(x_{1}, \ldots, x_{9}\right)}\right]
$$

- The above ring is spanned by,

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdot x_{2}^{k_{2}} \cdots x_{9}^{k_{9}}
$$

with $\mathbf{k}=\left(k_{1}, \ldots, k_{9}\right)$ such that $k_{i} \in\{0,1\}$ and $\sum k_{i}=0 \bmod 3$.

- The monomials of the kind $x_{i} x_{j} x_{k}$ with $i \neq j \neq k \neq i$ form a basis of the allowed marginal deformations of the superpotential.

Review of Non-Geometric LG Models

$$
(c, c) \text { ring } \quad \mapsto \quad \mathscr{R}=\left[\frac{\mathbb{C}\left[x_{1}, \ldots, x_{9}\right]}{\partial_{x_{i}} \mathscr{W}\left(x_{1}, \ldots, x_{9}\right)}\right]
$$

- The above ring is spanned by,

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdot x_{2}^{k_{2}} \cdots x_{9}^{k_{9}}
$$

with $\mathbf{k}=\left(k_{1}, \ldots, k_{9}\right)$ such that $k_{i} \in\{0,1\}$ and $\sum_{i} k_{i}=0 \bmod 3$.

- The monomials of the kind $x_{i} x_{j} x_{k}$ with $i \neq j \neq k \neq i$ form a basis of the allowed marginal deformations of the superpotential.

Review of Non-Geometric LG Models

$$
(c, c) \text { ring } \quad \mapsto \quad \mathscr{R}=\left[\frac{\mathbb{C}\left[x_{1}, \ldots, x_{9}\right]}{\partial_{x_{i}} \mathscr{W}\left(x_{1}, \ldots, x_{9}\right)}\right]
$$

- The above ring is spanned by,

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdot x_{2}^{k_{2}} \cdots x_{9}^{k_{9}}
$$

with $\mathbf{k}=\left(k_{1}, \ldots, k_{9}\right)$ such that $k_{i} \in\{0,1\}$ and $\sum_{i} k_{i}=0 \bmod 3$.

- The monomials of the kind $x_{i} x_{j} x_{k}$ with $i \neq j \neq k \neq i$ form a basis of the allowed marginal deformations of the superpotential.

Review of Non-Geometric LG Models

$$
\mathscr{W}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3} \longrightarrow \mathscr{V}\left(\left\{x_{i}\right\}\left\{t^{\mathbf{k}}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3}-\sum_{\sum_{i}^{k}=3} t^{k^{k} x^{k}}
$$

Review of Non-Geometric LG Models

$$
\begin{gathered}
\mathscr{W}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3} \longrightarrow \mathscr{W}\left(\left\{x_{i}\right\}\left\{t^{\mathbf{k}}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3}-\sum_{\substack{\mathbf{k} \\
k_{i}=3}} t^{\mathbf{k}} \mathbf{x}^{\mathbf{k}} \\
\mathscr{W}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3} \longrightarrow \mathscr{W}\left(\left\{x_{i}\right\}\left\{t^{\mathbf{k}}\right\}\right)=\sum_{i=1}^{9} x_{i}^{3}-\left(t^{1} x_{1} x_{2} x_{3}+t^{2} x_{2} x_{3} x_{4} \ldots\right)
\end{gathered}
$$

Review of Non-Geometric LG Models

There are 84 complex structure moduli arising from the (c, c) ring

Review of Non-Geometric LG Models

There are 84 complex structure moduli arising from the (c, c) ring

There are 0 Kähler moduli arising from the (a, c) ring

Review of Non-Geometric LG Models

- The cycles wrapped by fluxes and orientifolds are represented by A-branes and B -branes respectively.
- For concreteness let us look at the single variable building block of the 1^{9} model,

$$
\mathscr{W}=x^{3}, \quad g: x \rightarrow e^{\frac{2 \pi i}{3}} x
$$

-The A-branes of this model are the contours in the complex-x plane given by $\operatorname{Im}(\mathscr{W})=0$

Review of Non-Geometric LG Models

- The cycles wrapped by fluxes and orientifolds are represented by A-branes and B-branes respectively.
- For concreteness let us look at the single variable building block of the 1^{9} model,

$$
\mathscr{W}=x^{3}, \quad g: x \rightarrow e^{\frac{2 \pi i}{3}} x
$$

- The A-branes of this model are the contours in the complex-x plane given by $\operatorname{Im}(\mathscr{W})=0$

Review of Non-Geometric LG Models

- The cycles wrapped by fluxes and orientifolds are represented by A-branes and B-branes respectively.
- For concreteness let us look at the single variable building block of the 1^{9} model,

$$
\mathscr{V}=x^{3}, \quad g: x \rightarrow e^{\frac{2 \pi i}{3}} x
$$

- The A-branes of this model are the contours in the complex-x plane given by $\operatorname{Im}(\mathscr{W})=0$

Review of Non-Geometric LG Models

- The cycles wrapped by fluxes and orientifolds are represented by A-branes and B-branes respectively.
- For concreteness let us look at the single variable building block of the 1^{9} model,

$$
\mathscr{W}=x^{3}, \quad g: x \rightarrow e^{\frac{2 \pi i}{3}} x
$$

- The A-branes of this model are the contours in the complex-x plane given by $\operatorname{Im}(\mathscr{W})=0$

$$
V_{0}+V_{1}+V_{2}=0
$$

Review of Non-Geometric LG Models

- The chiral ring of the minimal model is

$$
\begin{gathered}
\mathscr{R}=\mathbb{C}[x] / x^{2}=\{1, x\} \\
x^{l-1} \leftrightarrow|l=1,2\rangle
\end{gathered}
$$

- The overlap integral between the cycles and RR ground states is then calculable,

$$
\begin{array}{r}
\left\langle V_{n} \mid l\right\rangle=\int_{V_{n}} x^{l-1} e^{-x^{3}} d x=\frac{1}{3} \Gamma\left(\frac{l}{3}\right)\left(1-\omega^{l}\right) \omega^{l n} \\
\text { with } l=1,2, n=0,1,2 \text { and } \omega=e^{\frac{2 \pi i}{3}}
\end{array}
$$

Review of Non-Geometric LG Models

- The chiral ring of the minimal model is

$$
\begin{gathered}
\mathscr{R}=\mathbb{C}[x] / x^{2}=\{1, x\} \\
x^{l-1} \leftrightarrow|l=1,2\rangle
\end{gathered}
$$

- The overlap integral between the cycles and RR ground states is then calculable,

$$
\begin{array}{r}
\left\langle V_{n} \mid l\right\rangle=\int_{V_{n}} x^{l-1} e^{-x^{3}} d x=\frac{1}{3} \Gamma\left(\frac{l}{3}\right)\left(1-\omega^{l}\right) \omega^{l n} \\
\quad \text { with } l=1,2, n=0,1,2 \text { and } \omega=e^{\frac{2 \pi i}{3}}
\end{array}
$$

Review of Non-Geometric LG Models

- When the worldsheet superpotential is deformed as, $\mathscr{W}=x^{3} \rightarrow x^{3}-t x$

Review of Non-Geometric LG Models

- When the worldsheet superpotential is deformed as, $\mathscr{W}=x^{3} \rightarrow x^{3}-t x$

$$
\left.\left(\frac{\partial}{\partial t}\right)^{r}\right|_{t=0}\left\langle V_{n} \mid l\right\rangle=\int_{V_{n}} x^{r+l-1} e^{-x^{3}} d x=\frac{1}{3} \Gamma\left(\frac{r+l}{3}\right)\left(1-\omega^{r+l}\right) \omega^{(r+l) n}
$$

Review of Non-Geometric LG Models

- The RR ground states of the model are labelled by Ω_{1} where $\mathbf{l}=\left(l_{1}, l_{2} \ldots, l_{9}\right)$ with $l_{i}=1,2$ -

Review of Non-Geometric LG Models

- The RR ground states of the model are labelled by Ω_{1} where $\mathbf{l}=\left(l_{1}, l_{2} \ldots, l_{9}\right)$ with $l_{i}=1,2-$

$\sum_{i} l_{i}$	9	12	15	18
$H^{(p, q)}$	$H^{(3,0)}$	$H^{(2,1)}$	$H^{(1,2)}$	$H^{(0,3)}$

Review of Non-Geometric LG Models

$$
G_{3}=\sum_{1} A^{1} \Omega_{1}
$$

Review of Non-Geometric LG Models

$$
G_{3}=\sum_{1} A^{1} \Omega_{1}
$$

$$
G_{3}=\sum_{\mathbf{n}}\left(N^{\mathbf{n}}-\tau M^{\mathbf{n}}\right) \gamma_{\mathbf{n}}
$$

Review of Non-Geometric LG Models

- The $1^{9} / \mathbb{Z}_{3}$ model has $h^{(2,1)}=84$ and $h^{(1,1)}=0$.
- We would like to study orientifolds of these models. In particular, we will restrict to,

$$
\sigma:\left(x_{1}, x_{2}, \ldots, x_{9}\right) \rightarrow-\left(x_{2}, x_{1} \ldots, x_{9}\right)
$$

[Becker, Becker, Vafa Walcher '06]
which has an orientifold charge of 12 that has to be cancelled by fluxes.

Review of Non-Geometric LG Models

- The $1^{9} / \mathbb{Z}_{3}$ model has $h^{(2,1)}=84$ and $h^{(1,1)}=0$.
- We would like to study orientifolds of these models. In particular, we will restrict to,

$$
\sigma:\left(x_{1}, x_{2}, \ldots, x_{9}\right) \rightarrow-\left(x_{2}, x_{1} \ldots, x_{9}\right)
$$

[Becker, Becker, Vafa Walcher '06]
which has an orientifold charge of 12 that has to be cancelled by fluxes.

Review of Non-Geometric LG Models

- The $1^{9} / \mathbb{Z}_{3}$ model has $h^{(2,1)}=84$ and $h^{(1,1)}=0$.
- We would like to study orientifolds of these models. In particular, we will restrict to,

$$
\sigma:\left(x_{1}, x_{2}, \ldots, x_{9}\right) \rightarrow-\left(x_{2}, x_{1} \ldots, x_{9}\right)
$$

[Becker, Becker, Vafa Walcher '06]
which has an orientifold charge of 12 that has to be cancelled by fluxes.

$$
h^{(2,1)}=63 \quad h^{(1,1)}=0
$$

Review of Non-Geometric LG Models

- GVW superpotential exists in these LG orbifold models as well.

$$
W_{G V W}=\int_{M} G_{3} \wedge \Omega
$$

[Gukov, Vafa, Witten '99]

- The superpotential is in fact exact!

Review of Non-Geometric LG Models

- GVW superpotential exists in these LG orbifold models as well.

$$
W_{G V W}=\int_{M} G_{3} \wedge \Omega
$$

[Gukov, Vafa, Witten '99]

- The superpotential is in fact exact!

$$
\frac{1}{\tau-\bar{\tau}} \int G_{3} \wedge \bar{G}_{3}=\int F_{3} \wedge H_{3}=12-N_{D 3}
$$

Review of Non-Geometric LG Models

- How is this different from GKP?

$$
K_{G K P}=K_{C S}-3 \log [-(T-\bar{T})]-\log [-(\tau-\bar{\tau})]
$$

- Solving the SUSY equations, $D_{\tau} W=D_{i} W=0 \Longrightarrow$ ISD fluxes

$$
K_{B B V W}=K_{C S}-4 \log [-(\tau-\bar{\tau})] \quad \text { [Becker, Becker, Walcher or or] }
$$

- SUSY equations do not require ISD fluxes unlike in GKP.
- For SUSY Minkowski solutions GKP and BBVW are almost identical.

Review of Non-Geometric LG Models

- How is this different from GKP?

$$
K_{G K P}=K_{C S}-3 \log [-(T-\bar{T})]-\log [-(\tau-\bar{\tau})]
$$

- Solving the SUSY equations, $D_{\tau} W=D_{i} W=0 \Longrightarrow$ ISD fluxes

$$
K_{B B V W}=K_{C S}-4 \log [-(\tau-\bar{\tau})] \quad \text { [Becker, Becker, Walcher OT] }
$$

- SUSY equations do not require ISD fluxes unlike in GKP.
- For SUSY Minkowski solutions GKP and BBVW are almost identical.

Review of Non-Geometric LG Models

- How is this different from GKP?

$$
K_{G K P}=K_{C S}-3 \log [-(T-\bar{T})]-\log [-(\tau-\bar{\tau})]
$$

- Solving the SUSY equations, $D_{\tau} W=D_{i} W=0 \Longrightarrow$ ISD fluxes

$$
K_{B B V W}=K_{C S}-4 \log [-(\tau-\bar{\tau})] \quad \text { [Becker, Becker, Walcher or or] }
$$

- SUSY equations do not require ISD fluxes unlike in GKP.
- For SUSY Minkowski solutions GKP and BBVW are almost identical.

Review of Non-Geometric LG Models

- How is this different from GKP?

$$
K_{G K P}=K_{C S}-3 \log [-(T-\bar{T})]-\log [-(\tau-\bar{\tau})]
$$

- Solving the SUSY equations, $D_{\tau} W=D_{i} W=0 \Longrightarrow$ ISD fluxes

$$
K_{B B V W}=K_{C S}-4 \log [-(\tau-\bar{\tau})] \quad \text { [Becker, Becker, Walcher or] }
$$

- SUSY equations do not require ISD fluxes unlike in GKP.
- For SUSY Minkowski solutions GKP and BBVW are almost identical.

Review of Non-Geometric LG Models

- How is this different from GKP?

$$
K_{G K P}=K_{C S}-3 \log [-(T-\bar{T})]-\log [-(\tau-\bar{\tau})]
$$

- Solving the SUSY equations, $D_{\tau} W=D_{i} W=0 \Longrightarrow$ ISD fluxes

$$
K_{B B V W}=K_{C S}-4 \log [-(\tau-\bar{\tau})] \quad \text { [Becker, Becker, Walcher or] }
$$

- SUSY equations do not require ISD fluxes unlike in GKP.
- For SUSY Minkowski solutions GKP and BBVW are almost identical.

Contents

- Introduction
- Review of Non-Geometric Landau Ginzburg Models
- Moduli Stabilization and the Swampland
- Summary

Moduli Stabilization and the Swampland

- Finding SUSY Minkowski vacua-

$$
\text { 1. Pick fluxes } \Omega_{l_{1}, l_{2} \ldots l_{9}} \in H^{(2,1)}\left(\sum_{i} l_{i}=12\right)
$$

2. Ensure flux quantization and tadpole cancellation

- They generically have massless directions (maximal mass matrix rank of 26).
[Becker, Gonzalo, Walcher, Wrase '22]
- A vast classification of these possible flux choices was pursed recently.
- The fluxes are classified in terms of the number of Ω 's "turned on".

Moduli Stabilization and the Swampland

- Finding SUSY Minkowski vacua-

$$
\text { 1. Pick fluxes } \Omega_{l_{1}, l_{2} \ldots l_{9}} \in H^{(2,1)}\left(\sum_{i} l_{i}=12\right)
$$

2. Ensure flux quantization and tadpole cancellation

- They generically have massless directions (maximal mass matrix rank of 26).
[Becker, Gonzalo, Walcher, Wrase '22]
- A vast classification of these possible flux choices was pursed recently.
- The fluxes are classified in terms of the number of Ω 's "turned on".

Moduli Stabilization and the Swampland

- Finding SUSY Minkowski vacua-

$$
\text { 1. Pick fluxes } \Omega_{l_{1}, l_{2} \ldots l_{9}} \in H^{(2,1)}\left(\sum_{i} l_{i}=12\right)
$$

2. Ensure flux quantization and tadpole cancellation

- They generically have massless directions (maximal mass matrix rank of 26).
[Becker, Gonzalo, Walcher, Wrase '22]
- A vast classification of these possible flux choices was pursed recently.
- The fluxes are classified in terms of the number of Ω 's "turned on".

Moduli Stabilization and the Swampland

- Finding SUSY Minkowski vacua-

$$
\text { 1. Pick fluxes } \Omega_{l_{1}, l_{2} \ldots l_{9}} \in H^{(2,1)}\left(\sum_{i} l_{i}=12\right)
$$

2. Ensure flux quantization and tadpole cancellation

- They generically have massless directions (maximal mass matrix rank of 26).
[Becker, Gonzalo, Walcher, Wrase '22]
- A vast classification of these possible flux choices was pursed recently.
- The fluxes are classified in terms of the number of Ω 's "turned on".

Moduli Stabilization and the Swampland

$$
\text { Tadpole conjecture target }=12 \times 3=36 \text { moduli }
$$

Moduli Stabilization and the Swampland

- Finding SUSY Minkowski vacua -

$$
\text { 1. Pick fluxes } \Omega_{l_{1}, l_{2} \ldots l_{9}} \in H^{(2,1)}\left(\sum_{i} l_{i}=12\right)
$$

2. Ensure flux quantization and tadpole cancellation

- They generically have massless directions (maximal mass matrix rank of 26).
[Becker, Gonzalo, Walcher, Wrase '22]
- A vast classification of these possible flux choices was pursed recently.
- The fluxes are classified in terms of the number of Ω 's "turned on".

Moduli Stabilization and the Swampland

- Finding SUSY Minkowski vacua-

$$
\text { 1. Pick fluxes } \Omega_{l_{1}, l_{2} \ldots l_{9}} \in H^{(2,1)}\left(\sum_{i} l_{i}=12\right)
$$

2. Ensure flux quantization and tadpole cancellation

- They generically have massless directions (maximal mass matrix rank of 26).
[Becker, Gonzalo, Walcher, Wrase '22]
- A vast classification of these possible flux choices was pursed recently.
- The fluxes are classified in terms of the number of Ω 's "turned on".

Moduli Stabilization and the Swampland

- Consider the simple example of $W=\frac{1}{2}\left(\phi-\psi^{2}\right)^{2}$.
- This function clearly has one flat direction along $\phi=\psi^{2}$.
- Let us apply our algorithm for stabilizing moduli order by order to this function,
- At quadratic order in the fields, $W_{2}=\frac{1}{2} \phi^{2}$. Solving the critical point equations gives us one non-trivial constraint ,

Moduli Stabilization and the Swampland

- Consider the simple example of $W=\frac{1}{2}\left(\phi-\psi^{2}\right)^{2}$.
- This function clearly has one flat direction along $\phi=\psi^{2}$.
- Let us apply our algorithm for stabilizing moduli order by order to this function,
- At quadratic order in the fields, $W_{2}=\frac{1}{2} \phi^{2}$. Solving the critical point equations gives us one non-trivial constraint ,

Moduli Stabilization and the Swampland

- Consider the simple example of $W=\frac{1}{2}\left(\phi-\psi^{2}\right)^{2}$.
- This function clearly has one flat direction along $\phi=\psi^{2}$.
- Let us apply our algorithm for stabilizing moduli order by order to this function,
- At quadratic order in the fields, $W_{2}=\frac{1}{2} \phi^{2}$. Solving the critical point equations gives us one non-trivial constraint ,

Moduli Stabilization and the Swampland

- Consider the simple example of $W=\frac{1}{2}\left(\phi-\psi^{2}\right)^{2}$.
- This function clearly has one flat direction along $\phi=\psi^{2}$.
- Let us apply our algorithm for stabilizing moduli order by order to this function,
- At quadratic order in the fields, $W_{2}=\frac{1}{2} \phi^{2}$. Solving the critical point equations gives us one non-trivial constraint ,

Moduli Stabilization and the Swampland

- Consider the simple example of $W=\frac{1}{2}\left(\phi-\psi^{2}\right)^{2}$.
- This function clearly has one flat direction along $\phi=\psi^{2}$.
- Let us apply our algorithm for stabilizing moduli order by order to this function,
- At quadratic order in the fields, $W_{2}=\frac{1}{2} \phi^{2}$. Solving the critical point equations gives us one non-trivial constraint ,

$$
\partial_{\phi} W_{2}=\phi=0
$$

Moduli Stabilization and the Swampland

- Now going upto cubic order in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

Moduli Stabilization and the Swampland

- Now going upto cubic order in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

$$
\partial_{\phi}\left(W_{2}+W_{3}\right)=\phi-\psi^{2}=0, \partial_{\psi}\left(W_{2}+W_{3}\right)=-2 \phi \psi=0
$$

Moduli Stabilization and the Swampland

- Now going upto cubic order in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

$$
\begin{gathered}
\partial_{\phi}\left(W_{2}+W_{3}\right)=\phi-\psi^{2}=0, \partial_{\psi}\left(W_{2}+W_{3}\right)=-2 \phi \psi=0 \\
\Longrightarrow \phi=\psi=0
\end{gathered}
$$

Moduli Stabilization and the Swampland

- Now going upto cubic orden in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

$$
\begin{gathered}
\partial_{\phi}\left(W_{2}+W_{3}\right)=\phi-\psi^{2}=0, \partial_{\psi}\left(W_{2}+W_{3}\right)=-2 \phi \psi=0 \\
\Longrightarrow \phi=\psi=0
\end{gathered}
$$

Moduli Stabilization and the Swampland

- Now going upto cubic order in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

- The correct thing to do would be,

$$
\partial_{\phi} W_{2}+\left.\left(\partial_{\phi} W_{3}\right)\right|_{\phi=\phi_{(1)}=0}
$$

Moduli Stabilization and the Swampland

- Now going upto cubic order in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

- The correct thing to do would be,

$$
\partial_{\phi} W_{2}+\left.\left(\partial_{\phi} W_{3}\right)\right|_{\phi=\phi_{(1)}=0}=\phi-\psi^{2}=0
$$

Moduli Stabilization and the Swampland

- Now going upto cubic order in the fields, $W_{2}+W_{3}=\frac{1}{2} \phi^{2}-\phi \psi^{2}$

- The correct thing to do would be,

$$
\partial_{\phi} W_{2}+\left.\left(\partial_{\phi} W_{3}\right)\right|_{\phi=\phi_{(1)}=0}=\phi-\psi^{2}=0 \quad \partial_{\psi} W_{2}+\left.\left(\partial_{\psi} W_{3}\right)\right|_{\phi=\phi_{(1)}=0}=0
$$

Moduli Stabilization and the Swampland

- We would like to expand the superpotential around the critical points,

$$
W_{\text {expand }}=\frac{1}{2!} \partial_{i} \partial_{j} W\left(t^{i} t^{j}\right)+\frac{1}{3!} \partial_{i} \partial_{j} \partial_{k} W\left(t^{i} t^{j} t^{k}\right)+\ldots
$$

$t^{i}, i=1,2 \ldots, 64$ are the deformations around the critical point.

- To determine the stabilized fields we solve the set of polynomial constraints arising from $\partial_{a} W=0$ for $a=1,2 \ldots, 64$ order by order.
- The linear constraints from the quadratic terms fix the massive fields.
- The subsequent non-trivial constraints from the higher order terms can potentially fix the massless fields.

Moduli Stabilization and the Swampland

$$
\left.\left(\frac{\partial}{\partial t}\right) r\right|_{t=0}\left\langle V_{n} \mid l\right\rangle=\int_{V_{n}} x^{r+l-1} e^{-x^{3}} d x=\frac{1}{3} \Gamma\left(\frac{r+l}{3}\right)\left(1-\omega^{r+l}\right) \omega^{(r+l) n}
$$

Moduli Stabilization and the Swampland

$$
\left.\left(\frac{\partial}{\partial t}\right)^{r}\right|_{t=0}\left\langle V_{n} \mid l\right\rangle=\int_{V_{n}} x^{r+l-1} e^{-x^{3}} d x=\frac{1}{3} \Gamma\left(\frac{r+l}{3}\right)\left(1-\omega^{r+l}\right) \omega^{(r+l) n}
$$

$$
\left.\frac{\partial}{\partial t^{\mathbf{k}_{1}}} \frac{\partial}{\partial t^{\mathbf{k}_{2}}} \ldots \frac{\partial}{\partial t^{\mathbf{k}_{r}}} \int \Omega_{\mathbf{l}} \wedge \Omega\right|_{t^{\mathbf{k}}=0}=\delta_{\mathbf{1}+\mathbf{L}} \frac{1}{3^{9}} \prod_{i=1}^{9}\left(1-\omega^{L_{i}}\right) \Gamma\left(\frac{L_{i}}{3}\right) .
$$

where, $\quad \mathbf{L}=\sum_{\alpha=1}^{r} \mathbf{k}_{\alpha}+\mathbf{1}$

Moduli Stabilization and the Swampland

- We would like to expand the superpotential around the critical points,

$$
W_{\text {expand }}=\frac{1}{2!} \partial_{i} \partial_{j} W\left(t^{i} t^{j}\right)+\frac{1}{3!} \partial_{i} \partial_{j} \partial_{k} W\left(t^{i} t^{j} t^{k}\right)+\ldots
$$

$t^{i}, i=1,2 \ldots, 64$ are the deformations around the critical point.

- To determine the stabilized fields we solve the set of polynomial constraints arising from $\partial_{a} W=0$ for $a=1,2 \ldots, 64$ order by order.
- The linear constraints from the quadratic terms fix the massive fields.
- The subsequent non-trivial constraints from the higher order terms can potentially fix the massless fields.

Moduli Stabilization and the Swampland

- We would like to expand the superpotential around the critical points,

$$
W_{\text {expand }}=\frac{1}{2!} \partial_{i} \partial_{j} W\left(t^{i} t^{j}\right)+\frac{1}{3!} \partial_{i} \partial_{j} \partial_{k} W\left(t^{i} t^{j} t^{k}\right)+\ldots
$$

$t^{i}, i=1,2 \ldots, 64$ are the deformations around the critical point.

- To determine the stabilized fields we solve the set of polynomial constraints arising from $\partial_{a} W=0$ for $a=1,2 \ldots, 64$ order by order.
- The linear constraints from the quadratic terms fix the massive fields.
- The subsequent non-trivial constraints from the higher order terms can potentially fix the massless fields.

Moduli Stabilization and the Swampland

- We would like to expand the superpotential around the critical points,

$$
W_{\text {expand }}=\frac{1}{2!} \partial_{i} \partial_{j} W\left(t^{i} t^{j}\right)+\frac{1}{3!} \partial_{i} \partial_{j} \partial_{k} W\left(t^{i} t^{j} t^{k}\right)+\ldots
$$

$t^{i}, i=1,2 \ldots, 64$ are the deformations around the critical point.

- To determine the stabilized fields we solve the set of polynomial constraints arising from $\partial_{a} W=0$ for $a=1,2 \ldots, 64$ order by order.
- The linear constraints from the quadratic terms fix the massive fields.
- The subsequent non-trivial constraints from the higher order terms can potentially fix the massless fields.

Moduli Stabilization and the Swampland

Moduli Stabilization and the Swampland

Model	massive	3rd power	4th power	5th power	6 th power
$G_{(1)}^{[8,8]}$	14	0	0	0	0
$G_{(1)}^{12,12]}$	22	0	0	0	0
$G_{(2)}^{12,12]}$	26	0	0	0	0
$G_{(3)}^{[12,12]}$	26	0	0	0	0
$G_{(12,4]}^{12,}$	22	0	0	0	0
$G_{(2)}^{12,4]}$	26	0	0	0	0
$G_{(3)}^{12,4]}$	16	6	0	0	0
	16	6	0	0	$?$
	16	6	4	0	0
	16	7	1	0	0
	16	7	4	0	0
$G_{(4)}^{[12,12]}$	20	2	0	4	1
	20	2	0	0	0

Moduli Stabilization and the Swampland

- The $2^{6} / \mathbb{Z}_{4}$ orientifold with tadpole charge 40 could give a way out.
- This model has 91 moduli including the axio-dilation.
- The tadpole conjecture does not imply that all 91 moduli cannot be stabilized $(40 \times 3=120>91)$.
- For example, we find solutions with mass matrix rank of 84 (out of 91) moduli.

Contents

- Motivation
- Non-Geometric LG Models
- Moduli Stabilization and the Swampland
- Summary

Summary

- Non-geometric LG Models are promising tools for the Swampland program.
- Moduli stabilization is possible with higher order terms in the superpotential.
- Tadpole Conjecture appears to hold in non-geometric models (for now) in the interiors of moduli space.
- Stay tuned!

Thank you!

Moduli Stabilization and the Swampland

$$
G_{3}=\frac{\mathrm{i}}{3 \sqrt{3}}\left(\Omega_{1,1,1,1,2,1,2,1,2}-\Omega_{1,1,1,1,2,1,2,2,1}-\Omega_{1,1,1,1,2,2,1,1,2}-\Omega_{1,1,1,1,2,2,1,2,1}\right)
$$

- Mass matrix rank $=16$
- The already massive fields can be fixed order by order with no ambiguity. That is,

$$
\partial_{\tilde{a}} W=0
$$

where \tilde{a} runs over the 16 massive fields can be solved to get,

$$
t_{a}=t_{a(1)}+t_{a(2)}+t_{a(3)}+\ldots
$$

Moduli Stabilization and the Swampland

- Solving the quadratic order constraints from the cubic order terms for the massless fields leads to six new stabilized directions.

$$
t_{20}=t_{20(1)}+t_{20(2)}+\ldots
$$

- Several branches of solutions. Need to be careful to not overfix.
- An exhaustive search is cumbersome and maybe even impossible.
- Progress towards classifying the various solutions.
- General patterns and symmetry arguments?

Review of Non-Geometric LG Models

- Similarly we can indentify the cohomology and homology bases starting from the building block of the $2^{6} / \mathbb{Z}_{4}$ model, $W_{w s}=x^{4}$.
- A cohomology basis is given by the RR ground states of the minimal model $|l\rangle$ with $l=1,2,3$. A homology basis is given by $V_{0}, V_{1}, V_{2}, V_{3}$ with $V_{0}+V_{1}+V_{2}+V_{3}=0$.
- The overlap integral between the cycles and RR ground states is then calculable,

$$
\left\langle V_{n} \mid l\right\rangle=\int_{V_{n}} x^{l-1} e^{-x^{4}} d x=\frac{1}{4} \Gamma\left(\frac{l}{4}\right)\left(1-\omega^{l}\right) \omega^{l n} \quad \text { [Hori et al' 'oo] }
$$

$$
\text { with } l=1,2,3, n=0,1,2,3 \text { and } \omega=e^{\frac{2 \pi i}{4}}
$$

Review of Non-Geometric LG Models

- The $2^{6} / \mathbb{Z}_{4}$ model has $h^{(2,1)}=90$ and $h^{(1,1)}=0$.

$$
\left(w_{2^{0}}=\sum_{i=1}^{6} x_{i}^{4}, g: x_{i} \rightarrow e^{\frac{2 \pi}{4} x_{i}}\right)
$$

- The RR ground states of the model are labelled by Ω_{1} where $\mathbf{I}=\left(l_{1}, l_{2} \ldots, l_{6}\right)$ with $l_{i}=1,2,3$ -

1. For $\Omega_{l_{1}, l_{2}, \ldots, l_{6}} \in H^{(2,1)}, \sum_{i} l_{i}=10$.
2. For $\Omega_{l_{1}, l_{2}, \ldots, l_{6}} \in H^{(3,0)}, \sum_{i} l_{i}=6$

- The orientifold involution we will work with is,

$$
\sigma:\left(x_{1}, x_{2}, \ldots, x_{6}\right) \rightarrow e^{\frac{2 \pi i}{4}}\left(x_{1}, x_{2} \ldots, x_{6}\right)
$$

which has an orientifold charge of 40 that has to be canceled by fluxes.

Moduli Stabilization and the Swampland

- A flux choice that gives 84 massive fields,

$$
\begin{aligned}
& G_{3}=-\frac{1}{2} \Omega_{1,1,3,3,3,1}+\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{1,2,1,1,3,2}-\left(\frac{1}{4}-\frac{\mathrm{i}}{4}\right) \Omega_{1,2,2,3,3,1,1}-\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{1,2,3,1,1,2} \\
& +\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{1,3,1,1,2,2,2}+\frac{1}{2} \mathrm{i}_{1,2,2,1,1,3,2}-\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{1,3,2,2,1,1,2}+\left(\frac{1}{4}-\frac{\mathrm{i}}{4}\right) \Omega_{1,3,2,2,2,1,1} \\
& +\left(\frac{1}{2}-\frac{\mathrm{i}}{2}\right) \Omega_{1,3,3,1,1,1,1}+\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{2,1,1,1,3,2,2}-\frac{1}{2} \Omega_{2,1,2,3,1,1}-\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{2,1,3,1,1,2} \\
& -\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{2,1,3,2,2,1}+\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{2,2,1,1,2,2}+\frac{1}{2} \mathrm{i}_{2,2,2,1,3,1}-\left(\frac{1}{4}-\frac{\mathrm{i}}{4}\right) \Omega_{2,2,1,3,3,1} \\
& -\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{2,2,2,1,1,2}+\left(\frac{1}{4}-\frac{\mathrm{i}}{4}\right) \Omega_{2,2,3,1,1,1}+\frac{1}{2} \mathrm{i}_{2,3,1,1,2,1}+\left(\frac{1}{4}-\frac{\mathrm{i}}{4}\right) \Omega_{2,3,1,2,2,1} \\
& +\left(\frac{1}{2}-\frac{\mathrm{i}}{2}\right) \Omega_{2,3,2,1,1,1}+\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{3,1,1,1,2,2}+\frac{1}{2} \Omega_{3,1,1,1,1,3,1}-\frac{1}{2} \Omega_{3,1,1,3,3,1,1} \\
& -\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{3,1,2,1,1,2}-\left(\frac{1}{4}+\frac{\mathrm{i}}{4}\right) \Omega_{3,1,2,2,1,1}-\frac{1}{2} \mathrm{i} \Omega_{3,1,3,1,1,1}+\frac{1}{2} \mathrm{i} \Omega_{3,2,1,1,2,1} \\
& +\left(\frac{1}{4}-\frac{i}{4}\right) \Omega_{3,2,2,2,1,1}+\frac{1}{2} \Omega_{3,3,1,1,1,1}
\end{aligned}
$$

