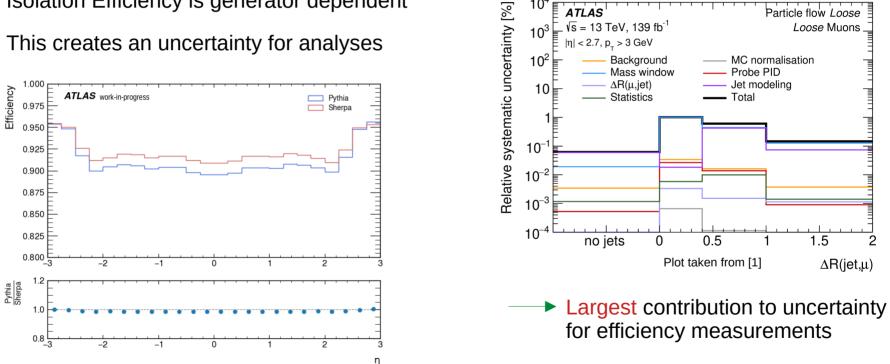
Investigating Shower Generator Dependence of Muon Isolation Efficiency for the ATLAS Collaboration

Lars Linden

DPG Spring Meeting Karlsruhe 05/03/2024

Muon Isolation


- Determine close range activity around muons to check for their isolation
- Charged contributions are evaluated by summing p_T of particles within a cone close to muons
- Only tracks with $p_T > 500$ MeV or 1 GeV are used for this calculation
- Neutral particles are accounted for by using particle flow and calorimeter energy deposits
- Use these variables together with muon p_T to create an isolation score

Muon Isolation Working Points & Efficiency

- Different definitions with varying isolation requirements
- General definition: track_iso + 0.4 * calo_iso < threshold * p_T
- Used in the following is: PFlow_Tight_VarRad
- Threshold value: 0.045
- Relevant variables are: p_T^{varcone30} and E_T^{neflow20}
- Efficiency of WP defined as $\frac{\text{number of muons passing isolation WP}}{\text{total number of selected muons}}$

The Problem

- Isolation Efficiency is generator dependent
- This creates an uncertainty for analyses •

10

ATLAS $10^3 = \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

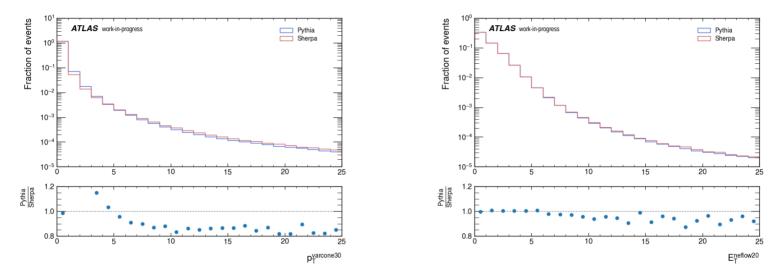
[1] The ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s} = 13 TeV

05/03/24

Lars Linden

Particle flow Loose

Loose Muons

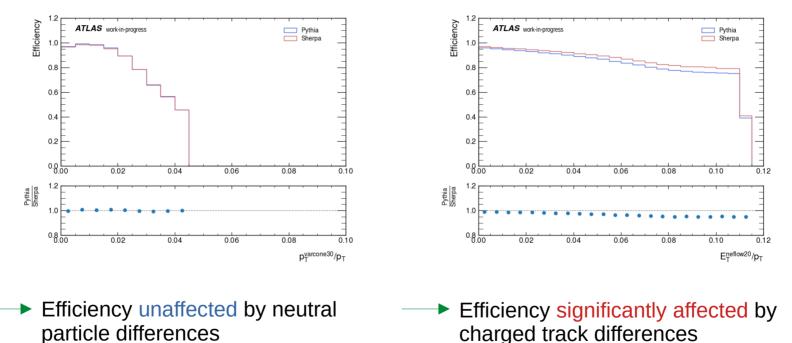

Methodology

- For these studies Z decays into a pair of muons are used
- Two datasets created with different shower generators: Powheg + Pythia 8 and Sherpa 2.2.11
- Compare shapes of distributions for various variables to look for inconsistencies
- Try to find the precise cause for the observed differences
 - Goal is to check if this is possible to correct for analyses
 - Reduce overall uncertainty caused by this issue

Event Selection

- Goal is a very clean muon selection to get rid of other analysis effects
- Use MC truth to make sure muons originated from Z boson
- Dimuon mass cut: 80 GeV < mll < 100 GeV
- Exactly 2 muons in the event
- Normalize distributions to their respective dataset
- Scale distributions from Sherpa to match those from Pythia to remove normalization differences between the generators
 - Distributions now match for most variables
 - Can start to look for inconsistencies in distributions

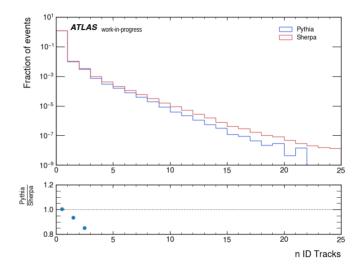
Isolation Variables


Generator differences are visible in the isolation variables

Inconsistencies seem to be larger for the charged tracks

Lars Linden

Efficiency of Isolation Variables


Allows to investigate effect of differences in isolation variables on isolation results

Lars Linden

Track Analysis

- Check activity around muons in inner detector
- Count number of tracks within a cone with $\Delta R < 0.3$
- Sherpa dataset shows more tracks on average
 - Extra shower particles affect isolation efficiency
 - Investigate nature of these particles

Conclusion & Outlook

- Mainly two areas interesting to check for inner detector tracks
- Currently under investigation

- Investigate MC truth of extra tracks around muons
 - Check what kind of processes are more common in Sherpa
- Implement isolation algorithm on truth level
 - Check if differences are qualitatively different for true tracks

Summary

- Investigated generator dependence of muon isolation efficiency
- Found clues hinting towards charged track isolation being the main cause of this issue
- Preliminary checks on track activity differences between generators
- Further investigate properties of extra Sherpa tracks
- Truth level isolation is also of interest

