Employing Matrix Elements with Neural Networks to Search for Higgs Self-coupling

DPG Spring Conference Karlsruhe 7.3.2024

Christoph Ames

FSPATLAS Erforschung von Universum und Materie

Matrix element method

- Integrate over all initial states
- Hamilton operator for chosen decay mode X
- Select a final state (particle types, four-momenta)
- Physically allowed phase space

Weight describes likelihood that decay mode X is contained in the event

Weight of decay mode X in an event: $W_X = \left| \langle \Phi_f | \hat{H}_X | \Phi_i \rangle_d \Psi \right|^2$

Machine learning

$$W_X = \left| \left\langle \Phi_f \right| \hat{H}_X \left| \Phi_i \right\rangle_{d\Psi} \right|^2$$

functions) Integration requires large amount of computing time

state No integration required, much quicker

- Problem: Very high number of initial states in hadron collider (parton density)
- Solution: Use machine learning to estimate the weight based on a given final

Objective of the analysis

Objective: accelerate the matrix element method using machine learning

If successful, this concept could be used to pre-filter a large portion of background events for future analyses

Test analysis: search for Higgs self-coupling (heavily suppressed)

DPG Spring Conference 2024

Signal decay channel

- Off-shell Higgs boson decays to two on-shell Higgs bosons via self-coupling
- Predicted by the Standard Model, but not yet detected
- Simulation cross section $gg \rightarrow H \rightarrow HH$: 38fb
 - Run3: ~300fb⁻¹ → Expect around 1600 events

n H~~~~~ H W^+ W^{-} $\bar{\mathcal{V}}_{l}$

Background decay channel

- Off-shell Z boson emits an on-shell Higgs boson
- Same final state
- Simulation cross section $gg \rightarrow Z \rightarrow HZ$: 51fb

Data simulation, weight calculation

aMC@NLO, POWHEG, MadGraph, FastJet: Simulate event, reconstruct jets

MoMEMta: Uses aMC@NLO to compute matrix element weights

- Main input: four-momenta of the end-state particles
- Performs parameter transformations to reduce number of integration variables

Neural networks

Comparing two types of neural networks:

- Feed-forward (right)
- Convolutional (bottom)

Christoph Ames

Evaluating the networks

Regression: Network predicts a value, not a class → How should that be evaluated?

$$R^{2} = 1 - \frac{\sum_{(y,\hat{y})} (y - \hat{y})}{\sum_{y} (y - \bar{y})}$$

If $R^2 = 1$: Network perfectly predicts values If $R^2 = 0$: Network might as well always predict the mean value If $R^2 < 0$: Consider network as not knowing anything Whether a value for $R^2 > 0$ is good or not is arbitrary!

- true value predicted value true mean

Results

around 443000 events each for signal and background **Feed-forward** Convolutional

Christoph Ames

Results

Feed-forward

Christoph Ames

DPG Spring Conference 2024

Convolutional

Summary and outlook

$W_X = \left| \left\langle \Phi_f \right| \right.$

- Use machine learning to accelerate the matrix element method
- Test analysis: Higgs self-coupling
- Results of neural networks look promising, feed-forward better so far

Outlook: Improve neural networks

$$\hat{H}_X |\Phi_i\rangle_d \Psi$$

Christoph Ames

13

Data simulation and jet reconstruction IMU

POWHEG: Simulation of initial processes: $gg \rightarrow HH$, $gg \rightarrow HZ$

MadGraph5: Simulate rest of event:

- Connect gluons to initial protons via parton density functions Calculate additional gluons via initial state radiation Determine decay modes, final state radiation, parton showers
- and hadronisation

FastJet: b and quark jets

• Jets constructed with R = 0

Pruning: $z_{cut} = 0.1, D_{cut} =$

Christoph Ames

).4
$$m_q$$

$$p_T$$

Neural networks

Feed-forward

R^2	Layers	Batch Size	Learning Rate	Momentum	Weight Decay	Dampening	Neste
0.917	[320, 160, 80, 40]	32	10^{-4}	0.99	10^{-8}	0.1	Fal
0.902	[320, 160, 80, 40]	32	10^{-4}	0.90	10^{-8}	0.1	Fals
0.885	[120, 60, 30, 15]	32	10^{-4}	0.99	10^{-8}	0.1	Fal

