Separating the top backgrounds in Higgs self interactions using neural networks Youn Jun Cho

LUDWIG-UNIVERSITÄT MÜNCHEN

Background

• The top pair decay $t\bar{t} \to (bW^+)(\bar{b}W^-)$ and the Higgs pair decay $HH \to (b\bar{b})(W^+W^-)$ have the same daughters

• The two can be mistaken especially when a low mass W boson of mass less than 40 GeV emerges as a top decay product

• Neural networks could easily distinguish kinetically modified top pair end states from those of the Higgs end states

 My goal is to modify data beyond kinematics in the MCatNLO + Herwig generated data in order to see if the Pytorch neural network can still distinguish the two end states

Low Mass W Bosons

• On average, W bosons with mass less than 40 GeV occurred in only 9 out of 10,000 events in the MCatNLO data, making it difficult to train the neural network

• Acquiring more data through more iterations is impractical due to excessive computation time

 This leads to the practical need to modify the MCatNLO data and see when the low mass W bosons are emitted

The ratio between cos θ distributions for W jets and for low mass
W jets showed that low mass W bosons are 5 times more likely to
be emitted when emitted in parallel to its pair

in_range_W_pair_cos_3D_angle

Two Body Kinematics

- In the rest frame of a particle of mass *M* decaying into particles of masses m_1 and m_2 , the total center of mass energy E can be expressed in the Lorentz invariant form —
- $E^2 = m_1^2 + m_2^2 + 2E_1E_2(1 \beta_1\beta_2\cos\theta)^2$, confirming that *E* would be mínímum when $\theta = 0$ (PDG, 49.2)

• The above coincides with basic results in two body kinematics

• Therefore, one rotates and scales the MCatNLO events so that more low mass W bosons can be reconstructed

 The energies and the momenta of the two decay products of a mass M particle can be expressed as:

• $E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M}$ and $|\vec{p}_1| = |\vec{p}_2| = \frac{1}{2M} \sqrt{\Lambda(M^2, m_1^2, m_2^2)},$

where Λ is the Källen function (PDG, 49.17)

The Rotation Procedure

- 1. Boost the top pair into its rest frame
- 2. Boost the top decay products into their top parent rest frame 3. Boost the anti-top decay products into their anti-top parent rest frame
- 4. If a W jet has mass < 80 GeV, then rotate the W jet so that it is parallel to the other W jet

5. Scale that W jet mass along with the bottom jet from the same top parent by a factor of 0.41 using equation (PDG, 49.17)

6. Boost that W jet's decay products into their W parent rest frame and rotate them according to equation (PDG, 49.17)

7. Undo all boosts in reverse order and repeat this procedure on the whole data set

Larger Event Number Histograms

- Compare the new histograms for the pair masses after rotation to the histograms for the pair masses with larger number of events before rotation
- Scale the larger event number histogram before rotation so that it covers the new one up to the point where the W boson pair mass is 125 GeV, using the ratio between the old and the new pair mass histograms
- That requires the old histograms for the W and the b pair masses to be scaled by at least 200 and 1.5 times respectively

scaled_W_pair_mass

scaled_b_pair_mass

• The red histograms represent the pair mass distributions after the rotation procedure

• The green ones represent the ones from before

• The blue ones represent the ones from before the rotation procedure, but with more events

Training the Neural Network

• The input data sets are the events after rotation and the events before rotation but with larger event numbers

• The features to be tested are the pseudorapidity η , the angular distance ΔR , the mass M, and the transverse momenta p_T