Material Optimization for Photon Detection by Structured Converter Layers using Micro-Pattern Gaseous GEM Detectors

DPG Frühjahrstagung Karlsruhe 2024

07.03.2023

Nick Schneider

FSP ATLAS

Erforschung von Universum und Materie

Motivation

- Micro-Pattern Gaseous Detectors:
 - Extremely good spatial and temporal resolution
 - High-rate capability

MAXIMILIANS UNIVERSITÄT

- But: naturally low gas density \Rightarrow poor detection of neutral particles as photons
- Improvement by inserting high-Z converter layers

converter layers in detector

2

GEM Detector

• Gaseous Electron Multiplier

- Copper plated Kapton foil with holes
- Amplification via locally strong e-fields
 - Amplification factor of 20 per Foil
 - 3 foils $\Rightarrow 20^3 = 8000$

MAXIMILIANS UNIVERSITÄT

⇒ excellent spatial resolution (< 100 μ m) ⇒ high-rate capability

Converter Layers

- Substrate material is FR4 or Flex-PCB (Polyimide similar to Kapton)
- Copper strips (0.4 mm width & distance) each connected over $22M\Omega$ resistors
- Applied voltage d_y results in guiding field contact pads 22M Ω resistors

- Effective area: 20mm * 100mm
 - Combinations off:

MAXIMILIANS

- 50/100 μm Flex-PCB or 300/1550 μm FR4
- 18/35 μ*m* copper

Cu strip

Detector Setup

- Gas mixture: *Ar/CO*₂ 93/7 %
- Am-241 source
- Here shown: 100/18 layers
- The layers are put under stress to pull them straight
 ⇒ Better guiding properties
- Self-triggering on the bottom side of the lowest GEM foil
- Readout via APV chips connected to a scalable readout system

MAXIMILIANS UNIVERSITÄT

Simulation

- Geant4:
 - Photon-Matter interaction
 - Position & energy of created electrons
 - Modelled after real detector setup
- ANSYS:
 - Application of electrical potential
 - Electrical fields between converter layers
 - Equipotential lines shown for $d_y = 600V$ along layers + 200V drift
- Garfield++:

MAXIMILIANS UNIVERSITÄT

- Import electrons from Geant4
- Import electric fields from ANSYS
- Simulates resulting drift

Simulation: Thickness

- Total conversion efficiency =
- Au exceeds Cu for $\lesssim 30 \ \mu m$
 - But: Too much metal is detrimental
- Steep rise at the beginning
 - Thickness smaller than the range of e- in Cu/Au
- Kapton has nearly no effect
- Without layers: 0.46 %

MAXIMILIANS UNIVERSITÄT

- Cu layers: $0.88\% \Rightarrow 1.9x \text{ w/o}$
- Au layers: $1.24\% \Rightarrow 2.7x \text{ w/o}$
- 50/18 and 50/35 as good as 300/35

Events with $>1 e^{-}$ reaching active gas volume

Measurements

Conclusion & Outlook

- Conversion simulations indicate potential to increase the efficiency from $\approx 0.46\%$ to $\approx 0.88\%$ with copper or to $\approx 1.24\%$ with gold
- The measurements indicate that FR4 that thinner substrates with more copper are favourable, due to less passive material and more active material
 - But mechanical stability must be considered for optimal guiding fields
- A maximum increase in trigger rate of a factor ≈ 7 is achieved between standard (1550/35) and optimized converter layers
- Trigger rate simulations predict all layers behaving the same except for 1550/35, which isn't reflected in the measurements
- Further investigation of the simulation and potential unknown measurement effects

Literature

[1]:The gas electron multiplier (GEM): Operating principles and applications". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (7. Aug. 2015). doi: <u>https://doi.org/10.1016/J.NIMA.2015.07.060</u>

[2]:Zabołotny, W.M., Kasprowicz, G., Poźniak, K. et al. FPGA and Embedded Systems Based Fast Data Acquisition and Processing for GEM Detectors. J Fusion Energ 38, 480–489 (2019). https://doi.org/10.1007/s10894-018-0181-2

[3]: Katrin Penski, Work in progress (internal communication)

Simulation: Width

- The efficiency for Au is higher than for Cu, as expected
- Efficiency rises with increasing width total efficiency and decreasing distance between the strips
- Small dip at the end

AXIMILIANS UNIVERSITÄT

- Loss of surface area due to connecting strips
- Further improvement by over a factor of 2
 - Cu layers: $1.17\% \Rightarrow 2.5x$ w/o
 - Au layers: $1.26\% \Rightarrow 2.7x \text{ w/o}$

Motivation

- For detecting neutral particles semiconductor and scintillator detectors are mostly used
 - Both have the drawback, that they are costly and aren't easily scalable
- Gaseous detectors are cheaper to produce and can get scaled to m² dimensions
 - But they suffer from poor detection efficiency for neutral particles due to the low density of gases
- ⇒ Aim: Increase the photon detection efficiency by using converter layers

Detector Setup: GEM foil

- Gaseous Electron Multiplier
- Double sided copper plated Kapton foil with holes
- Electrical potential difference of ~300V is applied
- Amplification via resulting locally strong e-fields
 - Amplification factor of 20 per Foil

Detector Setup: Triple GEM Setup

- 3 GEM foils
 - \Rightarrow Amplification of 20³ = 8000
- Advantages:
 - Excellent spatial resolution (< 100 μm)
 - High-rate capability
 - No resistive coating on readout strips needed
- Disadvantage:
 - A discharge could melt through a GEM foil and render it useless

Photon Detection

- Optimization for 60 keV photons
- 60 keV photons mainly undergo photoelectric effect

 $\sigma_{Photo} \sim Z^5$

- \Rightarrow a high-Z materials are better
- Idea: Insert solid converter layers in a GEM Detector to better convert 60 keV photons into electrons

 \Rightarrow use copper plated layers

Simulation: Converter Layers

NICK SCHNEIDER

Simulation: Electron Extraction

NICK SCHNEIDER

Detector setup

- GEM Detector filled with a gas mixture of Ar/CO_2 93/7%
- 370 kBq Am^{241} source emitting 60 keV photons inside the detector
- Converter layers are placed perpendicular to the photons
 - Electron guiding is crucial for detection ⇒ use of electric guidance field

Layer geometry

Detector Setup

- Here shown: 100/18
- The layers are put under stress to pull them straight
 - \Rightarrow Better guiding properties
- Self-triggering on the bottom side of the lowest GEM foil
- Readout via APV chips connected to a scalable readout system

Detector Setup

- Detector is built up in climatised cabinet
- Able to control air temperature and relative moisture
- Standard operating conditions:
 - $T = 25 \pm 0.3 \ ^{\circ}C$
 - $RH = 25 \pm 3 \%$
- Pressure still dependent on environment

Measurement

NICK SCHNEIDER

Layer Geometry: d_{γ}

- *d_y* produces the drift field guiding the electrons to the amplification region
 The higher *d_y* the higher the drift velocity
- With constant production rate of electrons, higher d_{γ} values lead to saturation of trigger rate

Simulation: Geant4

- Photon-Matter interaction
- Position of created electrons
- Modelled after real detector setup
- Spherical source emitting 60 keV photon in 4π

Simulation: Geant4: Electron Creation

- Position of all electrons that reach the active gas volume
- Layers are nearly not visible due to them being 100 μm thick
- \Rightarrow all electrons need to be guided down to the amplification stage

Simulation: ANSYS & Garfield++

• ANSYS

- Calculation of the E-field between the layers
- Garfield++
 - Takes the field of ANSYS and the positions of Geant4
 - Simulates the electron drift in gas

Simulation: Results

NICK SCHNEIDER

Material Investigation

Term	ino	logv:
		108y

Terminology: 1550/35		x _{sub} , material	x _{Cu}
	1550 μ <i>m</i> , FR4	35 µm	
300/35 100/18 100/35 100/35 100/35 50/18 50/35	300/35	$300~\mu m$, FR4	$35 \ \mu m$
	100/18	$100~\mu m$, Kapton	$18 \ \mu m$
	$100~\mu m$, Kapton	$35 \ \mu m$	
	50/18	$50~\mu m$, Kapton	$18 \mu m$
	50/35	$50~\mu m$, Kapton	$35 \ \mu m$

• All layers have w = 0.4 mm and d = 0.4 mm

Measurement: Layer Investigation

- Worst performance for $1550 \ \mu m$ and $300 \ \mu m$ thick FR4 layers
 - More passive material
- 35 μm of Cu perform better than 18 μm of Cu
 - More active material
- 50 μm thick layers are slightly worse than 100 μm thick layers
 - Less geometrically stable ⇒ Less efficient guiding
- ⇒ Improvement by a factor of up to ≈ 5.5 compare with 1550/35

Measurement: Comparison with Simulation

NICK SCHNEIDER

Measurement: Comparison with Simulation

- All normalised to 1550/35 (get rid of systematics)
- 1550/35 behave nearly identical
- In the simulation all but 1550/35 perform very similar
 - More difference in the measured data
- Simulation and measurement disagree on the performance of 300/35
- Simulation indicates that 50/18 & 50/35 would ideally be as efficient as 100/35
 - Not ideal guiding in the measurement
- \Rightarrow Work in progress \Rightarrow further investigations needed

Simulation: Geant4: Thickness & Material

- Total efficiency: a least 1 electron reaches gas
- Au exceeds Cu for \lesssim 30 μm
 - But: Too much metal is detrimental
- Steep rise at the beginning
 - Thickness smaller than the range of e- in Cu
- Kapton has nearly no effect
- Without layers: 0.46 %
 - Cu layers: $0.88\% \Rightarrow 1.9x \text{ w/o}$
 - Au layers: $1.24\% \Rightarrow 2.7x \text{ w/o}$
- 50/18 and 50/35 as good as 300/35

Simulation: Geant4: Width & Distance

- The efficiency for Au is higher than for Cu, as expected
 Efficiency rises with increasing width and decreasing distance between the strips strips
- Small dip at the end
 - Loss of surface area due to connecting strips
- Further improvement by over a factor of 2
 - Cu layers: $1.17\% \Rightarrow 2.5x \text{ w/o}$
 - Au layers: $1.26\% \Rightarrow 2.7x \text{ w/o}$

Literature

•[1]:The gas electron multiplier (GEM): Operating principles and applications". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (7. Aug. 2015). doi: <u>https://doi.org/10.1016/J.NIMA.2015.07.060</u>

•[2]:Zabołotny, W.M., Kasprowicz, G., Poźniak, K. et al. FPGA and Embedded Systems Based Fast Data Acquisition and Processing for GEM Detectors. J Fusion Energ 38, 480–489 (2019). <u>https://doi.org/10.1007/s10894-018-0181-2</u>

•[3]: National Institute of Standards and Technology: XCOM: Photon Cross Sections Database. https://www.nist.gov/pml/xcom-photon-cross-sections-database, [Online, Accessed: 7.6.2023]

•[4]: Katrin Penski, Work in progress (internal communication)

•[5]: National Institute of Standards and Technology: ESTAR: Stopping-Power Range Tables for Electrons, Protons, and Helium Ions. https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions, [Online, Accessed: 7.6.2023]

Motivation

- •Problem: Not all produced electrons reach the gas
- CSDA-range of 50 keV electrons in Cu is \approx 7.75 μm [5]
 - 50 keV \approx 59.5 keV $E_{K-shell}$
- CSDA-range of 50 keV electrons in Kapton is $\approx 1.369 \ \mu m$ [5]

Measurement: AllClusterCharge

- Black: AllClusterCharge, large Det., 50/18 layers, $d_{\gamma} = 400 V$
- Red: AllClusterCharge, small Det., 50/18 layers, $d_y = 400 V$
- Would expect two peaks
 - 50 keV from Cu (k-shell)
 - 60 *keV* from Ar

Measurement: AllClusterCharge

Simulation

NICK SCHNEIDER

12/07/2023