

Searching for lepton flavour violating decays in $B^0 \rightarrow \tau^{\pm} \ell^{\mp}$ ($\ell = e / \mu$) channel

Belle

Nathalie Eberlein

22.05.2024

previous studies by CLEO(2004), Babar(2008), LHCb(2019) and Belle(2021)

decay sensitive to New Physics e.g. leptoguarks

Standard Model decay via neutrino oscillations is highly

Motivation

most stringent upper limits:

suppressed ($B \approx 10^{-50}$)

LUDWIG-MAXIMILIANS-UNIVERSITÄT AÜNCHEN

 $(B \approx 10^{-9})$

- ▶ $B(B^0 \to \tau^{\pm} e^{\mp}) < 1.6 \cdot 10^{-5}$ at 90% CL (Belle) ▶ $B(B^0 \to \tau^{\pm} \mu^{\mp}) < 1.2 \cdot 10^{-5}$ at 90% CL (LHCb)

tag-side B meson reconstructed with FEI in hadronic decay modes

- hierarchical machine learning approach to identify B meson decay reconstruction in approx. 10,000 channels
- kinematics and vertex information in each reconstruction step used to limit the number of reconstructed candidates
- each reconstructed B meson candidate gets a signal probability

LUDWIG-

- tag-side B meson reconstructed with FEI in hadronic decay modes
- high momentum of lepton to identify signal
- lepton mono-energetic in B_{sig} rest frame
- ▶ No additional particles in event after $\Upsilon(4S)$ for signal events

 \thickapprox 90% of all τ decay modes are reconstructed

Reduction of Background Contributions

	MC Event Type	Multiplicity of $\Upsilon(4S)$
$Multiplicity = \frac{\text{Number of reconstructed } \Upsilon(4S)}{\text{Number of events}}$	signal	4.35
	charm	8.12
	uds	7.99
	$B^0(b \rightarrow c)$	7.62
	$B^+(b \rightarrow c)$	6.45
	$B^0 \rightarrow rare$	5.42
	$B^+ \rightarrow rare$	5.59
	$B^0(b \to u\ell \nu)$	6.38
	$B^+(b \to u\ell \nu)$	5.35

Cross-feed between the τ decay modes is the dominant source of the high multiplicity.

LUDWIG-MAXIMILIANS-UNIVERSITAT MONCHEN

- $\Delta E_{\tau} = E_H + |p_{\nu}| m_{\tau}$ with $\vec{p_{\nu}} = -\vec{p_H}$
- select hadronic τ with smallest ΔE_{τ}
- events with hadronic and leptonic τ candidate
 - if $\Delta E_{\tau} \ge 0.1$ GeV for hadronic $\tau \rightarrow$ leptonic τ if $\Delta E_{\tau} < 0.1$ GeV for hadronic $\tau \rightarrow$ hadronic τ

Signal region of lepton momentum: 2.20 - 2.42 GeV in B_{sig} rest frame.

Rest of the event: all particles not associated with B_{siq} or B_{taq} reconstruction.

For correctly reconstructed signal events the rest of the event is empty.

 \Rightarrow Trained boosted decision trees to reduce the background contributions in the signal region.

Fit of the Lepton Momentum Distribution

with a binned maximum likelihood fit implemented with pyhf

Pre-fit Distribution of Lepton Momentum MAXIMILIANS-UNIVERSITÄT MÜNCHEN

The fit is tested on Asimov data containing zero signal events.

LUDWIG-

LIDWIG-MAXIMILIANS-UNIVERSITAT WORKEN

	Belle data	
n _{siq}	-15.07 ± 18.61	
$n_{u\ell v}$	598.04 ± 49.12	
n _{other}	4121.01 ± 71.53	
goodness of fit p-value	0.61	

LUDWIG-MAXIMILIANS-UNIVERSITÄT

	Belle data
n _{siq}	6.71 ± 12.48
$n_{u\ell v}$	239.08 ± 27.65
nother	451.20 ± 27.92
goodness of fit p-value	0.53

The systematic uncertainties only have a small impact on the upper limit of the branching ratios.

Summary

- $B^0 \rightarrow \tau^{\pm} \ell^{\mp}$ sensitive to New Physics
- high lepton momentum in the signal B rest frame
- B_{tag} reconstructed with hadronic FEI
- applied best candidate selection to reduce the multiplicity
- ► trained BDT to reduce the B meson background contribution in the signal region
- ▶ fitted the lepton momentum distribution of the Belle data (consistent with zero signal events)
- determined the upper limits on the branching ratios
- ▶ best upper limit $B(B^0 \rightarrow \tau^{\pm} e^{\mp}) < 1.2 \cdot 10^{-5}$ at 90% CL

Thank you for your attention