

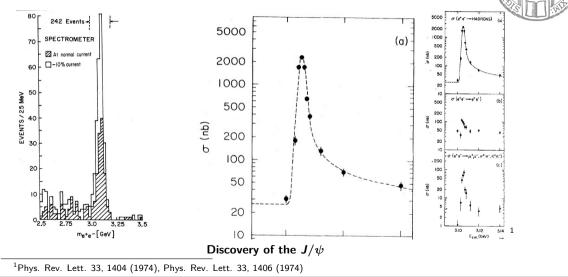
Study of the X(3915) at Belle

Yaroslav Kulii $^{1},$ Thomas Kuhr $^{1},$ Boris Grube 2

¹LMU Munich, ²Jefferson Lab

Joint Particle Physics Group Seminar, Garching, June 12th, 2024

Charmonium. Origins



Charmonia

State		
$1 {}^1S_0$	η_c	
$1 {}^{3}S_{1}$	J/ψ	
$1 {}^{1}P_{1}$	h_c	
$1 {}^{3}P_{0}$	χ_{c0}	
$1 {}^{3}P_{1}$	χ_{c1}	
$1 {}^{3}P_{2}$	χ_{c2}	
$2 {}^{1}S_{0}$	$\eta_c(2S)$	
$2 {}^{3}S_{1}$	$\psi(2S)$	
$1 {}^{1}D_2$	η_{c2}	
$1 {}^{3}D_{1}$	$\psi(3770)$	
$1 {}^{3}D_2$	ψ_2 1	

► Charmonia - excited *cc*̄ states

Nomenclature:

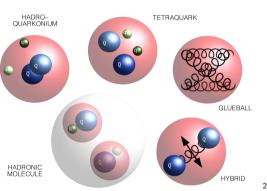
$$\begin{array}{l} \mathsf{n} = \mathsf{1}, \, \mathsf{2}, \, \mathsf{3} \, \dots \\ \mathsf{L} = \mathsf{0} \, (\mathsf{S}), \, \mathsf{1} \, (\mathsf{P}), \, \mathsf{2} \, (\mathsf{D}) \, \dots \\ \mathsf{S} = \mathsf{0} \, \left(\frac{1}{2} - \frac{1}{2}\right) \, \mathsf{or} \, \mathsf{1} \, \left(\frac{1}{2} + \frac{1}{2}\right) \\ \mathsf{J} = |\mathsf{L} - \mathsf{S}|, \, \dots, \, |\mathsf{L} + \mathsf{S}| \\ \mathsf{n}^{2S+1} \mathsf{L}_{\mathsf{J}} \\ \mathsf{Example:} \\ \chi_{c2}, \, \mathsf{1}^{3} \mathsf{P}_{2} \rightarrow \mathsf{L} = \mathsf{1}, \, \mathsf{S} = \mathsf{1}, \, \mathsf{J} = \mathsf{2}, \, \mathsf{n} = \mathsf{1} \\ \chi_{c2}(\mathsf{2}\mathsf{P}), \, \mathsf{2}^{3} \mathsf{P}_{2} \rightarrow \mathsf{L} = \mathsf{1}, \, \mathsf{S} = \mathsf{1}, \, \mathsf{J} = \mathsf{2}, \, \mathsf{n} = \mathsf{2} \end{array}$$

¹Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Eur. Phys. J. C74 (2014) 3026, SLAC-PUB-15968, KEK Preprint 2014-3.

²(c) Galina Pakhlova, Belle

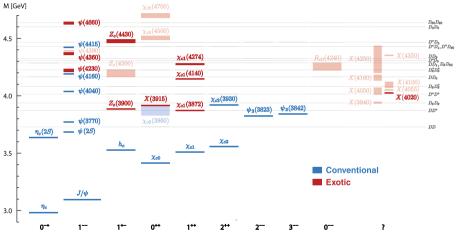
Exotic states

- New states continuously being discovered
- Interpretation of some states unclear, exotic nature suggested: tetraquark, molecular state, hybrid meson, glueball, ...



¹https://www.fz-juelich.de/en/ias/ias-4/research/exotic-hadrons, (c) Forschungszentrum Jülich

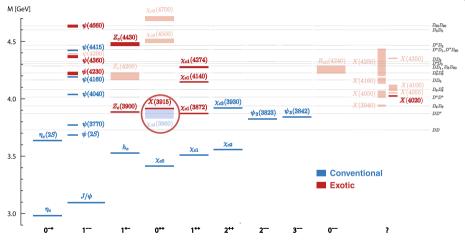
Observed states



Many states inconsistent with conventional $q\bar{q}$ hypothesis

³Eichmann, G., Fischer, C.S., Heupel, W. et al. Four-Quark States from Functional Methods. Few-Body Syst 61, 38 (2020) Y. Kulii (LMU)

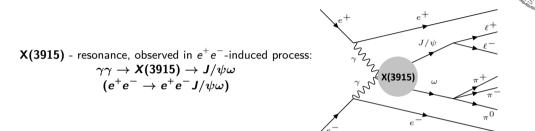
Observed states



Many states inconsistent with conventional $q\bar{q}$ hypothesis

³Eichmann, G., Fischer, C.S., Heupel, W. et al. Four-Quark States from Functional Methods. Few-Body Syst 61, 38 (2020) Y. Kulii (LMU)

X(3915): Motivation



- First observed at Belle and BaBar, not really consistent with predicted nearby charmonium $\chi_{c0}(2P)$
- Recently discovered X*(3860)⁴ is a much better candidate for $\chi_{c0}(2P)$

X(3915) is interpreted as exotic state (e.g. molecular state or hybrid meson)

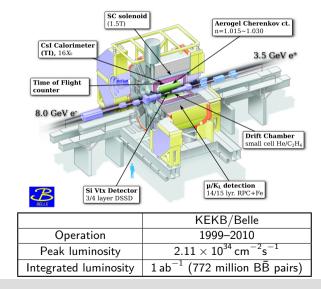
Goal: measure the quantum numbers (spin, parity) at Belle

⁴arXiv:1704.01872, Belle, PRD 95 (2017) 112003

Belle Detector

Asymmetric $e^+e^$ experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV)

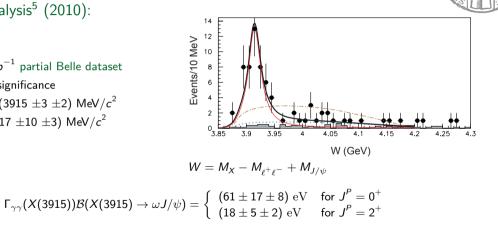
Our final state: $\ell^+, \ell^-, \pi^+, \pi^-, \pi^0$ 4 charged tracks and two calorimeter clusters $(\pi^0 \rightarrow \gamma \gamma)$



X(3915): Previous analyses

Belle analysis⁵ (2010):

- ▶ 694 fb^{-1} partial Belle dataset
- \blacktriangleright 7.7 σ significance
- $M = (3915 \pm 3 \pm 2) \text{ MeV}/c^2$
- $ightharpoonrightarrow \Gamma = (17 \pm 10 \pm 3) \text{ MeV}/c^2$

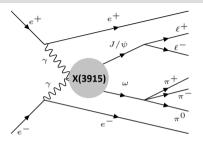


Confirmed by BaBar: "Data largely preferred $J^P = 0^{\pm}$ over 2^+ ; ... 0^+ over 0^- "

⁵Belle, PRL 104 (2010) 092001, arXiv:0912.4451

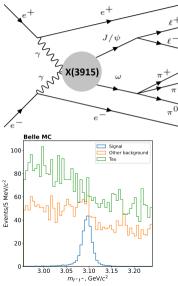
- Uncertainty dominated by limited sample size
 - $\rightarrow\,$ Use the full Belle dataset (×1.4 larger dataset)
- ▶ None of the J^P hypotheses $0^+, 0^-, 2^+, 2^-$ is conclusively excluded
 - \rightarrow Use amplitude analysis formalism to construct more powerful J^P test and identify J^P preferred by data.

- ► In $e^+e^- \rightarrow e^+e^- J/\psi\omega$ both recoil e^{\pm} are not detected ("zero tag")
- Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$



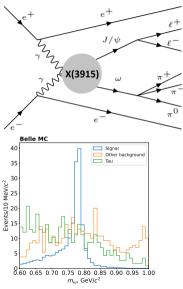
- In e⁺e⁻ → e⁺e⁻J/ψω both recoil e[±] are not detected ("zero tag")
- ► Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$

• Mass windows around nominal J/ψ and ω mass

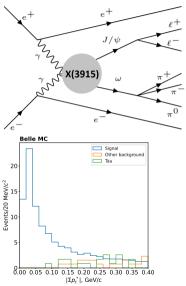


- ► In $e^+e^- \rightarrow e^+e^- J/\psi\omega$ both recoil e^{\pm} are not detected ("zero tag")
- ► Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$

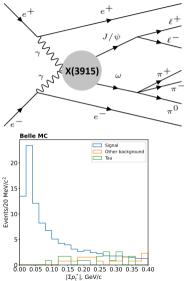
• Mass windows around nominal J/ψ and ω mass



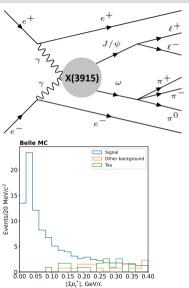
- In e⁺e⁻ → e⁺e⁻J/ψω both recoil e[±] are not detected ("zero tag")
- ► Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$
- Mass windows around nominal J/ψ and ω mass
- Strict requirement on transverse momentum balance in an event



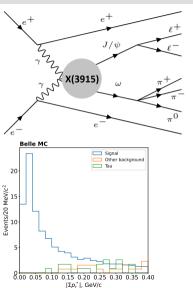
- In e⁺e⁻ → e⁺e⁻J/ψω both recoil e[±] are not detected ("zero tag")
- Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$
- Mass windows around nominal J/ψ and ω mass
- Strict requirement on transverse momentum balance in an event
- \blacktriangleright BDT to reject $e^+e^- \rightarrow \tau^+\tau^-$

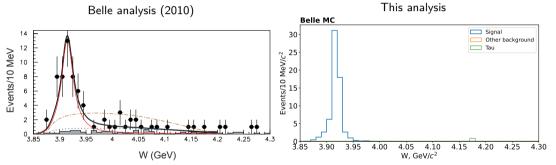


- ► In $e^+e^- \rightarrow e^+e^- J/\psi\omega$ both recoil e^{\pm} are not detected ("zero tag")
- Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$
- Mass windows around nominal J/ψ and ω mass
- Strict requirement on transverse momentum balance in an event
- \blacktriangleright BDT to reject $e^+e^- \rightarrow \tau^+\tau^-$
- ► Veto on specific background processes $(\gamma\gamma \rightarrow \pi^{0}\psi(2S), e^{+}e^{-} \rightarrow \gamma X)$



- In e⁺e⁻ → e⁺e⁻J/ψω both recoil e[±] are not detected ("zero tag")
- Reconstruct $X(3915) \rightarrow J/\psi\omega$ with $J/\psi \rightarrow \ell^+ \ell^- (\ell = e, \mu), \omega \rightarrow \pi^+ \pi^- \pi^0$
- Mass windows around nominal J/ψ and ω mass
- Strict requirement on transverse momentum balance in an event
- \blacktriangleright BDT to reject $e^+e^- \rightarrow \tau^+\tau^-$
- ► Veto on specific background processes $(\gamma\gamma \rightarrow \pi^{0}\psi(2S), e^{+}e^{-} \rightarrow \gamma X)$
- Other selection criteria





- The background suppression is on a good level
- Event selection is approaching the quality of the previous Belle analysis

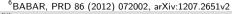
Quantum number determination

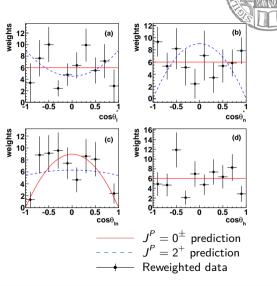
Angular analysis by BaBar⁶

Angular analysis:

- Uses 1D projections of the multi-dimensional phase-space distribution of the final-state particles
- Correlations between variables are not taken into account
- ► Different variable sets used for distinction between different J^P hypotheses, e.g. between 2⁺ and 0[±] and between 0⁻ and 0⁺

Data prefer $J^{P} = 0^{+}$ but other hypotheses not excluded





Amplitude analysis formalism:

- Construct model that describes full distribution in phase space including correlations (9-dim)
- Uses complete information of measured events. Higher sensitivity expected.
- Requires a reasonable model for parametrization of signal and background

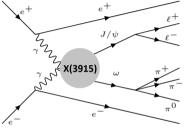
Workflow:

- 1. Develop models for the J^P hypotheses to be tested
- 2. Fit all J^P hypotheses to data
- 3. Choose J^P hypothesis that describes data best as a null hypothesis
- 4. Calculate the distances to other hypotheses (ideally larger than 5σ)

Angular analysis

- Theory model developed by Boris Grube
- Intensity depends on 9 kinematic variables:
 - θ_X, ϕ_X : decay angles for $X \to J/\psi \omega$
 - $\theta_{J/\psi}, \phi_{J/\psi}$: decay angles for $J/\psi \to \ell^+ \ell^-$
 - $\alpha_{\omega}, \beta_{\omega}, m_{\omega}, X_{\omega}, Y_{\omega}$: decay angles and dynamic variables for $\omega \to \pi^+ \pi^- \pi^0$
- ▶ J^P quantum numbers hypotheses: $0^+, 0^-, 2^+, 2^-, 3^+, 4^+, 4^-$ Higher values suppressed due to low breakup momentum (~ 200 MeV)
- Maximize log-likelihood:

$$\ln \mathcal{L}(\vec{\theta}; \tau_k) = \underbrace{\sum_{k=1}^{N} \ln \mathcal{I}(\tau_k; \vec{\theta})}_{\text{Data sample}} - \underbrace{N \ln[\frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}^{acc}} \mathcal{I}(\tau_j; \vec{\theta})]}_{\text{Phase space MC}},$$



- where $\mathcal I$ intensity, probability of # of produced events in the phase space
- $\rightarrow\,$ Can be extended to account for weighted events and non-interfering background.

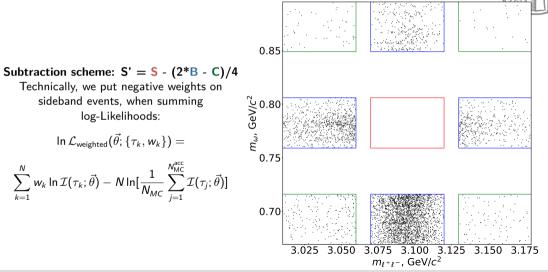
Partial waves of the $J/\psi\omega$ system

J^P	$P(-1)^{J}$	$\mathcal{A}_{L_X S_X}^X$	Free parameters
0+	+1	<i>S</i> ₀ , <i>D</i> ₂	2
0^{-}	$^{-1}$	P_1	0
2^+	$^{+1}$	S_2 , D_0 , D_1 , D_2 , G_2	9
2^{-}	$^{-1}$	$P_{1}, P_{2}, F_{1}, F_{2}$	7
3^+	$^{-1}$	D_1, D_2, G_1, G_2	7
4^+	$^{+1}$	D_2 , G_0 , G_1 , G_2 , I_2	9
4	-1	F_1, F_2, H_1, H_2	7

Fit parameters:

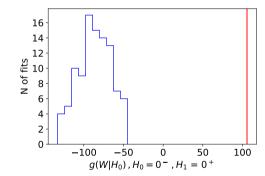
- ► A complex coefficient for every partial-wave amplitude A^X_{L_X S_X}. For selected reference amplitude it is set to 1.
- ▶ One additional real coefficient for the fraction of production of X state with helicity 2 and 0.

Sideband events



In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

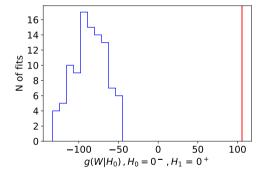
1. Generate N H_0 datasets, fit with both H_1 and H_0



In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

- 1. Generate N H_0 datasets, fit with both H_1 and H_0
- 2. Calculate the log-likelihood difference:

 $W(\vec{x}) = 2[\ln \mathcal{L}(\vec{x}|H_1) - \ln \mathcal{L}(\vec{x}|H_0)]$

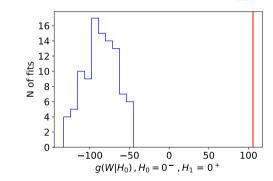


In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

- 1. Generate N H_0 datasets, fit with both H_1 and H_0
- 2. Calculate the log-likelihood difference:

 $W(\vec{x}) = 2[\ln \mathcal{L}(\vec{x}|H_1) - \ln \mathcal{L}(\vec{x}|H_0)]$

3. Model and fit distribution

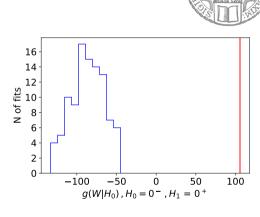


In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

- 1. Generate N H_0 datasets, fit with both H_1 and H_0
- 2. Calculate the log-likelihood difference:

 $W(\vec{x}) = 2[\ln \mathcal{L}(\vec{x}|H_1) - \ln \mathcal{L}(\vec{x}|H_0)]$

- 3. Model and fit distribution
- 4. Calculate log-likelihood difference for the test sample generated according to H_1



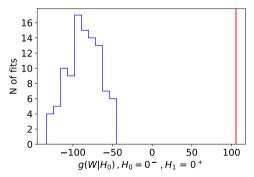
In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

- 1. Generate N H_0 datasets, fit with both H_1 and H_0
- 2. Calculate the log-likelihood difference:

 $W(\vec{x}) = 2[\ln \mathcal{L}(\vec{x}|H_1) - \ln \mathcal{L}(\vec{x}|H_0)]$

- 3. Model and fit distribution
- 4. Calculate log-likelihood difference for the test sample generated according to H_1
- 5. Calculate p-value as upper tail integral of $g(W|H_0)$:

$$P=\int_{W_{
m obs}}^{+\infty}dW\,g(W|H_0).$$



In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

- 1. Generate N H_0 datasets, fit with both H_1 and H_0
- 2. Calculate the log-likelihood difference:

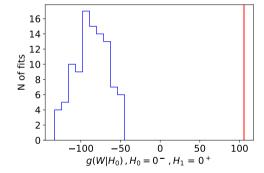
 $W(\vec{x}) = 2[\ln \mathcal{L}(\vec{x}|H_1) - \ln \mathcal{L}(\vec{x}|H_0)]$

- 3. Model and fit distribution
- 4. Calculate log-likelihood difference for the test sample generated according to H_1
- 5. Calculate p-value as upper tail integral of $g(W|H_0)$:

$$P=\int_{W_{
m obs}}^{+\infty}dW\,g(W|H_0).$$

6. P-value can be translated into # of sigmas that H_0 is rejected w.r.t. H_1 : $s_G(P) = \sqrt{2} \operatorname{erfc}^{-1}(P)$

Y. Kulii (LMU)



In the simplest case we have 2 hypotheses: the null hypothesis H_0 and the alternative hypothesis H_1

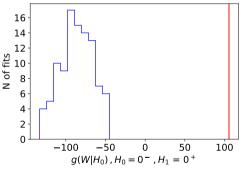
- 1. Generate N H_0 datasets, fit with both H_1 and H_0
- 2. Calculate the log-likelihood difference:

 $W(\vec{x}) = 2[\ln \mathcal{L}(\vec{x}|H_1) - \ln \mathcal{L}(\vec{x}|H_0)]$

- 3. Model and fit distribution
- 4. Calculate log-likelihood difference for the test sample generated according to H_1
- 5. Calculate p-value as upper tail integral of $g(W|H_0)$:

$$P=\int_{W_{
m obs}}^{+\infty}dW\,g(W|H_0).$$

6. P-value can be translated into # of sigmas that H_0 is rejected w.r.t. H_1 : $s_G(P) = \sqrt{2} \operatorname{erfc}^{-1}(P)$



For multiple hypotheses pick the fit with highest log-likelihood as null hypothesis and test other hypothesis against it.

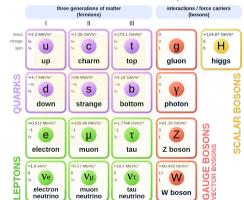
- ▶ The resonance X(3915) is observed in $\gamma\gamma$ processes at e^+e^- colliders
- ▶ The state is being interpreted as an exotic one, rather than charmonium
- Previous analyses do not exclude any of the J^P hypotheses (0⁺, 0⁻, 2⁺, 2⁻). This is important for determining the nature of X(3915)
- ▶ Uncertainties are dominated by statistics. More data is needed for a more precise determination

- $\star\,$ Current analysis operates with more statistics, by working with full Belle dataset
- $\star\,$ Amplitude analysis will be used to extract quantum numbers in a more efficient manner
- $\star\,$ Currently the fit is finalised.

Thank you for your attention!

Backup

Standard Model

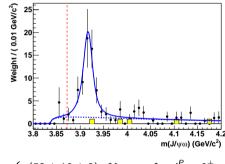


Standard Model of Elementary Particles

Previous analyses

BaBar analysis⁷ (2012):

- ▶ 519.2 fb⁻¹ data
- ▶ 7.6 σ significance



All results consistent with those of Belle!!

$$\Gamma_{\gamma\gamma}(X(3915))\mathcal{B}(X(3915) \to \omega J/\psi) = \begin{cases} (52 \pm 10 \pm 3) \text{ eV} & \text{for } J^P = 0^+ \\ (10.5 \pm 1.9 \pm 0.6) \text{ eV} & \text{for } J^P = 2^+ \end{cases}$$

"Data largely preferred $J^P = 0^{\pm}$ over 2^+ ; ... 0^+ over 0^- "

⁷BABAR, PRD 86 (2012) 072002, arXiv:1207.2651v2

Y. Kulii (LMU)

19 / 20

Track selection

- ▶ $|d_0| < 6cm$
- ▶ $|z_0| < 6cm$
- $actPIDBelle(3,2) < 0.8 \ (= P(K|\pi) < 0.8)$
- $\blacktriangleright \ N_{cleanedtracks} = 4$

LeptonID pair selection

- 1. If either of the lepton tracks has ellD>0.6 accept as $J/\psi \to e^+e^-$
- 2. Else, if either of the lepton tracks has mulD > 0.1 accept as $J/\psi \rightarrow \mu^+\mu^-$
- 3. Otherwise discard

π^{0} selection

 $\blacktriangleright \chi^2 < 4$

- 1. If 1 candidate at $p_t > 0.1 {\it GeV}/c$ take it
- 2. If >1 candidate at $p_t > 0.1 GeV/c$ discard event
- 3. If 0 candidates at $p_t > 0.1 GeV/c$ preserve all and do best candidate selection by χ^2

Mass windows

- ► $3,07 GeV/c^2 < M_{J/\psi} < 3.12 GeV/c^2$
- ▶ $0.813 GeV/c^2 < M_{\omega} < 0.753 GeV/c^2$
- $M_X < 4.3 GeV/c^2$

Selection criteria (cont.)

ISR and $\psi(2S)$ rejection

►
$$P_z > (M_5^2 - 49 GeV^2/c^4)/14 GeV/c^3 + 0.6 GeV/c^4$$

► $|M_{\ell^+\ell^-\pi^+\pi^-} - M_{\ell^+\ell^-} - 0.589 GeV/c^2| > 0.01 GeV/c^2$

Transverse momentum balance

►
$$|\Sigma \mathbf{p}_t^*| < 0.1 GeV/c$$

$$\ln \mathcal{L}(\vec{\theta};\tau_k) = \sum_{k=1}^{N} \ln \mathcal{I}(\tau_k;\vec{\theta}) - N \ln[\frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}^{\text{AC}}} \mathcal{I}(\tau_j;\vec{\theta})], \tag{1}$$

- 1. Maximize log likelihood
 - \blacktriangleright τ_i measured angles in an event $\vec{\theta}$ - amplitude values
 - (fitted parametres)

$$\ln \mathcal{L}(\vec{\theta};\tau_k) = \sum_{k=1}^{N} \ln \mathcal{I}(\tau_k;\vec{\theta}) - N \ln[\frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}^{MC}} \mathcal{I}(\tau_j;\vec{\theta})], \qquad (1)$$

- 1. Maximize log likelihood
 - τ_i measured angles
 in an event
 - $\vec{\theta}$ amplitude values (fitted parametres)
- 2. Intensity for each amplitude is theoretically derived

$$\ln \mathcal{L}(\vec{\theta};\tau_k) = \sum_{k=1}^{N} \ln \mathcal{I}(\tau_k;\vec{\theta}) - N \ln[\frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}^{acc}} \mathcal{I}(\tau_j;\vec{\theta})], \qquad (1)$$

- 1. Maximize log likelihood
 - τ_i measured angles
 in an event
 - $\vec{\theta}$ amplitude values (fitted parametres)
- 2. Intensity for each amplitude is theoretically derived Looks like this

$$\begin{aligned} \mathcal{I}_{X}^{JP}(\tau_{X}, m_{\pi^{-}\pi^{0}}^{2}, m_{\pi^{0}\pi^{+}}^{2}) &= \overline{\mathcal{N}} \left| \mathcal{D}_{\omega}(m_{\omega}) \right|^{2} \left| \mathcal{D}_{\omega}(m_{\pi^{-}\pi^{0}}^{2}, m_{\pi^{0}\pi^{+}}^{2}; m_{\omega,0}) \right|^{2} \\ &\times \left[\left| \overline{\Psi}_{X}^{JP(\lambda=0)}(\tau_{X}) \right|^{2} + \left| \overline{\Psi}_{X}^{JP(\lambda=+2)}(\tau_{X}) \right|^{2} \right], \end{aligned}$$
(2)

$$\overline{\Psi}_{X}^{JP\lambda\uparrow\downarrow}(\tau_{X}) = \sum_{L_{X},S_{X}} \mathcal{D}_{X}(m_{X}) F_{L_{X}}(m_{X})$$

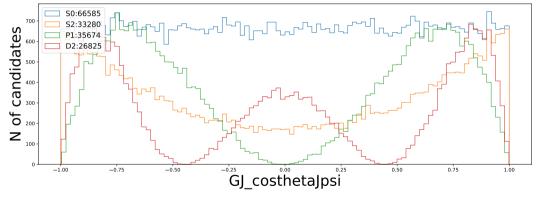
$$\sum_{\lambda_{J/\psi}=-1}^{+1} \sum_{\lambda_{\omega}=-1}^{+1} \overline{\mathcal{A}}_{L_{X}}^{X\lambda}(1\lambda_{J/\psi}, 1-\lambda_{\omega}|S_{X}\lambda_{X}) (L_{X}0, S_{X}\lambda_{X}|J\lambda_{X})$$

$$\times D_{\lambda}^{J^{*}}(\lambda_{J/\psi}-\lambda_{\omega}) (\phi_{X}^{GJ}, \vartheta_{X}^{GJ}, 0) D_{\lambda_{J/\psi}}^{1^{*}}(\phi_{J/\psi}^{HF}, \vartheta_{J/\psi}^{HF}, 0) D_{\lambda_{\omega}}^{1^{*}}(\alpha_{\omega}, \beta_{\omega}, 0). \quad (3)$$

- 1. Maximize log likelihood
 - τ_i measured angles
 in an event
 - $\vec{\theta}$ amplitude values (fitted parametres)
- Intensity for each amplitude is theoretically derived
- One quantum number hypothesis fitted is several amplitudes summed incoherently

J^P	$P\left(-1 ight)^{J}$	$\mathcal{H}^{\mathbf{X}}_{\lambda_{J/\psi} \ \lambda_{\omega}}$	$\mathcal{A}_{L_X}^X s_X$
0+	$^{+1}$	$\mathcal{H}^X_{0\ 0}$, $\mathcal{H}^X_{1\ -1}$	<i>S</i> ₀ , <i>D</i> ₂
0^{-}	$^{-1}$	$\mathcal{H}_{1\ -1}^{X}$	P_1
2^+	$^{+1}$	$\mathcal{H}^{X}_{0\ 0}$, $\mathcal{H}^{X}_{1\ -1}$, $\mathcal{H}^{X}_{1\ 0}$, $\mathcal{H}^{X}_{0\ 1}$, $\mathcal{H}^{X}_{1\ 1}$	S_2 , D_0 , D_1 , D_2 , G_2
2^{-}	$^{-1}$	$\mathcal{H}^X_{1\ -1}$, $\mathcal{H}^X_{1\ 0}$, $\mathcal{H}^X_{0\ 1}$, $\mathcal{H}^X_{1\ 1}$	P_1, P_2, F_1, F_2
3 ⁺	$^{-1}$	$\mathcal{H}^X_{1\ -1}$, $\mathcal{H}^X_{1\ 0}$, $\mathcal{H}^X_{0\ 1}$, $\mathcal{H}^X_{1\ 1}$	$D_{1},\;D_{2},\;G_{1},\;G_{2}$
4^+	$^{+1}$	$\mathcal{H}^{X}_{0\ 0}$, $\mathcal{H}^{X}_{1\ -1}$, $\mathcal{H}^{X}_{1\ 0}$, $\mathcal{H}^{X}_{0\ 1}$, $\mathcal{H}^{X}_{1\ 1}$	D_2 , G_0 , G_1 , G_2 , I_2
4	-1	$\mathcal{H}_{1\ -1}^{X}$, $\mathcal{H}_{1\ 0}^{X}$, $\mathcal{H}_{0\ 1}^{X}$, $\mathcal{H}_{1\ 1}^{X}$	F_1 , F_2 , H_1 , H_2

Phase space MC. Reweighting



There are in total 9 angles fitted. For a given amplitude they are all correlated.