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Motivation

• Searches for New Physics typically motivated by specific models

• What if we are looking in the wrong places?

→ Need for generic, model agnostic search methods
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Principles of Anomaly Detection

• Given a (high dimensional) dataset X, determine the 
datapoints that don’t seem to follow the general 
distribution of X

• Typical approach: assign numeric anomaly score to 
each datapoint (like classification score)

• No labels: well suited task for unsupervised machine 
learning

• Various methods: 
• Compression algorithms (Autoencoders)

• Density estimation methods (CATHODE)
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Intermezzo:
Unsupervised Machine Learning
(Variational) Autoencoders and Normalizing Flows
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Recap: Deep Learning

(-> See talk by Nikolai on 24.04.)

• Neural Network: Series of nodes arranged
in layers

• Node = linear transformation plus
non-linear activation

• Training: updating weights by minimizing
a loss function through backpropagation
(i.e. chain rule)

• Different architectures and loss functions
for different tasks
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Autoencoders

• Same-size input and output layer

• Twist: make middle layer smaller
than input layer (latent space)

• Typical loss: mean squared error
between input and output (also 
mae, huber, logcosh, …)
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Autoencoders

• Same-size input and output layer

• Twist: make middle layer smaller
than input layer (latent space)

• Typical loss: mean squared error 
between input and output (also 
mae, huber, logcosh, …)

→Model learns essential features
of dataset

→ However: reconstruction never
perfect
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Sidenote: Variational Autoencoders

• What if we want to generate new data (sample from latent space)?

→Problematic since distribution in latent space not known

→Idea: control this distribution (i.e. set prior on latent space)

𝑝(𝑧)

𝑝(𝑥) 𝑝(𝑥)

𝑝(𝑧|𝑥) 𝑝(𝑥|𝑧)

Encoder: 𝜇 𝑥 , Σ(𝑥) Decoder: 𝑓(𝑧)

𝑝 𝑧 = 𝒩(𝑧, 1)

𝑝 𝑥|𝑧 = 𝒩(𝑥 − 𝑓(𝑧), 𝛼)

Approximation:
𝑝 𝑧|𝑥 = 𝒩(𝑧 − 𝜇(𝑥), Σ(𝑥))

→ Loss: Reconstruction loss + 
KL-divergence between 𝑝 𝑧 𝑥
and 𝑝(𝑧)26.06.2024 Anomaly Detection Using Machine Learning At Belle II 11



Sidenote: Variational Autoencoders

• What if we want to generate new data (sample from latent space)?

→Problematic since distribution in latent space not known

→Idea: control this distribution (i.e. set prior on latent space)

x
means

variances
xz

iid random variable

Reparameterization trick:
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Density estimation: Normalizing Flows

• Suppose we want 𝑝 𝑥 → need to make network invertible
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Density estimation: Normalizing Flows

• Suppose we want 𝑝 𝑥 → need to make network invertible

Data space (x) Latent space (z)

Normalizing Flow 𝑓
(invertible neural network)
(coordinate transformation)

Inference (density estimation) 𝑓(𝑥)

Sampling 𝑓−1(𝑧)
Arbitrary distribution 𝑝𝑋(𝑥) Simple, known distribution 𝑝𝑍(𝑧)
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Density estimation: Normalizing Flows

How do you train this?

• Infer density for training data→ compare to prior on latent space 
(again KL-divergence)

• In this case: minimizing KL divergence equivalent to maximizing 
likelihood of data under latent space distribution

Problem:

→ Inference requires Jacobian of our network!

𝑃 𝑧 ∈ 𝑉 = න
𝑉

𝑝𝑍 𝑧  𝑑𝑧 = න
𝑓−1(𝑉)

𝑝𝑍 𝑓 𝑥  |det(𝐽𝑓)|𝑑𝑥 = න
𝑓−1(𝑉)

𝑝𝑋 𝑥  𝑑𝑥
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Density estimation: Normalizing Flows

Simplest idea: Ԧ𝑧 = 𝑓 Ԧ𝑥 = 𝐴 Ԧ𝑥 + Ԧ𝑡, 𝐴 diagonal and positive

→ 𝐴 = 𝑒𝑆, 𝑆 = diag Ԧ𝑠 → Ԧ𝑧 = 𝑒 Ԧ𝑠 ∘ Ԧ𝑥 + Ԧ𝑡

Inverse: Ԧ𝑥 = 𝑓−1 Ԧ𝑧 =  𝑒− Ԧ𝑠( Ԧ𝑧 − Ԧ𝑡)

This fulfils our requirements but is obviously too simple!

𝐽 = 𝐴 = diag 𝑒 Ԧ𝑠

Jacobian:
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Density estimation: Normalizing Flows

Solution: Coupling Flows

Jacobian:
Split Ԧ𝑥, Ԧ𝑧 into Ԧ𝑥1, Ԧ𝑥2 and Ԧ𝑧1, Ԧ𝑧2

Ԧ𝑥1 → Ԧ𝑧1 = Ԧ𝑥1

Ԧ𝑥2 → Ԧ𝑧2 = Ԧ𝑥2 ∘ 𝑒 Ԧ𝑠 Ԧ𝑥1 + Ԧ𝑡( Ԧ𝑥1)

Inverse:

Ԧ𝑧1 → Ԧ𝑥1 = Ԧ𝑧1

Ԧ𝑧2 → Ԧ𝑥2 = Ԧ𝑧2 − Ԧ𝑡 Ԧ𝑧1 ∘ 𝑒− Ԧ𝑠 Ԧ𝑧1

𝐼 0

diag 𝑒 Ԧ𝑠 Ԧ𝑥1
potentially

complicated
stuff

Ԧ𝑥2

Ԧ𝑧1

Ԧ𝑧2

det 𝐽 = ෑ

𝑖

𝑒𝑠𝑖( Ԧ𝑥1)

Ԧ𝑥1
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Density estimation: Normalizing Flows

Obvious problem: this only transforms half of the dimensions

→ Stack multiple layers with permutation layers in between
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Coupling layers:

Permutation layers:
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Density estimation: Normalizing Flows

Coupling Flows

Jacobian:
Split Ԧ𝑥, Ԧ𝑧 into Ԧ𝑥1, Ԧ𝑥2 and Ԧ𝑧1, Ԧ𝑧2

Ԧ𝑥1 → Ԧ𝑧1 = Ԧ𝑥1

Ԧ𝑥2 → Ԧ𝑧2 = Ԧ𝑥2 ∘ 𝑒 Ԧ𝑠 Ԧ𝑥1 + Ԧ𝑡( Ԧ𝑥1)

Inverse:

Ԧ𝑧1 → Ԧ𝑥1 = Ԧ𝑧1

Ԧ𝑧2 → Ԧ𝑥2 = Ԧ𝑧2 − Ԧ𝑡 Ԧ𝑧1 ∘ 𝑒− Ԧ𝑠 Ԧ𝑧1

𝐼 0

diag 𝑒 Ԧ𝑠 Ԧ𝑥1
potentially

complicated
stuff

Ԧ𝑥2

Ԧ𝑧1

Ԧ𝑧2

det 𝐽 = ෑ

𝑖

𝑒𝑠𝑖( Ԧ𝑥1)

Ԧ𝑥1
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Density estimation: Normalizing Flows

Solution: Coupling Flows

Jacobian:
Split Ԧ𝑥, Ԧ𝑧 into Ԧ𝑥1, Ԧ𝑥2 and Ԧ𝑧1, Ԧ𝑧2

Ԧ𝑥1 → Ԧ𝑧1 = Ԧ𝑥1

Ԧ𝑥2 → Ԧ𝑧2 = Ԧ𝑥2 ∘ 𝑒 Ԧ𝑠 Ԧ𝑥1 + Ԧ𝑡( Ԧ𝑥1)

Inverse:

Ԧ𝑧1 → Ԧ𝑥1 = Ԧ𝑧1

Ԧ𝑧2 → Ԧ𝑥2 = Ԧ𝑧2 − Ԧ𝑡 Ԧ𝑧1 ∘ 𝑒− Ԧ𝑠 Ԧ𝑧1

𝐼 0

diag 𝑒 Ԧ𝑠 Ԧ𝑥1
potentially

complicated
stuff

Ԧ𝑥2

Ԧ𝑧1

Ԧ𝑧2

det 𝐽 = ෑ

𝑖

𝑒𝑠𝑖( Ԧ𝑥1)

Ԧ𝑥1

Useless zeros!

Could be a general invertible function!

→ Autoregressive Flows, …
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Back to Anomaly Detection
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Simple Performance Test

• Idea for performance test:
• Choose an easily reconstructable B decay with small branching fraction

• Reconstruct B without cuts (and define signal region in B mass spectrum)

• Calculate significance improvement after cuts on anomaly score

• Simple choice: 𝐵± → 𝐽/𝜓 𝐾±

• Hadronic: nice bump in mass spectrum

• 𝐽/𝜓 from dileptonic decays

𝐵±𝐾± 𝐽/𝜓

𝑒+/𝜇+

𝑒−/𝜇−
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Better performance test

• New Physics Sample: dark matter model with dark Higgs and Photon
(kindly received from Jonas Eppelt at KIT)

• Again: calculate significance
improvement after anomaly cuts

• Resonant variable: dimuon mass

26.06.2024 Anomaly Detection Using Machine Learning At Belle II 23



Better performance test

• New Physics Sample: dark matter model with dark Higgs and Photon
(kindly received from Jonas Eppelt at KIT)

• Again: calculate significance
improvement after anomaly cuts

• Resonant variable: dimuon mass

26.06.2024 Anomaly Detection Using Machine Learning At Belle II 24



Anomaly Detection With Autoencoders

• Reminder: Autoencoder learns a lower dimensional 
representation of input data

• Imperfect reconstruction → reconstruction loss

• Data-driven approach: 

1. Train AE on subset of data (assumption: 
anomalies are rare)

2. Applied to the total dataset, anomalies are 
expected to have a higher reconstruction loss
→ Use as anomaly score
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Specific Architecture (Previous Approach)

• Inputs: Tried different approaches using either
• directly the reconstructed four-momenta of particles or

• derived quantities such as n-body inv. masses, angles between particles, …

→ No difference in performance (also cross-checked with a supervised 
classifier)

• Variation of depth and latent space size had little to no effect
• Settled arbitrarily on 8 latent dims and 5 hidden layers in total

• Currently redoing these studies with a combination of the above 
inputs, improved encoding, and on a larger unskimmed dataset
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Simple preliminary test

• AE trained on 250k simulated generic B decays

26.06.2024 Anomaly Detection Using Machine Learning At Belle II 27

→ Increase in rare 
events after 
anomaly cut



Some performance graphs

• AE trained on 250k simulated generic B decays

• Normalized 𝐵± → 𝐽/𝜓 𝐾± event counts after anomaly cuts:
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Some performance graphs

• Simple reconstruction of 𝐵± → 𝐽/𝜓 𝐾±

• Significance estimate: 𝑆/ 𝑆 + 𝐵
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Some performance graphs

• Simple reconstruction of 𝐵± → 𝐽/𝜓 𝐾±

• Significance estimate: 𝑆/ 𝑆 + 𝐵
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Some sidenotes

Also tried 

• Variational Autoencoders
→Worse performance with more difficult training

• Encoding of MC information (rarity) in latent space
→ Slight improvement in performance but breaks data-driven 

approach
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Anomaly Detection With Density Estimation

• Different methods ((R-)ANODE, CATHODE)

• Basic principle always the same:
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Anomaly Detection With Density Estimation

• Different methods ((R-)ANODE, CATHODE)

• Basic principle always the same:
• Choose a variable in which to look for a 

localized signal

𝑚
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Anomaly Detection With Density Estimation

• Different methods ((R-)ANODE, CATHODE)

• Basic principle always the same:
• Choose a variable in which to look for a 
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• Define a signal region (SR)

𝑚

SB

SB
SR
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Anomaly Detection With Density Estimation
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Anomaly Detection With Density Estimation

• Different methods ((R-)ANODE, CATHODE)

• Basic principle always the same:
• Choose a variable in which to look for a 

localized signal

• Define a signal region (SR)

• Train a density estimator on the sidebands 
(everything except SR)

• Extrapolate this learned density into the SR 
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Anomaly Detection With Density Estimation

• Different methods ((R-)ANODE, CATHODE)

• Basic principle always the same:
• Choose a variable in which to look for a 

localized signal

• Define a signal region (SR)

• Train a density estimator on the sidebands 
(everything except SR)

• Extrapolate this learned density into the SR 

• Compare to actual distribution
→ This is where the models differ

𝑚

SB

SB
SR
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CATHODE1

• Sample from the extrapolated distribution

• Train a binary classifier to distinguish sample from actual data in SR

• Expectation for classification score:
• For background no distinction possible → peak at 0.5

• For signal tail to higher values

→ Use classification score as anomaly score
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Simple Demonstration

• Implementation tested on public dataset from the LHC Olympics 
AD Challenge1 (anomaly in dijet mass distribution)

Dijet mass (transformed)
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Simple Demonstration

• Implementation tested on public dataset from the LHC Olympics 
AD Challenge1 (anomaly in dijet mass distribution)

• Anomaly (classification) 
score distribution:
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Simple Demonstration

• Implementation tested on public dataset from the LHC Olympics 
AD Challenge1 (anomaly in dijet mass distribution)

• Performance:
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Outlook

Density Estimation:

• Presented scenario is a bit artificial (known signal region) → needs a 
scanning procedure (probably not in the scope of my thesis)

• Currently working on Belle II implementation on New Physics sample

Autoencoders:

• Current studies on unskimmed dataset don’t show promise for the
J/Psi K analysis→ investigating modifications

• Very preliminary results on New Physics sample show more promise
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Thank you!
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