

Anomaly Detection Using Machine Learning at Belle II

David Giesegh, Nikolai Hartmann, Thomas Kuhr

LMU München

Joint Particle Physics Group Seminar 26.06.2024

Motivation

- Searches for New Physics typically motivated by specific models
- What if we are looking in the wrong places?
- → Need for generic, model agnostic search methods

Motivation

- Searches for New Physics typically motivated by specific models
- What if we are looking in the wrong places?
- \rightarrow Need for generic, model agnostic search methods
- Different approaches:

Supervised / simulation driven:

Generic comparisons of measurements with theory predictions

Unsupervised / data driven: Direct searches for anomalous/over-dense

regions in the data

Motivation

- Searches for New Physics typically motivated by specific models
- What if we are looking in the wrong places?
- \rightarrow Need for generic, model agnostic search methods
- Different approaches:

Supervised / simulation driven: Generic comparisons of measurements with theory predictions Unsupervised / data driven: Direct searches for anomalous/over-dense regions in the data

Principles of Anomaly Detection

- Given a (high dimensional) dataset X, determine the datapoints that don't seem to follow the general distribution of X
- Typical approach: assign numeric **anomaly score** to each datapoint (like classification score)
- No labels: well suited task for unsupervised machine learning
- Various methods:
 - Compression algorithms (Autoencoders)
 - Density estimation methods (CATHODE)

Intermezzo: Unsupervised Machine Learning

(Variational) Autoencoders and Normalizing Flows

Recap: Deep Learning

(-> See talk by Nikolai on 24.04.)

- Neural Network: Series of nodes arranged in layers
- Node = linear transformation plus non-linear activation
- Training: updating weights by minimizing a loss function through backpropagation (i.e. chain rule)
- Different architectures and loss functions for different tasks

Autoencoders

- Same-size input and output layer
- Twist: make middle layer smaller than input layer (latent space)
- Typical loss: mean squared error between input and output (also mae, huber, logcosh, ...)

Autoencoders

- Same-size input and output layer
- Twist: make middle layer smaller than input layer (latent space)
- Typical loss: mean squared error between input and output (also mae, huber, logcosh, ...)

Autoencoders

- Same-size input and output layer
- Twist: make middle layer smaller than input layer (latent space)
- Typical loss: mean squared error between input and output (also mae, huber, logcosh, ...)
- → Model learns essential features of dataset
- → However: reconstruction never perfect

Sidenote: Variational Autoencoders

- What if we want to generate new data (sample from latent space)?
- \rightarrow Problematic since distribution in latent space not known
- \rightarrow Idea: control this distribution (i.e. set prior on latent space)

 $p(z) = \mathcal{N}(z, 1)$

$$p(x|z) = \mathcal{N}(x - f(z), \alpha)$$

Approximation: $p(z|x) = \mathcal{N}(z - \mu(x), \Sigma(x))$

→ Loss: Reconstruction loss + KL-divergence between p(z|x)and p(z) 11

Sidenote: Variational Autoencoders

- What if we want to generate new data (sample from latent space)?
- \rightarrow Problematic since distribution in latent space not known
- \rightarrow Idea: control this distribution (i.e. set prior on latent space)

• Suppose we want $p(x) \rightarrow$ need to make network invertible

• Suppose we want $p(x) \rightarrow$ need to make network invertible

Inference (density estimation) f(x)

Data space (x)

Latent space (z)

Normalizing Flow <i>f</i> (invertible neural network) (coordinate transformation)	
--	--

Arbitrary distribution $p_X(x)$

Sampling $f^{-1}(z)$

Simple, known distribution $p_Z(z)$

Anomaly Detection Using Machine Learning At Belle II

How do you train this?

- Infer density for training data → compare to prior on latent space (again KL-divergence)
- In this case: minimizing KL divergence equivalent to maximizing likelihood of data under latent space distribution

Problem:

$$P(z \in V) = \int_{V} p_{Z}(z) dz = \int_{f^{-1}(V)} p_{Z}(f(x)) |\det(J_{f})| dx = \int_{f^{-1}(V)} p_{X}(x) dx$$

 \rightarrow Inference requires Jacobian of our network!

Simplest idea: $\vec{z} = f(\vec{x}) = A\vec{x} + \vec{t}$, A diagonal and positive $\Rightarrow A = e^S$, $S = \text{diag}(\vec{s}) \Rightarrow \vec{z} = e^{\vec{s}} \circ \vec{x} + \vec{t}$

Jacobian:

Inverse:
$$\vec{x} = f^{-1}(\vec{z}) = e^{-\vec{s}}(\vec{z} - \vec{t})$$

$$J = A = \operatorname{diag}(e^{\vec{s}})$$

$$\operatorname{det} J = \prod_{i} e^{s_{i}}$$

This fulfils our requirements but is obviously too simple!

Solution: Coupling Flows

Split \vec{x}, \vec{z} into \vec{x}_1, \vec{x}_2 and \vec{z}_1, \vec{z}_2

$$\vec{x}_1 \to \vec{z}_1 = \vec{x}_1$$

 $\vec{x}_2 \to \vec{z}_2 = \vec{x}_2 \circ e^{\vec{s}(\vec{x}_1)} + \vec{t}(\vec{x}_1)$

Inverse:

$$\vec{z}_1 \to \vec{x}_1 = \vec{z}_1$$

$$\vec{z}_2 \to \vec{x}_2 = \left(\vec{z}_2 - \vec{t}(\vec{z}_1)\right) \circ e^{-\vec{s}(\vec{z}_1)}$$

Jacobian:

Anomaly Detection Using Machine Learning At Belle II

Obvious problem: this only transforms half of the dimensions \rightarrow Stack multiple layers with permutation layers in between

Coupling Flows

Split \vec{x}, \vec{z} into \vec{x}_1, \vec{x}_2 and \vec{z}_1, \vec{z}_2

$$\vec{x}_1 \to \vec{z}_1 = \vec{x}_1$$

 $\vec{x}_2 \to \vec{z}_2 = \vec{x}_2 \circ e^{\vec{s}(\vec{x}_1)} + \vec{t}(\vec{x}_1)$

Inverse:

$$\vec{z}_1 \rightarrow \vec{x}_1 = \vec{z}_1$$

$$\vec{z}_2 \rightarrow \vec{x}_2 = \left(\vec{z}_2 - \vec{t}(\vec{z}_1)\right) \circ e^{-\vec{s}(\vec{z}_1)}$$

Jacobian:

Anomaly Detection Using Machine Learning At Belle II

Solution: Coupling Flows \rightarrow Autoregressive Flows, ... Jacobian: $\vec{x}_1 \rightarrow \vec{z}_1 = \vec{x}_1$ \vec{x}_1 $\vec{x}_2 \rightarrow \vec{z}_2 = \vec{x}_2 \circ e^{\vec{s}(\vec{x}_1)} + \vec{t}(\vec{x}_1)$

Density estimation: Normalizing Flows

Split \vec{x}, \vec{z} into \vec{x}_1, \vec{x}_2 and \vec{z}_1, \vec{z}_2

Inverse: Could be a general invertible function!
$$\vec{z}_1 \rightarrow \vec{x}_1 = \vec{z}_1$$

$$\vec{z}_2 \rightarrow \vec{x}_2 = \left(\vec{z}_2 - \vec{t}(\vec{z}_1)\right) \circ e^{-\vec{s}(\vec{z}_1)}$$

Anomaly Detection Using Machine Learning At Belle II

Back to Anomaly Detection

Simple Performance Test

- Idea for performance test:
- ce test:
 - Choose an easily reconstructable B decay with small branching fraction
 - Reconstruct B without cuts (and define signal region in B mass spectrum)
 - Calculate significance improvement after cuts on anomaly score
- Simple choice: $B^{\pm} \rightarrow J/\psi \ K^{\pm}$
 - Hadronic: nice bump in mass spectrum
 - J/ψ from dileptonic decays

Better performance test

- New Physics Sample: dark matter model with dark Higgs and Photon (kindly received from Jonas Eppelt at KIT)
- Again: calculate significance improvement after anomaly cuts
- Resonant variable: dimuon mass

Better performance test

- New Physics Sample: dark matter model with dark Higgs and Photon (kindly received from Jonas Eppelt at KIT)
- Again: calculate significance improvement after anomaly cuts
- Resonant variable: dimuon mass

25

Anomaly Detection With Autoencoders

- Reminder: Autoencoder learns a lower dimensional representation of input data
- Imperfect reconstruction \rightarrow reconstruction loss
- Data-driven approach:
 - 1. Train AE on subset of data (assumption: anomalies are rare)
 - Applied to the total dataset, anomalies are expected to have a higher reconstruction loss
 → Use as anomaly score

Specific Architecture (Previous Approach)

- Inputs: Tried different approaches using either
 - directly the reconstructed four-momenta of particles or
 - derived quantities such as n-body inv. masses, angles between particles, ...
 - → No difference in performance (also cross-checked with a supervised classifier)
- Variation of **depth** and **latent space size** had little to no effect
 - Settled arbitrarily on 8 latent dims and 5 hidden layers in total
- Currently redoing these studies with a combination of the above inputs, improved encoding, and on a larger unskimmed dataset

Simple preliminary test

• AE trained on 250k simulated generic B decays

→ Increase in rare events after anomaly cut

Some performance graphs

- AE trained on 250k simulated generic B decays
- Normalized $B^{\pm} \rightarrow J/\psi K^{\pm}$ event counts after anomaly cuts:

Anomaly Detection Using Machine Learning At Belle II

Some performance graphs

- Simple reconstruction of $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Significance estimate: $S/\sqrt{S+B}$

Some performance graphs

- Simple reconstruction of $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Significance estimate: $S/\sqrt{S+B}$

Anomaly Detection Using Machine Learning At Belle II

Some sidenotes

Also tried

- Variational Autoencoders
 - \rightarrow Worse performance with more difficult training
- Encoding of MC information (rarity) in latent space
 - → Slight improvement in performance but breaks data-driven approach

- Different methods ((R-)ANODE, CATHODE)
- Basic principle always the same:

- Different methods ((R-)ANODE, CATHODE)
- Basic principle always the same:
 - Choose a variable in which to look for a localized signal

1200 1000 SB 800 SR SB 600 400 200 0 1.0 1.5 2.5 0.0 0.5 2.0 3.0 m

- Different methods ((R-)ANODE, CATHODE)
- Basic principle always the same:
 - Choose a variable in which to look for a localized signal
 - Define a signal region (SR)

- Different methods ((R-)ANODE, CATHODE)
- Basic principle always the same:
 - Choose a variable in which to look for a localized signal
 - Define a signal region (SR)
 - Train a density estimator on the sidebands (everything except SR)

35

- Different methods ((R-)ANODE, CATHODE)
- Basic principle always the same:
 - Choose a variable in which to look for a localized signal
 - Define a signal region (SR)
 - Train a density estimator on the sidebands (everything except SR)
 - Extrapolate this learned density into the SR

36

- Different methods ((R-)ANODE, CATHODE)
- Basic principle always the same:
 - Choose a variable in which to look for a localized signal
 - Define a signal region (SR)
 - Train a density estimator on the sidebands (everything except SR)
 - Extrapolate this learned density into the SR
 - Compare to actual distribution
 → This is where the models differ

CATHODE¹

- Sample from the extrapolated distribution
- Train a **binary classifier** to distinguish sample from actual data in SR
- Expectation for classification score:
 - For background no distinction possible \rightarrow peak at 0.5
 - For signal tail to higher values
- \rightarrow Use classification score as anomaly score

Simple Demonstration

 Implementation tested on public dataset from the LHC Olympics AD Challenge¹ (anomaly in dijet mass distribution)

¹Publicly available under <u>https://zenodo.org/records/4536377</u>

Anomaly Detection Using Machine Learning At Belle II

Simple Demonstration

- Implementation tested on public dataset from the LHC Olympics AD Challenge¹ (anomaly in dijet mass distribution)
- Anomaly (classification) score distribution:

Simple Demonstration

- Implementation tested on public dataset from the LHC Olympics AD Challenge¹ (anomaly in dijet mass distribution)
- Performance:

Anomaly Detection Using Machine Learning At Belle II

Outlook

Density Estimation:

- Presented scenario is a bit artificial (known signal region) → needs a scanning procedure (probably not in the scope of my thesis)
- Currently working on Belle II implementation on New Physics sample

Autoencoders:

- Current studies on unskimmed dataset don't show promise for the J/Psi K analysis → investigating modifications
- Very preliminary results on New Physics sample show more promise

Thank you!

