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Motivation

e Searches for New Physics typically motivated by specific models
* What if we are looking in the wrong places?
- Need for generic, model agnostic search methods
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Principles of Anomaly Detection

Given a (high dimensional) dataset X, determine the
datapoints that don’t seem to follow the general
distribution of X -

Typical approach: assign numeric anomaly score to o
each datapoint (like classification score)
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e Various methods:

* Compression algorithms (Autoencoders)
* Density estimation methods (CATHODE)
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Intermezzo:
Unsupervised Machine Learning

(Variational) Autoencoders and Normalizing Flows
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Recap: Deep Learning

(-> See talk by Nikolai on 24.04.)

* Neural Network: Series of nodes arranged

) input layer  hidden layer  output layer
in layers

* Node = linear transformation plus
non-linear activation

* Training: updating weights by minimizing
a loss function through backpropagation
(i.e. chain rule)

e Different architectures and loss functions
for different tasks
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Autoencoders

* Same-size input and output layer il EZL"J‘J< Decoder

* Twist: make middle layer smaller
than input layer (latent space)

* Typical loss: mean squared error
between input and output (also
mae, huber, logcosh, ...)

1 1

Input Data Encoded Data Reconstructed Data
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Autoencoders

e Same-size input and output layer

* Twist: make middle layer smaller
than input layer (latent space) 7 \

e Typical loss: mean squared error *]
between input and output (also
mae, huber, logcosh, ...)
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Autoencoders

e Same-size input and output layer

* Twist: make middle layer smaller
than input layer (latent space)

e Typical loss: mean squared error
between input and output (also
mae, huber, logcosh, ...)

- Model learns essential features
of dataset

- However: reconstruction never
perfect
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Sidenote: Variational Autoencoders

 What if we want to generate new data (sample from latent space)?
- Problematic since distribution in latent space not known
—ldea: control this distribution (i.e. set prior on latent space)

p(z) = N(z,1)

p(x|z) = N (x — f(2), a)
Encoder: u(x),Z(x) Decoder: f(z)

Approximation:
p(z|x) = N(z — p(x), 2(x))

p(z|x) p(x|z) —> Loss: Reconstruction loss +
p(x) p(x) KL-divergence between p(z|x)
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Sidenote: Variational Autoencoders

* What if we want to generate new data (sample from latent space)?
- Problematic since distribution in latent space not known
—ldea: control this distribution (i.e. set prior on latent space)

Reparameterization trick:

means

variances

iid random variable /

26.06.2024 Anomaly Detection Using Machine Learning At Belle Il 12




Density estimation: Normalizing Flows

 Suppose we want p(x) = need to make network invertible
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Density estimation: Normalizing Flows

 Suppose we want p(x) = need to make network invertible

Inference (density estimation) f(x)
Data space (x) >

Latent space (z)

Normalizing Flow f
(invertible neural network)
(coordinate transformation)

Arbitrary distribution py(x) Simple, known distribution p,(z)

Sampling f ~1(2)
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Density estimation: Normalizing Flows

How do you train this?
* Infer density for training data = compare to prior on latent space
(again KL-divergence)

* In this case: minimizing KL divergence equivalent to maximizing
likelihood of data under latent space distribution

Problem:

P(ZEV)=J

vV

po(F00) ldetUpldx = | py(o) d

pz(z) dz = f
7w

1)
- Inference requires Jacobian of our network!
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Density estimation: Normalizing Flows

Simplest idea: Z = f(X) = A% + t, A diagonal and positive
SA=e%5S=diag})DZ=e o+t
Jacobian:

Inverse: ¥ = f~1(2) = e 5(Z —t) ]
J=A= diag(es)

det] = Hesi
i

This fulfils our requirements but is obviously too simple!
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Density estimation: Normalizing Flows

Solution: Coupling Flows

Split X, Z into x4, X, and z4, Z,

5 . R Jacobian:
xl % Zl - xl - -
x1 xZ
Y 7. = X S(X1) 1 F(%
Xy D Zy =Xp08€ + t(x1) ) I )
Al
Inverse:
71 > X1 =7 potentially N G
' ! ! Z, complicated lag(e )
- - - 27 —c(7 tuff
Zy ™ Xy = (ZZ — t(Zl)) oe 5(z1) stu
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Density estimation: Normalizing Flows

Obvious problem: this only transforms half of the dimensions
— Stack multiple layers with permutation layers in between

Coupling layers:

Permutation layers:

det() = det(y) - 1 - det(J) - 1 - det(J5)
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Density estimation: Normalizing Flows

Coupling Flows

Split X, Z into x4, X, and z4, Z,

5 . R Jacobian:
xl % Zl - X1 - -
x1 x2
Y 7. = X S(X1) 1 F(%
Xy D Zy =Xp08€ + t(x1) ) I )
Al
Inverse:
71 > X1 =7 potentially N G
' ! ! Z, complicated lag(e )
- - - 27 —c(7 tuff
Zy ™ Xy = (ZZ — t(Zl)) oe 5(z1) stu

det] = 1_[ eSi(¥1)
; 19
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Density estimation: Normalizing Flows

Solution: Coupling Flows - Autoregressive Flows, ...

Split X, Z into x4, X, and z4, Z,

5 . R Jacobian:
— 74 = . .
X1 1= X1 2, 2,
Y 7. = X S(*1) 4 F(%
X, > Zy =Xp08€ + t(X1)
Al I O
Inverse: Could be a general invertible function!
> > 2 potentially , 202
Z1 — = Z . S(%1)
1 X1 1 Zy complicated dlag(e ' )
2’2 N 3‘52 — (22 _ E’(Z’l)) o 3—5(21) stuff

det] = ‘ ‘ eSi(¥1)
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Back to Anomaly Detection
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Simple Performance Test

* |dea for performance test:

* Choose an easily reconstructable B decay with small branching fraction
e Reconstruct B without cuts (and define signal region in B mass spectrum)
* Calculate significance improvement after cuts on anomaly score

° S|mp|e choice: Bi — ]/l/) Ki Reconstructed B mass spectrum

B background
B =ignal

* Hadronic: nice bump in mass spectrum 2000 1
* J/1 from dileptonic decays

0- T T T
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Better performance test

* New Physics Sample: dark matter model with dark Higgs and Photon
(kindly received from Jonas Eppelt at KIT)

* Again: calculate significance
improvement after anomaly cuts

* Resonant variable: dimuon mass
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Better performance test

* New Physics Sample: dark matter model with dark Higgs and Photon

(kindly received from Jonas Eppelt at KIT)

* Again: calculate significance
improvement after anomaly cuts

* Resonant variable: dimuon mass
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Anomaly Detection With Autoencoders

e Reminder: Autoencoder learns a lower dimensional
representation of input data

Encoder Latent Decoder
Space

* Imperfect reconstruction = reconstruction loss <

* Data-driven approach:

1. Train AE on subset of data (assumption:
anomalies are rare)

2. Applied to the total dataset, anomalies are
expected to have a higher reconstruction loss
- Use as anomaly score

1 t

Input Data Encoded Data Reconstructed Data
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Specific Architecture (Previous Approach)

* Inputs: Tried different approaches using either
 directly the reconstructed four-momenta of particles or

» derived quantities such as n-body inv. masses, angles between particles, ...

- No difference in performance (also cross-checked with a supervised
classifier)

* Variation of depth and latent space size had little to no effect
» Settled arbitrarily on 8 latent dims and 5 hidden layers in total

* Currently redoing these studies with a combination of the above
inputs, improved encoding, and on a larger unskimmed dataset

26.06.2024 Anomaly Detection Using Machine Learning At Belle Il
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Simple preliminary test

* AE trained on 250k simulated generic B decays

Anomaly score > 6.2, 39875 anom. events Anomaly score > 9, 12745 anom. events
10 4 — Anomalous 10 — Anomalous
All I All

08 {| 08|

06 06 -2 Increase in rare
events after

0.4 4 0.4
anomaly cut

0.2 4 0.2 -

0.0 4 N 0.0 1

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Decay number sorted by rarity Decay number sarted by rarity
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Some performance graphs

* AE trained on 250k simulated generic B decays
 Normalized B — J /i) K* event counts after anomaly cuts:

Remaining event counts (with latent space cut) Ratio of normalized event counts (rare/common)
107 7 — |/Psi K 3.5 -
Ciher
30 1
1071 A
25 1
10-2 1 2.0 1
15
1D—3 -
10
0o 02 04 & 05 14 0o 02 04 & 05 14
Anomaly score cut value Anomaly score cut value
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Some performance graphs

* Simple reconstruction of B — J/y K*
* Significance estimate: S/vS + B

5/B S/sqrt(S+B)
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Some performance graphs

* Simple reconstruction of B — J/y K*

* Significance estimate: S/vS + B

TPR [efficiency)
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Some sidenotes

Also tried

* Variational Autoencoders
- Worse performance with more difficult training

* Encoding of MC information (rarity) in latent space
- Slight improvement in performance but breaks data-driven
approach

26.06.2024 Anomaly Detection Using Machine Learning At Belle Il

31



Anomaly Detection With Density Estimation

* Different methods ((R-)ANODE, CATHODE)
 Basic principle always the same:
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Anomaly Detection With Density Estimation

* Different methods ((R-)ANODE, CATHODE)
 Basic principle always the same:

* Choose a variable in which to look for a 1200 1

localized signal 1000 |
800 1
BO0 1

400 4

200 1
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Anomaly Detection With Density Estimation

* Different methods ((R-)ANODE, CATHODE)
 Basic principle always the same:

* Choose a variable in which to look for a 1200 -
localized signal

e Define a signal region (SR)
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Anomaly Detection With Density Estimation

* Different methods ((R-)ANODE, CATHODE)
 Basic principle always the same:

* Choose a variable in which to look for a 1200 -
localized signal

e Define a signal region (SR)

* Train a density estimator on the sidebands
(everything except SR)

1000 -

800 1

600 1

400 4

200 1
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Anomaly Detection With Density Estimation

* Different methods ((R-)ANODE, CATHODE)

 Basic principle always the same:

* Choose a variable in which to look for a 1200 -
localized signal

* Define a signal region (SR)

* Train a density estimator on the sidebands
(everything except SR)

* Extrapolate this learned density into the SR~ *°]

200 1

1000 -

800 1

600 1
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Anomaly Detection With Density Estimation

* Different methods ((R-)ANODE, CATHODE)
 Basic principle always the same:

* Choose a variable in which to look for a 1200 -
localized signal

* Define a signal region (SR)

* Train a density estimator on the sidebands
(everything except SR)

* Extrapolate this learned density into the SR~ *°]

* Compare to actual distribution 200 -
= This is where the models differ .

1000 -

800 1

600 1
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CATHODE!

* Sample from the extrapolated distribution
* Train a binary classifier to distinguish sample from actual data in SR

* Expectation for classification score:
* For background no distinction possible = peak at 0.5
* For signal tail to higher values

— Use classification score as anomaly score

1Based on arXiv:2109.00546

26.06.2024 Anomaly Detection Using Machine Learning At Belle Il

38


https://arxiv.org/abs/2109.00546

Simple Demonstration

* Implementation tested on public dataset from the LHC Olympics
AD Challenge! (anomaly in dijet mass distribution)

Mo cut

3500 1
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2500 1

2000 +
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500 1

ﬂ .
1Publicly available under https://zenodo.org/records/4536377 0.4 0.5 0.6 07 0.8 09 10
Dijet mass (transformed)

26.06.2024 Anomaly Detection Using Machine Learning At Belle I

39


https://zenodo.org/records/4536377

Simple Demonstration

* Implementation tested on public dataset from the LHC Olympics
AD Challenge! (anomaly in dijet mass distribution)

. o . Anomaly score distribution
* Anomaly (classification) :

10* A
score distribution:
l|]3 4
w107
:
l']l -
107 1 |
Publicly available under https://zenodo.org/records/4536377 oo - Djassiﬁer Smiﬁ - Lo
26.06.2024
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Simple Demonstration

* Implementation tested on public dataset from the LHC Olympics
AD Challenge! (anomaly in dijet mass distribution)

 Performance:

ROC curve (AUC is 0.877) SIC curve
10 1 — cATHODE 35
=== random ..-"’
Fa
0.8 1 7 o 30
=
= 0.6 1 E
= E 20
£ - o
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= 0.4 - " 15
E . =
g = 1|:| |
0.2 - =
e 05
0.0 -
T T T T T T D-l:l T T T T T T
0.0 02 04 0.6 0.5 10 0.0 0.2 04 0.6 0.5 10
FPR TPR (=fficiency)

Publicly available under https://zenodo.org/records/4536377
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Outlook

Density Estimation:

* Presented scenario is a bit artificial (known signal region) = needs a
scanning procedure (probably not in the scope of my thesis)

* Currently working on Belle Il implementation on New Physics sample

Autoencoders:

* Current studies on unskimmed dataset don’t show promise for the
J/Psi K analysis = investigating modifications

* Very preliminary results on New Physics sample show more promise
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